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Abstract
Objectives  To demonstrate the feasibility of an automated, non-invasive approach to estimate bone marrow (BM) infiltration 
of multiple myeloma (MM) by dual-energy computed tomography (DECT) after virtual non-calcium (VNCa) post-processing.
Methods  Individuals with MM and monoclonal gammopathy of unknown significance (MGUS) with concurrent DECT 
and BM biopsy between May 2018 and July 2020 were included in this retrospective observational study. Two pathologists 
and three radiologists reported BM infiltration and presence of osteolytic bone lesions, respectively. Bone mineral density 
(BMD) was quantified CT-based by a CE-certified software. Automated spine segmentation was implemented by a pre-
trained convolutional neural network. The non-fatty portion of BM was defined as voxels > 0 HU in VNCa. For statistical 
assessment, multivariate regression and receiver operating characteristic (ROC) were conducted.
Results  Thirty-five patients (mean age 65 ± 12 years; 18 female) were evaluated. The non-fatty portion of BM significantly 
predicted BM infiltration after adjusting for the covariable BMD (p = 0.007, r = 0.46). A non-fatty portion of BM > 0.93% 
could anticipate osteolytic lesions and the clinical diagnosis of MM with an area under the ROC curve of 0.70 [0.49–0.90] 
and 0.71 [0.54–0.89], respectively. Our approach identified MM-patients without osteolytic lesions on conventional CT with 
a sensitivity and specificity of 0.63 and 0.71, respectively.
Conclusions  Automated, AI-supported attenuation assessment of the spine in DECT VNCa is feasible to predict BM infiltra-
tion in MM. Further, the proposed method might allow for pre-selecting patients with higher pre-test probability of osteolytic 
bone lesions and support the clinical diagnosis of MM without pathognomonic lesions on conventional CT.
Key Points   
• The retrospective study provides an automated approach for quantification of the non-fatty portion of bone marrow, 
   based on AI-supported spine segmentation and virtual non-calcium dual-energy CT data.
• An increasing non-fatty portion of bone marrow is associated with a higher infiltration determined by invasive biopsy after 
   adjusting for bone mineral density as a control variable (p = 0.007, r = 0.46).
• The non-fatty portion of bone marrow might support the clinical diagnosis of multiple myeloma when conventional CT 
   images are negative (sensitivity 0.63, specificity 0.71).
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Abbreviations
AI	� Artificial intelligence
BM	� Bone marrow
BMD	� Bone mineral density
DECT	� Dual-energy computed tomography
IMWG	� International Myeloma Working Group
MGUS	� Monoclonal gammopathy of unknown 

significance
MM	� Multiple myeloma
VNCa	� Virtual non-calcium
VOI	� Volume of interest

Introduction

Multiple myeloma (MM) and its precursor conditions smold-
ering myeloma and monoclonal gammopathy of unknown 
significance (MGUS) outline a continuous spectrum of mon-
oclonal plasma cell disorders. Most cases of MM are pre-
ceded by the asymptomatic, premalignant disorders smold-
ering myeloma or MGUS, which are commonly diagnosed 
incidentally in patients presenting with other conditions [1]. 
MM is the second most common hematologic malignancy 
and primarily manifests in elderly patients (median age at 
diagnosis 66–70 years, age-standardized incidence 5 cases 
per 100,000 in the Western World) [2]. Standard work-up for 
diagnosis of plasma cell disorders includes laboratory test-
ing, bone marrow (BM) biopsy of the iliac crest, and whole 
body imaging [3]. BM biopsy is required to evaluate the 
degree of plasma cell infiltration, while diagnostic imaging 
is employed to detect myeloma defining bone lesions [3].

Discrimination of MM against its premalignant con-
ditions is crucial for patient management and prognosis, 
since MM obligates for a specific therapy. Vice versa, 
according to the latest recommendations, MGUS is man-
aged in a “watch-and-wait” strategy [1, 4, 5]. Diagnosis of 
MM by International Myeloma Working Group (IMWG) 
guidelines demands a BM biopsy in almost all cases [3]. 
In contrast to the other obligatory procedures, BM biopsy 
still is a painful and uncomfortable experience for most 
patients [6, 7]. Despite IMWG recommendations, a recent 
large-scale clinical analysis challenged the obligation of 
regular invasive BM diagnostic for patients with evidence 
of monoclonal antibody, since in most cases it did not 
contribute to the diagnosis [5].

In dual-energy computed tomography (DECT), two imag-
ing datasets with different energy spectra are achieved dur-
ing a single acquisition. The disparity of attenuation between 
both datasets enables post-processing of DECT images with 
virtual removal of certain materials. This method is espe-
cially effective for the removal of materials with high atomic 
numbers, e.g. calcium, and subsequent creation of virtual 
non-calcium images (VNCa) [8, 9]. VNCa post-processing 

is based on a three-compartment model, which constitutes 
the total attenuation of the BM in non-contrast-enhanced CT 
images to fat, soft tissue, and bone mineral [10]. By virtual 
removal of the bone mineral content, the fatty and soft tis-
sue portion of BM attenuation can be estimated [9, 11]. By 
applying this technique, DECT VNCa imaging yielded a 
similar performance for detection of MM lesions as com-
pared to the gold standard MRI [9, 12–14] and achieved an 
excellent prediction of metabolic activity, when compared 
to the benchmark PET/CT [15].

In line with recent clinical studies questioning obliga-
tory initial BM biopsy, and considering the promising 
recent results of first reports on VNCa imaging for the 
assessment of MM, our study had two objectives: first, to 
demonstrate the feasibility of artificial intelligence (AI) 
supported, automated assessment of VNCa data to investi-
gate its association to BM infiltration by pathology results. 
The second objective was to explore cutoffs based on the 
quantitative analysis of BM attenuation in VNCa images 
for the presence of osteolytic lesions, as determined by 
radiology report of conventional CT images, and the clini-
cal diagnosis of MM.

Materials and methods

All procedures performed in studies involving human par-
ticipants were conducted in accordance with the ethical 
standards of the institutional (number 20–1480) and national 
research committee and with the 1964 Helsinki declaration 
and its later amendments or comparable ethical standards. 
Informed consent was waived due to retrospective study 
characteristics.

Patient enrollment

Inclusion criteria to our study comprised:

1)	 Whole-body low-dose CT according to the IMWG speci-
fied imaging protocol and concurrent diagnostic BM 
biopsy,

2)	 No history of specific therapy for MM to the day of CT 
and BM biopsy,

3)	 Evidence of monoclonal protein,
4)	 Imaging between May 2018 and July 2020,
5)	 Patient age > 18 years.

Exclusion criteria were:

1)	 History of secondary malignoma with requirement for 
specific therapy or bone involvement (n = 3),

2)	 Metal implants in the spine (n = 2).
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Assessment of clinical data

The quantitative infiltration rate of BM biopsies as per 
pathology report was noted. Each patient was assigned to 
the MGUS, smoldering myeloma and MM group based on 
IMWG recommendations.

DECT image acquisition

All scans were performed on a commercially available 
spectral detector DECT scanner (IQon Spectral CT, Philips 
Healthcare), following the most recent recommendations of 
the IMWG [16]. Scans were unenhanced. Scan parameters 
were as follows: tube voltage 120 kV; tube current 70 mAs; 
collimation 32 × 0.625 mm; pitch 0.908; volumetric com-
puted tomography dose index 7.4 mGy. Mean dose length 
product was 1091.7 ± 230.5 mGy*cm.

DECT image reconstruction

All images were constructed in a 512 × 512 matrix, slice 
thickness 2 mm with an overlap of 1 mm. VNCa images 
were created by the vendor’s software in order to simulate 
each voxel’s attenuation in Hounsfield units (HU) without 
the calcium-specific contribution (IntelliSpace Portal, Spec-
tral Diagnostics Suite, Philips Healthcare) [17]. In our study, 
calcium suppressed images were calculated with a high sup-
pression index (index 25), as suggested by earlier results 
[15]. Detailed information about VNCa imaging has been 
provided in earlier studies [8, 18].

Segmentation of the BM and assessment of DECT 
data

All 35 three-dimensional CT datasets were roughly cropped 
to a longish cuboid containing the thoracolumbar spine. 
Automated segmentation of the spine was achieved by a 
pre-trained convolutional neural network [19, 20]. Seven-
teen vertebrae counting from bottom upwards were marked 
as a volume of interest (VOI) by a Python script. The SciPy 
command “scipy.ndimage.binary_erosion” was executed by 
3 mm in order to exclude the bordering cortical bone from 
our VOIs, which does not contain BM (Fig. 1, panel c) [21, 
22]. The VOI outlining 17 vertebrae was then automatically 
applied to the VNCa dataset. Our method did not require 
specific user interaction. Visualization was realized by the 
open source software 3D Slicer [23, 24].

A histogram of attenuation (range: − 1024 HU—+ 3071 
HU, bin width 5) was extracted from this three-dimension-
ally segmented VNCa spinal cord section for each patient. 
BM attenuation on VNCa images was visualized in a his-
togram for MM and MGUS patients after standardization 
of the VOI size to 336.0 cm3.Batch processing of 35 CT 
datasets took about 3.5 h on a standard desktop computer 
(processor: Intel ® Core™ i9-9980HK CPU with 2.4 GHz 
clock frequency).

Analysis of the attenuation histograms

After virtual removal of the bone mineral portion during 
VNCa post-processing, the remaining BM attenuation 

Fig. 1   Step-by-step automated 
segmentation of bone mar-
row. a The monoenergetic CT 
data served as an input to the 
pretrained convolutional neural 
network by Payer et al. b The 
output was limited to 17 verte-
brae by a Python script, count-
ing from the most bottom one. 
Segmentation after the first step 
included the bordering cortical 
bone, which was excluded by 
the “Shrink margin” command 
of 3D Slicer (c). The segmenta-
tion was then applied to the 
virtual non-calcium dataset 
and used as a mask to obtain a 
dataset of mere bone marrow 
attenuation (d)
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consists of the fatty and soft-tissue portion, as introduced 
by the three-compartment model above. In order to estimate 
the relative amount of fatty and soft-tissue compartments, 
the number of voxels > 0 HU in the VNCa data was divided 
by the total volume of the segmented BM, resulting in the 
non-fatty attenuating portion of BM for each patient. This 
threshold of 0 HU was adopted from earlier studies for 
discrimination of physiological and infiltrated BM in MM 
[9]. The peak of BM attenuation below − 1000 HU appar-
ently resulted from calcium removal from densely calcified 
structures, e.g., cortical bone or bone islands, which do not 
make up the BM space. Therefore, for calculation of the total 
volume of BM, only voxels with attenuation >  − 1000 HU 
were considered.

Texture analysis of VNCa BM images

A supplementary radiomics analysis was performed by 
extracting textural features of the VNCa post-processed 
BM space, which is illustrated in detail in supplementary 
data 1 [25].

Bone mineral density measurements

Bone mineral density (BMD) was quantified by a CE-
certified software for phantom-less, in-body calibrated 
measurements (IntelliSpace, Philips Healthcare) [26–29]. 
BMD measurements were performed on the first to third 
lumbar vertebrae, as outlined in the software’s manual. In 
case of focal osteolytic bone lesions or vertebral fractures, 
measurements were extended to the lower vertebral spine 
(n = 3 patients). Density measurements in the paravertebral 

muscles (erector spinae muscle) and the subcutaneous fat 
tissue served as a spectrometric calibration. BMD measure-
ments were repeated by two independent, blinded radiolo-
gists with 3 and 4 years of experience to assess inter-reader 
agreement.

Visual assessment of CT data

Conventional CT images were independently screened by 
three blinded radiologists (3, 3, and 4 years of experience) 
for myeloma defining osteolytic lesions, as outlined by the 
IMWG [16]. Each CT was declared positive or negative for 
myeloma defining osteolytic lesions by majority vote.

Statistical assessment

Statistical analysis was performed in R language for statisti-
cal computing, R Foundation, version 4.0.0. Shapiro–Wilk’s 
test was performed to test the data for normal distribution, 
using the R library dplyr [30]. Receiver operating character-
istic analysis was carried out by the R library pROC with the 
predictor “non-fatty portion of BM in VNCa” and the binary 
outcomes “evidence of at least one MM defining osteolytic 
lesion” and “clinical diagnosis of MM by IMWG criteria” 
[31].

Inter-rater reliability of BMD measurements was reported 
by the intraclass correlation coefficient (ICC) in a single 
rater type, two-way random-effects model (ICC2), using the 
R library irr (supplementary data 2) [32, 33].

Appropriate sample size of the multivariate regression 
was calculated by the software G*Power for a desired 
power level of 0.8, significance level of 0.05, and an esti-
mated medium to large effect size (f2 = 0.32) of the main 

Fig. 2   Inclusion chart of the 
study population
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independent variable, based on reported data (supplemen-
tary data 3) [34, 35].

Statistical significance was defined as p ≤ 0.05. Data 
is stated as mean ± standard deviation, if not otherwise 
specified.

Results

Patient enrollment resulted in a study population of 35 indi-
viduals, after exclusion of five patients (Fig. 2). Mean age 
was 64.6 ± 12.4 years. Eighteen patients were female, and 
17 male. Twenty patients initially presented with MM, 14 
with MGUS, and one smoldering myeloma. For the subse-
quent analysis, the patient with smoldering myeloma was 
included in the MM subgroup, since BM Infiltration was 
above the MGUS threshold (≥ 10%). BM biopsy and DECT 
scan were separated by a median of 4.5 days [interquartile 
range 1.0–12.5 days]. In the MM subset, median BM infil-
tration was 40% [interquartile range 12.5–70.0] and median 
BMD was 96.8 mg/ml [interquartile range 89.6–110.4]. 
Throughout MGUS patients, median BM infiltration was 0% 
[interquartile range 0–0] and median BMD was 95.6 mg/ml 
[interquartile range 82.7–106.1]. Patient characteristics are 
summarized in Table 1.

Results of automated segmentation

In 34 out of 35 patients, 17 consecutive vertebrae were 
identified by the neural network and our Python algorithm. 
In one patient, instead of the second thoracic vertebra, the 
seventh cervical vertebra was segmented. In 29 out of 35 
patients, the thoracolumbar spine was segmented anatomi-
cally correct (Th1-L5). In four patients, segmentation started 
at the second thoracic vertebra (Th2-S2), apparently due to 
lumbosacral transitional vertebrae (Fig. 3). In one case, 
segmentation started at the seventh cervical vertebra (C7-
L4). The segmentation results were not manually corrected, 
in order to prove feasibility of the automated workflow of 
our method and enable batch processing. Mean volume of 
the segmented BM space was 336.0 ± 99.3 cm3. Since our 
study population comprised patients at first presentation, 

there was no advanced stage of spinal destruction due to 
myeloma bone disease. Even though the neural network 
was trained with healthy individuals only, the automated 
segmentation process respected the present spinal osteolytic 
lesions (Fig. 3) [19, 20].

Analysis of the attenuation histograms

The peak of the MGUS histogram was higher (5349 vs. 4876 
standardized voxels) and shifted towards negative HU values 
(− 215 HU vs. − 185 HU), when compared to the MM group 
(Fig. 4).

The non-fatty portion of the BM (> 0 HU) on three-
dimensional VNCa data ranged from 0.02 to 6.01%. The 
median portion of non-fatty BM (> 0 HU) in patients with 
evidence of osteolytic lesions on conventional CT (n = 13) 
was 1.33% [1.07–4.25%]. The corresponding portion for 
MM patients without osteolytic lesions (n = 7) was 1.18% 
[0.64–1.89%]. The non-fatty portion of BM in patients with-
out evidence of osteolytic lesions was generally lower; how-
ever, this difference remained non-significant (Wilcoxon test, 
p = 0.41). To further investigate the relationship between the 
non-fatty portion of BM and BM infiltration, a multivariate 
regression analysis was conducted (Fig. 5). Since it is known 
that the BMD interacts with the vertebral bone marrow fat 
content and the BM infiltration in MM, it was included as a 
control variable [36, 37]. This ensures that the effect of the 
main independent variable, the non-fatty portion of BM, is 
not overestimated or driven by BMD. For modelling of the 
regression, the dependent variable was logit transformed to 
account for its bounded nature [38]. The regression results 
showed that non-fatty portion of BM is a significant predic-
tor of the BM infiltration (p = 0.007, r = 0.46). The effect 
of the control variable BMD was not significant (p = 0.30). 
Variance inflation factors below 1.5 excluded collinearity 
among predictor variables in the model [39]. A Breusch-
Pagan test indicated the presence of heteroskedasticity in 
the residuals (p < 0.05). This problem has been addressed 
by the use of robust standard errors according to White [40].

The association of the non-fatty portion of BM with the 
degree of BM infiltration by pathology report is illustrated 
in Fig. 6.

Table 1   Patient characteristics Observed items Multiple myeloma/smoldering 
myeloma

Monoclonal gam-
mopathy of unknown 
significance

Number n = 21 n = 14
Patient age (mean ± standard deviation) 68.2 ± 11.6 59.1 ± 11.9
Patient sex 11 female/10 male 7 female/7 male
Bone marrow infiltration (median, interquar-

tile range)
40% [12.5–70.0] 0% [0–0]

Bone mineral density 96.8 mg/ml [89.6–110.4] 95.6 mg/ml [82.7–106.1]
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Prediction of myeloma defining lesions 
and the clinical diagnosis of MM by whole‑spine BM 
attenuation

Image interpretation of the conventional CT images by three 
experienced radiologists found evidence of myeloma defin-
ing osteolytic lesions in 13 out of 35 patients. Thirty-one 
readings resulted in univocal results of the three readers; 
four cases were determined by majority vote.

We performed a receiver operating characteristic analysis 
with the predictor “non-fatty portion of BM in VNCa” and 
the binary outcome “evidence of at least one MM defining 
osteolytic lesion.” Here, the area under the curve was 0.70 

[0.49–0.90]; maximum sensitivity and specificity were 0.85 
(11/13) and 0.59 (13/22, Youden), respectively, applying a 
cutoff of non-fatty BM portion of 0.93%. However, the power 
level of the ROC analysis for a desired significance level of 
0.05 was 0.53, only. Area under the ROC curve for prediction 
of the “clinical diagnosis of MM” by the “non-fatty portion 
of BM in VNCa” was 0.71 [0.54–0.89]. Here, the power for a 
desired significance level of 0.05 was 0.59. The best threshold 
by Youden’s method was again 0.93%. From patients that did 
not show myeloma defining bone lesions on conventional CT 
images, but who were clinically diagnosed with MM (n = 8), an 
above threshold non-fatty portion of BM in DECT could iden-
tify five (> 0.93, sensitivity 0.63, 5/8, specificity 0.71, 10/14).

Fig. 3   Results of the automated 
segmentation of the thoracolum-
bar spine. Exemplary sagittal 
and axial slices of non-contrast 
CT with green overlay of 
AI-supported segmentation of 
three patients with evidence of 
monoclonal antibody (a, b and 
c/d). In 34 out of 35 patients, 
17 consecutive vertebrae were 
segmented. In 29 patients 
the thoracolumbar spine was 
annotated correctly (a). The 
most common misclassification 
was the segmentation of Th2-S1 
instead of Th1-L5, due to lum-
bosacral transitional vertebrae 
(four patients, b). Segmenta-
tion results were not manually 
altered in order to exclude 
bias by specific user interac-
tion throughout our automated 
method. The convolutional neu-
ral network by Payer et al. was 
trained with healthy individuals 
only. However, osteolytic bone 
lesions were well respected and 
spared from the segmentation 
(white arrowheads, c/d)
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Discussion

In order to restrict BM biopsy in patients with evidence 
of monoclonal antibody to the essential and obligatory 
minimum, we investigated VNCa imaging in DECT 
to non-invasively estimate BM infiltration. Automated 
segmentation of the BM space yielded visually excel-
lent results. A subsequent, histogram-based analysis was 
capable to demonstrate a positive association between the 
portion of non-fatty attenuation on VNCa images and the 
biopsy-determined BM infiltration, remaining significant 
after adjusting for BMD as a control variable (p = 0.007, 
r = 0.46). BMD was not significantly different between the 
MM and MGUS subset, which we account to the early 
timepoint of assessment of therapy naïve patients without 
advanced osteolysis (Wilcoxon test, p = 0.49). Introducing 
a fully automated solution, our approach offers possibili-
ties for clinical use without depleting resources for manual 
spine segmentation or observation by trained personal. 
Since DECT datasets were obtained according to IMWG 

guidelines, the presented technique does not require higher 
economic cost or radiation exposure [16].

Non-invasive estimation of BM infiltration might not 
only help to avoid unnecessary BM biopsy of MGUS 
patients, but also validate BM biopsy of MM patients, 
which is prone to sampling error due to the patchy mor-
phology of MM bone infiltration [41]. While a typical BM 
biopsy by a 15G needle obtains a 1-cm, cylindrical tissue 
sample of approximately 0.003 cm3, the average volume of 
BM space that was analyzed in our approach is 336.0 cm3, 
which might be more representative of the BM infiltration 
status. BM biopsy is further biased by practical limita-
tions, such as operator experience, which is most likely 
ruled out by the automated method of our study [42].

Further, we observed a trend that an above threshold por-
tion of non-fatty BM might preselect patients with higher 
pre-test probability of myeloma defining bone lesions and 
clinical diagnosis of MM. This part of our analysis, however, 
lacked the desired statistical power level due to a limited 
sample size.

Fig. 4   Histogram of bone mar-
row (BM) attenuation on virtual 
non-calcium CT images. Voxel 
counts of smoldering myeloma/
multiple myeloma (MM) 
patients and patients with his-
tory of monoclonal gammopa-
thy of unknown significance 
(MGUS) were plotted to the 
histogram. Automatically seg-
mented BM was standardized 
to a volume of 336.0 cm3; thus, 
both plots cover the same area 
under the curve. The MGUS 
peak is higher and shifted 
towards negative attenuation, 
when compared to the MM 
peak. The non-fatty portion 
of the BM > 0 HU was larger 
throughout MM patients. The 
peak at the left end of both his-
tograms can be explained by the 
virtual calcium removal, which 
results in extreme negative 
attenuation of structures with 
dense calcification. Further, the 
large overlap of both histograms 
in the range of negative HU 
values might reflect the resem-
blance of bone mineral density 
of both subsets: after virtual 
calcium removal, the bone 
mineral density might crucially 
influence the negative part of 
the attenuation histogram
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A recent study correlated BM texture analysis in dual-
energy CT (DECT) with BM infiltration in MM [34]. The 
study extracted 92 PyRadiomics features for each of 56 
patients, which yielded six significant features for Pearson’s 
correlation with BM infiltration. In our study, the same 92 
features were calculated in a supplementary analysis (sup-
plementary data 1), resulting in two significant descriptors. 
However, only one descriptor was significant in both stud-
ies (“ngtdm_Contrast”), which demonstrates the common 
problem of reproducibility and generalizability for radiom-
ics studies with inappropriately small sample sizes [43, 44]. 
On the other hand, our data suggest a significant associa-
tion, which was investigated hypothesis-driven and based 
on biological causalities. We observed a decreasing portion 
of fatty BM in contrast to an increasing fluid-like and soft 
tissue attenuation of BM in MM, which is well-known on 
a microscopic level, since in MM fatty BM is displaced by 
plasma cells [45]. Our observation is in line with recent lit-
erature, suggesting VNCa imaging to estimate the degree of 
displacement of fatty BM in MM [13].

There are some limitations that need to be discussed. 
First, our cutoff for discrimination of pathologic BM was 
defined at 0 HU, which is motivated by the hypothesis that 

healthy, fatty BM is displaced by soft tissue– and fluid-like 
attenuating infiltration. A recent study found a similar cut-
off between − 3 HU and 4 HU [9], while another research 
proposed − 44.9 HU for identification of infiltrated BM in 
MM [12]. The authors claim that the discrepancy most 
likely arises due to technical aspects [12]. However, both 
studies relied on subjective and semi-objective (manual 
region of interest measurements) analysis of the VNCa 
images. Since VNCa post-processing is still not regularly 
established in clinical practice, most radiologists have lim-
ited experience in assessment of VNCa data, which might 
introduce an inter-reader bias. Hence, our quantitative 
results are limited to the specific scanner and reconstruc-
tion used, while the general methodology is considered 
reproducible. In this context, a multi-center, multi-vendor 
study would be of interest, yet, was out of scope of this 
investigation. The multivariate regression plot presents 
several outliers in the top left quadrant, which precluded 
prediction of absolute changes in biopsy-determined BM 
infiltration per increase of BM attenuation. To elaborate on 
the highly significant regression, a larger study population 
might allow to limit its confidence intervals for absolute 
predictions.

Fig. 5   Multivariate regression 
of the non-fatty portion of bone 
marrow in virtual non-calcium 
CT and the biopsy-determined 
bone marrow infiltration. The 
association was highly signifi-
cant (p = 0.007) and moderately 
strong (r = 0.46), after the inclu-
sion of bone mineral density as 
a control variable. The regres-
sion line of the model-based 
analysis is plotted in black with 
a gray band marking the 95% 
confidence interval
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Our AI-supported algorithm segmented the spine into 
17 vertebrae in all cases, while some misclassifications 
occurred as described above. Since MM is a systemic dis-
ease and we did not expect a significant bias by incorrect 
anatomic numeration of the vertebrae (e.g., segmenta-
tion of T2-S1 instead of T1-L5 in case of a lumbosacral 

transitional vertebra), there was no necessity to interrupt 
the batch processing for manual alteration. Last, we included 
a rather small number of patients as we wanted to study 
treatment-naïve patients with concurrent BM biopsy, only. 
Hence, our feasibility study does not allow for specific con-
clusions about the subset of smoldering myeloma patients, 

Fig. 6   Spine infiltration by 
multiple myeloma (MM) 
displaces the fatty bone mar-
row (BM). Four patients (a–d) 
with parallel dual-energy CT 
(DECT, top row) and CD138-
immunostained BM biopsy in 
200 × amplification (bottom 
row) are presented as an exam-
ple. The thoracolumbar spine 
was automatically segmented 
by a convolutional neural 
network. The red overlay on the 
DECT slices marks voxels with 
attenuation > 0 HU in virtual 
non-calcium (VNCa) post-
processed images. Percentage of 
BM infiltration, as determined 
by biopsy, was 0–5%, 10–15%, 
60–70%, and 90% for patients 
a–d, respectively. With rising 
BM infiltration, an increase of 
the non-fatty attenuating portion 
of BM on VNCa images is visu-
ally assessable (larger patches 
of red overlay) and measurable 
(0.3%, 0.4%, 4.3%, and 5.4% 
for patients a–d, respectively). 
Correspondingly, the histo-
logical images demonstrate an 
expansion of CD138 + , brown-
ish stained plasma cells and a 
displacement of the translucent, 
fatty vacuoles. We hypothesize 
that these histological find-
ings correspond to the raise of 
attenuation, which we observed 
on VNCa BM data
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since only a single case was examined. Further, performance 
of the threshold-based analysis for identification of MM in 
patients with negative conventional CT was poor (sensitiv-
ity 0.63, specificity 0.71), possibly outlining a limitation 
of our method to assess subtle, non-lytic BM infiltration; 
however, final evaluation requires a larger sample size for 
further examination.

Concluding, our work demonstrates the feasibility of an 
automated, AI-supported method to non-invasively esti-
mate the degree of BM infiltration in MM and its prema-
lignant conditions. In line with the recent clinical trend to 
question BM biopsy at first presentation of patients with 
evidence of monoclonal protein, we propose a tool for 
clinical decision support to avoid unnecessary invasive 
BM diagnostic.
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