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Abstract Small molecule permeability through cellular

membranes is critical to a better understanding of phar-

macodynamics and the drug discovery endeavor. Such

permeability may be estimated as a function of the free

energy change of barrier crossing by invoking the barrier

domain model, which posits that permeation is limited by

passage through a single ‘‘barrier domain’’ and assumes

diffusivity differences among compounds of similar

structure are negligible. Inspired by the work of Rezai and

co-workers (JACS 128:14073–14080, 2006), we estimate

this free energy change as the difference in implicit sol-

vation free energies in chloroform and water, but extend

their model to include solute conformational affects. Using

a set of eleven structurally diverse FDA approved com-

pounds and a set of thirteen congeneric molecules, we

show that the solvation free energies are dominated by the

global minima, which allows solute conformational distri-

butions to be effectively neglected. For the set of tested

compounds, the best correlation with experiment is

obtained when the implicit chloroform global minimum is

used to evaluate the solvation free energy difference.

Keywords Passive membrane permeability �
MINTA � Implicit solvent � Molecular mechanics �
Homogenous solubility model

Introduction

The ability to cross a lipid bilayer is an essential character

that all drugs must posses. For example, a compound that

readily diffuses through the intestinal enterocyte boundary

is far more likely to be administered orally than a com-

pound that does not. Topically administered drugs, a

mainstay in dermatology, must often pass through several

epidermal layers and their associated membranes [1].

Likewise, pulmonary administered compounds, such as

those used in the treatment of Cystic Fibrosis [2], must

cross the alveolar epithelium and capillary endothelium

membranes before entering systematic circulation. Gener-

ally, with the exception of those targeting blood-borne

elements, all drugs must cross capillary membranes before

exiting systematic circulation and reaching their cellular

target, regardless of the administration route [3]. Even

drugs targeting blood platelets must pass through a cellular

membrane [3].

Experimental methods of measuring in vitro small

molecule membrane permeability commonly include the

cell based Caco-2 assay [4] and the artificial membrane

based PAMPA [5] assays. Caco-2 assays utilize a cell line

derived from human colon carcinoma, have characteristics

that resemble intestinal epithelial cells, including intercel-

lular junctions and transport proteins, and can yield per-

meabilities with good correlation to human oral drug

absorption [6]. Parallel Artificial Membrane Permeability

Assays (PAMPA), on the other hand, are a lower-cost,

higher-throughput alternative that utilize an artificial
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membrane generally composed of a mixture of lipids dis-

solved in an organic solvent, embedded in a porous filter.

As PAMPA lack intercellular junctions and active trans-

porters, permeability is exclusively passive. Despite the

difference in cell and artificial membrane based assays,

correlation between the two can be good [7].

Computational methods of predicting small molecule

membrane permeability are fundamentally important in

drug lead generation and optimization and are an actively

evolving area of methodological development. For exam-

ple, compound permeability estimates allow one to select a

compound library subset for docking, or to determine an

appropriate lead optimization strategy. While experimental

permeability measurements are ideal, they are often too

slow or expensive to filter the *104–106 compounds typ-

ical of a docking screen, and they require that a lead series

be synthesized before assay. Alternatively, computational

models can be rapid, often correlate well with experiment,

and range from the detailed and expensive molecular

dynamics (MD) methods [8, 9], to the less accurate but

inexpensive knowledge-based quantitative structural per-

meability relationship (QSPR) methods [10].

In 2006, the Jacobson group published results from a unique

physics-based method, intermediate in detail between the MD

and QSPR methods [11] that is loosely based on the homog-

enous solubility model of passive membrane permeability,

P ¼ ðD=dÞKp. The permeability is P, (cm/s), the diffusion

coefficient is D, (cm2/s), the membrane thickness is d, (cm),

and Kp is the unitless partition coefficient of the drug between

bulk water and the membrane, which is taken as a homogenous

low-dielectric slab. By invoking the barrier domain model

[12], which posits that permeation is limited by passage

through a single ‘‘barrier domain,’’ and assuming diffusivity

differences are small, the model determines permeability as a

function of the free energy change of barrier crossing. The free

energy change of barrier crossing is estimated by the differ-

ence in implicit solvent chloroform and water solvation free

energies, evaluated using a single member of the conforma-

tional ensemble found at the global minimum in the chloro-

form solvent. The choice of implicit solvent, while not

necessarily the most accurate, captures the fundamental

dielectric character of the membrane and water phases but

incurs significantly less computational cost than an all-atom

method. Consequently, the use of implicit solvent offers a

unique balance between accurate, high-cost, low throughput

all-atom methods, and less accurate, lower-cost higher

throughput methods. While the model worked well for a set of

cyclic peptides [11], performance deteriorated for two small

sets of drugs [11, 13]. This led us to explore whether a more

rigorous treatment of conformational distributions would

improve accuracy and how sensitive the method is to subtle

structural differences characteristic of lead optimization.

In this work, we investigate the affects of using a more

rigorous conformational distribution treatment by com-

paring three different configuration integral approxima-

tions. We also expanded their study to include a set of

simple benzene congeners to determine how sensitive the

model is to subtle changes that might be proposed during

lead optimization. Moreover, we compare the performance

of each approximation to those of QikProp, a fast, easy to

use, knowledge-based pharmacokinetic property predictor

available from Schrödinger [14]. In all cases, predictions

are compared to PAMPA data.

Methods and theory

Relating the homogenous solubility and barrier domain

models of membrane permeability

The barrier domain model of membrane permeability ratio-

nalizes treatment of structurally anisotropic membranes as

isotropic homogenous slabs. The barrier domain model,

which is consistent with both experiment [12] and computa-

tion [8, 9], posits that for polar compounds, permeability is

limited by passage through the highly ordered membrane

region immediately behind the acyl-chain head group link-

ages. In this region, solubility is low due to the apolar character

of the acyl-hydrocarbon chain, and diffusivity is low due to the

ordered structure of the chains. Both characteristics give rise

to high permeability resistance, making passage through this

region rate limiting. The free energy change associated with

barrier crossing is then given by the difference in free energy

of the ensemble of conformations accessible at the hydrated

head groups, which constitute the membrane-water interface,

and those accessible at the transition state in the ordered acyl-

chain membrane region. In this way, the homogenous solu-

bility model of passive membrane permeability is similar to

transition state theory, i.e. P ¼ ðD=dÞe�DG=RT where DG is

the free energy of barrier crossing, and the diffusivity pre-

factor may be assumed to roughly cancel across sets of similar

compounds. In this work, as in the work reported by the Jac-

obson group, the free energy barrier is estimated as the dif-

ference in chloroform and aqueous solvation free energies. In

the next section, we develop a statistical thermodynamic

expression for this free energy change, which leads to three

approximations.

Statistical thermodynamic formulation

If differences in intra-membrane diffusivity are neglected,

according to the homogenous solubility diffusion and

barrier domain models, the logged permeability of one

molecule relative to another is,
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D logðPÞ ¼ � b
2:3

DDG ð1Þ

where b = (RT)-1, with R the universal gas constant and T

the temperature. The calculated quantity, DG, is the

difference in solvation free energies of a molecule

dissolved in water and in the membrane. Using an

implicit chloroform solvent to model the membrane,

implicit water to model an aqueous solution, and

assuming the difference in volume between the

chloroform and aqueous solutions is negligibly small, DG

is given,

e�bDG ¼
R

e�bðUðxÞþWCHCl3
ðxÞÞdx

R
e�bðUðxÞþWH2OðxÞÞdx

ð2Þ

U(x) is the potential energy of the ligand in a conformation

given by its coordinates x. WH2OðxÞ is the aqueous solva-

tion free energy, or solvation potential of mean force [15],

when the ligand is held in a conformation x; a similar

definition holds for WCHCl3
ðxÞ. The solvation free energies

are further decomposed into electrostatic contributions that

arise from the difference in free energies of charging the

ligand in the solvent and gas phases, respectively, and a

non-polar contribution that results from creating a solute

sized cavity in the solvent [16].

While the configuration integrals in Eq. 2 are evaluated

over all possible ligand conformations, the Boltzmann

factors in each are largest for conformations with low

potential and solvation free energies. Consequently, by

increasing the extent of conformational sampling around

the global minimum, each integral can be approximated

with increasing accuracy. Three approximations are dis-

cussed. The first, which we denote ‘‘the single-state

approximation,’’ is consistent with the calculations repor-

ted by the Jacobson group [11, 13]. In the single-state

approximation, it’s assumed that the global minimum

conformation in chloroform dominates both integrals. This

assumption implies that the conformation that resides at the

global minimum in chloroform is the same conformation

that resides at the global minimum in water. If the global

minimum in chloroform is designated, xCHCl3
, then apply-

ing the single-state approximation to Eq. 2 yields,

DG ¼ WCHCl3
xCHCl3
ð Þ �WH2O xCHCl3

ð Þ ð3Þ

In the second, which we denote ‘‘the two-state

approximation,’’ it is assumed that the global minimum

in each solvent dominates their respective integrals. If the

global minimum in water is designated xH2O, and the global

minimum in chloroform is designated as above, then

applying the two-state approximation to Eq. 2 gives,

DG ¼ U xCHCl3ð Þ þWCHCl3
xCHCl3
ð Þ � U xH2Oð Þ

�WH2O xH2Oð Þ ð4Þ

Finally, in the third approximation, which we denote

‘‘the predominate-states approximation,’’ we assume that

conformations in addition to the global minima contribute

significantly to each integral. Predominate states methods

are well known, and have been used successfully to study

the thermodynamics of ligand binding in host–guest

systems [17] and proteins [18]. Characteristically, the

methods decompose the configuration integral into a sum

of local configuration integrals, each centered on a

minimum energy conformation enumerated during a

conformation search. The configuration integrals are

evaluated by normal mode analysis in either bond-angle-

torsion (BAT) coordinates [19] or in the rigid-rotor-

harmonic oscillator coordinate system (RRHO) [20, 21].

In this work, the RRHO system is used. The RRHO

separates the ‘‘internal’’ normal coordinate vibrations from

the ‘‘external’’ translations and rotations, which leads to

rotational momentum free energy contributions and, along

with the predominate states approximation, allows an

approximation to Eq. 2 to be written,

e�bDG ¼

P

i

ðIa;iIb;iIc;iÞ1=2 R

Vi

e�bðUðrÞþWCHCl3
ðrÞÞdr

P

j

ðIa;jIb;jIc;jÞ1=2 R

Vj

e�bðUðrÞþWH2OðrÞÞdr
ð5Þ

Ia,i Ib,i Ic,i are the principal moments of inertia of the ith

conformation, similar definitions hold for Ia,j Ib,j Ic,j. The r

coordinates are the 3L-6 internal coordinates of the ligand,

where L is the number of ligand atoms. Each integral is

evaluated using Monte Carlo importance sampling,

following the ‘‘mode integration,’’ or MINTA approach

[20]. Taking the chloroform integrals, for example,
Z

Vi

e�bðUðrÞþWCHCl3
ðrÞÞdr ¼ e�bðUðrÞþWCHCl3

ðrÞÞ

piðrÞ

� �

Vi

ð6Þ

where the terms enclosed in hi denote an average over the

distribution pi(r) contained in the volume element Vi. The

average is numerically approximated by randomly

sampling M solute conformations from the multivariate

Gaussian produced by normal mode analysis in the RRHO

coordinate system,

e�bðUðrÞþWCHCl3
ðrÞÞ

piðrÞ

� �

Vi

� 1

M

XM

k¼1

e�bðUðrkÞþWCHCl3
ðrkÞÞ

piðrkÞ
ð7Þ

Similar definitions and procedures exist for the integrals

evaluated in water.

Small molecule test set

We performed our calculations on two sets of small mol-

ecules. The first, which we denote the ‘‘FDA set,’’ is a

structurally diverse set of eleven weakly basic FDA
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approved compounds whose ‘‘intrinsic’’ permeabilities, i.e.

permeabilities if all molecules were in their uncharged

form, were estimated by fitting PAMPA data using the

pKflux
a method [7]. These eleven compounds are the same

as those used by the Jacobson group and allow a direct

comparison of our results [13]. These compound structures

are shown in Fig. 1.

To test the sensitivity of the calculations to the subtle

structural changes typical of lead optimization, we selected a

congeneric series of thirteen phenol and aniline derivatives,

which we denote the ‘‘congeneric set,’’ whose structures are

shown in Fig. 2. The ‘‘effective’’ permeabilities of these

compounds were measured by PAMPA [22]. Unlike intrinsic

permeability, effective permeability does not correct for the

presence of charged species if the compound is acidic or basic.

Assuming that only the uncharged species can cross the lipid

bilayer, effective permeabilities will always be less than

intrinsic permeabilities for titratable compounds. This can be

problematic in some instances. For example, two compounds

with very different pKa values can have very different effec-

tive permeabilities, despite having identical intrinsic perme-

abilities. The aniline and phenol derivatives in the congeneric

set have roughly the same proportion of uncharged species in

solution, however, the discrepancy between effective and

intrinsic permeabilities is not expected to have gross, erro-

neous effects on the relative permeability calculations that we

describe. For both compound sets, all of the calculations were

performed with the compounds in their neutral, or uncharged,

states.

Computational methods

Monte Carlo (MC) conformational searches were carried

out using the MC Multiple Minimum program in v9.7 of

MacroModel within the Schrödinger molecular modeling

suite [23]. Initial coordinates for the FDA set were obtained

from PDB files found at the drug databank (drugbank.ca).

Initial coordinates for the congeneric set were constructed

using the modeling facilities in maestro [24]. A 10,000 step

MC conformational search was performed using a gen-

eralized Born surface area (GBSA) solvent model, taking

parameters that match either water or chloroform. As in the

previously described works [11, 13], solute force field

parameters were described using the 2005 OPLS parameter

set, which has been enhanced by Schrödinger to provide a

larger coverage of organic functionality. MC was per-

formed by randomly varying between 1 and 5 torsions,

over a range of angles between 0 and 180�, producing a

trial conformation. Trial conformations were minimized for

1,000 steps using Polak-Ribiere conjugate gradient mini-

mization. Minimized trial structures were retained if their

energy was less than 12 kcal mol-1 above the current

global minimum, and if the distance separating any one

heavy atom (or hydroxyl or thiol hydrogen atom) on the

minimized trial conformation was greater than 0.5 Å from

the position of the equivalent heavy atom (or hydroxyl or

thiol hydrogen atom) on each of the previously retained

conformations after a rigid-body least squares fitting. MC

trial conformations were initiated from the least-used

structure, a strategy that has previously been shown to

increase the convergence rate.

Successfully determining the global minimum in a given

solvent requires exhaustively searching the conformational

landscape, an effort that can be frustrated if large energetic

barriers separate adjacent regions. To ensure adequate

conformational sampling, seven additional MC searches

were performed for each solute in each solvent, and the

global minima were extracted from the combined search
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Fig. 1 Structures and names of the 11 compounds in the FDA set
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results after removing redundant conformations. The first

four additional searches were initiated from conformations

at energy intervals of 0 to 1, 1 to 2, 2 to 3 and 3 to

5 kcal mol-1 above the global minimum determined in the

first search. The remaining 3 searches were initiated from

conformations with energies greater than 5 kcal mol-1

above the global minimum of the first search. When pos-

sible, each conformation was separated by a least

1 kcal mol-1 from the others. This is similar to multi-copy

molecular dynamics simulations, which have been shown

to increase conformational sampling in the protein crambin

[25] and produce greater statistical precision in simulations

of the RN24 peptide [26]. In a conformational search,

adequate convergence occurs when additional searching

does not contribute new, unique conformations. Conver-

gence may be monitored by plotting the total number of

conformations as a function of the number of MC searches

performed, which was done for the compounds in the FDA

set (supplementary Fig. 1); as fewer new conformations are

found, these plots should asymptotically approach a fixed

value, indicating convergence. As compounds in the conge-

neric set have fewer rotatable bonds, we only performed a

single conformational search, as outlined above, and assumed

that it was sufficient for convergence. In all conformational

searches, symmetrically equivalent conformations were

retained and no electrostatic cutoffs were used.

Following the MC searches, each conformation was re-

minimized using 1,500 steps of truncated Newton

conjugate gradient minimization to determine the global

minimum. For the single-state approximation, the terms in

Eq. 3 were evaluated by calculating the solvation PMF

with GBSA models of water and chloroform using the

global minimum conformation determined in chloroform.

The change in free energy for the two-state approxi-

mation was evaluated similarly, but the global minimum

determined in water was also used and the free energy

difference was evaluated according to Eq. 4. For both the

single and two-state approximations, energy evaluations

were carried out using the ‘‘current energy’’ function in

MacroModel, which is accessible through Schrödinger’s

Maestro interface or the command line. In all energy

evaluations, no electrostatic cutoffs were used.

MINTA [20, 23] was used to evaluate each unique

conformation after the results of all eight MC conforma-

tional searches were combined. Importance sampling

integration was carried out according to Eq. 7 for the ten

normal coordinates with the lowest vibrational frequencies,

while the analytical expression of the configuration integral

over the remaining modes was determined. The integration

volume, Vi, for the numerically integrated modes was

chosen as the smaller of ±3r or ±3 Å, in order to reduce

large inaccuracies that may arise if the potential energy

along one or more of the numerically integrated modes

exhibits extensive anharmonicity [20]. Additionally, the

choice decreases the likelihood that the integration vol-

umes of adjacent states will overlap, resulting in double
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Fig. 2 Structures and names of the 13 compounds in the congeneric set
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counting [20]. As in the MC conformational search, a

combination of the Schrödinger-extended 2005 OPLS force

field and GBSA implicit solvent were used to describe the

energy surface. The principal moments of inertia for each

minimum-energy conformation were determined in a post-

processing step within Matlab [27] by diagonalizing the

associated unit-mass inertial tensor. Unit masses were used

to be consistent with the unit-mass Hessian, which MINTA

employs when determining the sampling distributions [27].

QikProp v3.2 was used to predict Caco-2 permeabilities

[14]. As QikProp does not predict PAMPA permeabilities,

only Caco-2 permeabilities are reported. QikProp perme-

ability calculations are conformationally invariant, and for

both the FDA and congeneric set, starting conformations

were used without minimization.

Results and discussion

The FDA set

The logarithm of the experimentally determined perme-

abilities are plotted against the corresponding DG values

determined using the single-state, two-state, and predomi-

nate-states approximations in Fig. 3a, b and c, respectively.

The QSPR results are shown in Fig. 3d. The single-state

approximation has an R2 of 0.75, the two-state approxi-

mation an R2 of 0.68, the predominant-states approxima-

tion an R2 of 0.71, and the QSPR method predictions have

an R2 of 0.75. The single-state approximation results are

very slightly better than the values previously reported by

Kalyanaraman and Jacobson [13], who carried out a single

conformational search, which may not have converged to

the true global minimum. For example, plotting the linear-

correlation coefficient as a function of the number of

independent MC searches combined to find the global

minimum conformation (supplementary Fig. 2) shows that

after the 5th conformational search, a new global minimum

is found, and the linear correlation improves.

The relative contributions to the free energy of those

conformations near the global minimum bears on the cal-

culated outcomes. To estimate this quantity, we calculated

the fraction of free energy due to conformations within

1.00 kcal mol-1 of the global minimum, as well as the

factional contribution of just the global minimum. Repor-

ted in Table 1, these values indicate that despite the hun-

dreds to thousands of conformations in the ensemble

(supplementary Fig. 1), the global minima constitute 97 to

99% of the total free energy, while conformations within

1.00 kcal mol-1 comprise greater than 99% of the total.

This shows that sampling additional contributions beyond

the global minima does little to alter the value of the cal-

culated solvation free energies, partly explaining why the

predominant-states approximation did not significantly

improve upon the single- and two-state approximations.

As an additional consideration, we analyzed the struc-

tural differences of the global minimum conformations in

membrane and in water and estimated DGH2O [13], defined
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as the difference in free energy between the global mini-

mum conformation in water, xH2O, and the global minimum

conformation in chloroform, xCHCl3 , each evaluated in

water, which measures the reorganizational free energy

upon solvent transfer, i.e.,

DGH2O ¼ U xH2Oð Þ þWH2O xH2Oð Þ � U xCHCl3ð Þ
�WH2O xCHCl3

ð Þ ð8Þ

Global minimum conformations for representative

compounds are shown in Fig. 4 while the heavy-atom

and polar-hydrogen atom RMSD separating the global

minima, along with the DGH2O values are reported in

Table 1. Most of the RMSD values are under 2 Å,

indicating a high degree of similarity in chloroform and

water, which agrees with the images presented in Fig. 4.

This is consistent with the DGH2O values that are all nearly

less than RT at 310 K, indicating that in water, the

conformation at the global minimum in chloroform is

frequently visited. The notable exception is verapamil,

which is also the largest outlier in the single-state

Table 1 Conformational effects on solvent transfer on the FDA set

Compound %G of global minimum, H2Oa %G of global minimum, CHCl3
a RMSD (Å)b DGwat(kcal mol-1)c

Alfentanil 99.0/99.9 99.2/99.9 2.24 -0.21

Alprenol 98.5/99.8 98.6/99.7 1.85 -0.80

Atenolol 97.5/99.8 98.5/99.7 0.91 -0.24

Cimetidine 96.0/99.4 99.0/99.7 2.37 -0.83

Diltiazem 98.0/99.9 99.0/99.9 0.05 -0.23

Metoprolol 98.0/99.8 97.8/99.8 1.76 -0.52

Nadolol 98.6/99.9 99.0/99.8 0.64 -0.24

Pindolol 98.5/99.8 99.0/99.8 1.41 -0.44

Propranolol 99.0/99.9 99.0/99.9 0.82 -0.14

Terbutaline 98.0/99.8 98.5/99.8 1.11 -0.33

Verapamil 99.0/99.7 99.0/99.7 1.80 -2.75

a The number on the left of the ‘‘/’’ is the percentage of the free energy in the indicated solvent attributable to the just the global minimum. The

number on the right of the ‘‘/’’ is the percentage attributable to all conformer that are within 1.00 kcal mol-1 of the global minimum
b The RMSD is measured between the global minimum in implicit water and chloroform
c Defined in Eq. 8

water chloroform

Alfentanila

water chloroform

Verapamil
b

Fig. 4 Global minima in

chloroform and water for

representative compounds from

the FDA set, a alfentanil,

b verapamil
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approximation (Fig. 3a). Based on the barrier domain

model, the slightly better performance of the single-state

model implies that the conformations found at the global

minimum in implicit chloroform may better represent the

dominant conformations found at the membrane-water

interface. In contrast, the fact that verapamil is the largest

outlier and has the largest DGH2O value may indicate that

its dominant membrane-water interface conformation is

more similar to the global minimum in bulk water.

The congeneric set

The logarithm of the experimentally determined perme-

abilities are plotted against the corresponding DG values

determined using the single-, two- and predominate-states

approximations (Fig. 5a, b and c, respectively). The QSPR

results are shown in Fig. 4d. The single-state approxima-

tion gives an R2 of 0.72, the two-state approximation an R2

of 0.72, the predominant-states approximation an R2 of

0.71, and the QSPR method predictions have an R2 of 0.58.

The single- and two-state approximations performed

identically. The matching performance is attributable to the

small number of rotamers in the congeneric set, which

results in a very small conformational ensemble and vir-

tually identical global minimum conformations in each

solvent. DGwat and heavy atom RMSD values (Table 2)

support this claim. The absolute value of DGwat doesn’t

exceed 0.16 kcal mol-1 and all of the RMSD values are

below 0.38 Å, with most falling below 0.01 Å, confirming

the near conformational parity of the global minima in each

solvent.

The small conformational ensemble also explains the

performance of the predominant-states approximation,

which was nearly equivalent to the single-state and two-

state approximations. When there are a substantial number

of conformations that contribute to the configuration inte-

gral, the free energies estimated using the predominant-

states approximation will be different than those estimated

using only the global minimum. However, as compounds in

the congeneric set have few rotamers, the number of con-

formations is limited. For example, we found two phenol

conformations in both chloroform and water, while for

BPMC, the most flexible of the set, 41 conformations were

found in chloroform and 44 in water. This is significantly

fewer than the hundreds to thousands of conformers found

for compounds in the FDA set. As a result, the three

approximations yield similar estimates, explaining why all

three give permeabilities that correlate nearly identically

with experiment.

None of the approximations show particular sensitivity

to the small structural differences present in the congeneric

set. Rather, with the exception of the two-state approxi-

mation, performance is slightly worse on this set than the

structurally more diverse FDA set. Nevertheless, all three

approximations outperform the QSPR model, which seems

unable to effectively separate the permeabilities of the

structural homologs (note the mass of data points on the

upper right hand side of the curve in Fig 5d). Assuming the

relative performance extends beyond the simple series

examined here, each of the approximations may be better at

teasing apart the subtle structural influences on perme-

ability than an all-purpose QSPR method. In particular,
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Fig. 5 Correlation with

experiment for compounds in

the congeneric set, a the single

state approximation R2 = 0.72,

b the two-state approximation,

R2 = 0.72, c the predominant-

states approximation R2 = 0.71,

d QSPR R2 = 0.58
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when the number of rotamers is small, the approximations

perform nearly identically, and as the single-state approx-

imation is the least computationally intensive, it is the most

appropriate choice.

Conclusions

This work expanded upon earlier work by the Jacobson

group [11, 13] and addressed the effects of conformational

sampling on permeability predictions based on the

homogenous solubility model of passive membrane per-

meability. By invoking the barrier domain model [12],

which posits that permeation is limited by passage through

a single ‘‘barrier domain’’ and assumes diffusivity differ-

ences are small, the model determines permeability as a

function of the free energy change of barrier crossing. The

barrier domain is generally taken as the ordered, apolar

region behind the head groups [8, 9, 12], and in this work,

as in the work reported by the Jacobson group, the free

energy barrier is estimated as the difference in chloroform

and aqueous solvation free energies. A statistical thermo-

dynamic description of the solvation free energy difference

was developed and three limiting assumptions, differing in

the extent of solute conformational sampling, were made to

evaluate the configuration integrals. The single-state

approximation, which is identical to the approximation

used by the Jacobson group [11, 13], is based on the

assumption that the global minimum conformation in

chloroform dominates both integrals. The two-state

approximation is based on the assumption that the global

minimum in each solvent dominates their respective inte-

grals. Finally, the predominant-states approximation

decomposes each configuration integral into a sum of

configuration integrals, each of which are centered on

conformers determined in a conformational search, that are

evaluated by Monte Carlo importance sampling. We tested

each approximation on a set of eleven structurally diverse

FDA approved compounds, as well as a set of thirteen

simple benzene congeners intended to mimic the subtle

changes that might be proposed during lead optimization.

Moreover, to compare the performance of each approxi-

mation to a QSPR model, permeabilities for both sets were

computed with QikProp, a fast, knowledge-based phar-

macokinetic property predictor available from Schrödinger.

Our principal finding was that more rigorous treatments

of the conformational distributions of the solute do not

improve correlation with experiment. We attribute this to

the solvation free energy landscape, which for all com-

pounds in both chloroform and water is dominated by the

global minimum. Moreover, as the number of rotameric

states decreases, the size of the conformational ensemble is

reduced and discrepancy between the three approximations

is diminished. Whether or not other small molecules

behave similarly will need to be addressed on a case-by-

case basis. Between the two-state and single-state

approximation, the single-state approximation is likely the

most robust, slightly outperforming the other two approx-

imations on the FDA set, and performing as well as the

two-state approximation on the congeneric set. While the

QSPR model performed as well as the single-state model

for the structurally diverse FDA set, it was unable to

effectively separate the permeabilities of the congeneric

set. Assuming the performances extend beyond the com-

pound sets we’ve tested here, the computationally inex-

pensive QSPR methods are best applied as filters for large

sets of structurally diverse compounds when establishing a

docking library, while the more expensive single-state

approximation may be suited to a lead-optimization setting.

Considering both the FDA and congeneric sets, coeffi-

cients of determination (R2) values were never better than

0.75, so while the estimated solvation free energies capture

most of the permeability variation, some is lost, which may

be attributable to one or more causes. First, it may indicate

that the barrier domain model is an inappropriate descrip-

tion of membrane permeability. Structural anisotropy in the

membrane is widely accepted, and it has been shown that

both the free energy of solvating a compound in the

membrane, as well as a compound’s intramembrane dif-

fusion coefficient, depend on the depth of the compound in

the membrane [8, 9]. As permeability is, in fact, due to

passage across the entire membrane, and not just the rate

limiting region, or ‘‘barrier-domain,’’ the barrier domain

model falls short of a complete physical description of the

Table 2 Conformation effects on solvent transfer on the congeneric

set

Compound RMSD (Å)a DGwat (kcal mol-1)b

Phenol 0.001 -0.09

2-methylphenol 0.002 -0.04

2,4-dimethylphenol 0.002 -0.04

2-chlorophenol 0.100 -0.05

2,4-dichlorophenol 0.080 -0.06

4-cyanophenol 0.002 -0.05

Hydroxyquinone 0.002 -0.03

Acetaminophine 0.375 -0.10

Aniline 0.002 -0.12

2-chloroaniline 0.002 -0.12

3-chloroaniline 0.002 -0.16

4-chloroaniline 0.002 -0.15

BPMC 0.005 -0.04

a The RMSD is measured between the global minimum in implicit

water and chloroform
b Defined in Eq. 8
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process, possibly leading to erroneous estimates. Alterna-

tively, the barrier domain model may adequately describe

the fundamental quantities that affect membrane perme-

ability, but errors in our calculations are causing the dis-

crepancies with experiment. As generalized Born solvent

models estimate results of the theoretically more rigorous

Poisson-Boltzmann equation [28], which itself is a mean

field approximation of the exact case, some of the calcu-

lations presented here may very well be erroneous.

Unfortunately, as chloroform-water partition coefficients

for the tested compounds have not been published, accurate

calculations cannot currently be separated from inaccurate

calculations. Nevertheless, the rapid GBSA implicit sol-

vent models of water and chloroform require less compu-

tational effort than the more detailed all-atom models while

still capturing the general dielectric character of the

aqueous and membrane phases. A third alternative is that

the compounds examined diffuse very differently through

the membrane, invalidating our assumption that diffusion

can be neglected. While any of these possibilities may

explain why better correlation with experiment was not

obtained, all three likely contribute to a greater or lesser

extent depending upon the compound set of interest.

Finally, while the models we tested here can provide

reasonable correlation with experiment, their robustness

needs to be explored across much larger compound sets.

However, as many drug-like molecules are acidic or basic,

a robust means of treating titratable compounds first needs

to be established.
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