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A tiny new Middle Triassic stem-
lepidosauromorph from Germany: 
implications for the early evolution 
of lepidosauromorphs and the 
Vellberg fauna
Gabriela Sobral1*, Tiago R. Simões2 & Rainer R. Schoch1

The Middle Triassic was a time of major changes in tetrapod faunas worldwide, but the fossil record for 
this interval is largely obscure for terrestrial faunas. This poses a severe limitation to our understanding 
on the earliest stages of diversification of lineages representing some of the most diverse faunas 
in the world today, such as lepidosauromorphs (e.g., lizards and tuataras). Here, we report a tiny 
new lepidosauromorph from the Middle Triassic from Vellberg (Germany), which combines a mosaic 
of features from both early evolving squamates and rhynchocephalians, such as the simultaneous 
occurrence of a splenial bone and partial development of acrodonty. Phylogenetic analyses applying 
different optimality criteria, and combined morphological and molecular data, consistently recover 
the new taxon as a stem-lepidosauromorph, implying stem-lepidosauromorph species coinhabited 
areas comprising today’s central Europe at the same time as the earliest known rhynchocephalians and 
squamates. It further demonstrates a more complex evolutionary scenario for dental evolution in early 
lepidosauromorphs, with independent acquisitions of acrodonty early in their evolutionary history. The 
small size of most terrestrial vertebrates from Vellberg is conspicuous, contrasting to younger Triassic 
deposits worldwide, but comparable to Early Triassic faunas, suggesting a potential long-lasting Lilliput 
effect in this fauna.

The Middle Triassic was a time of major changes in terrestrial tetrapod faunas on a global scale. Despite the 
most recent divergence time estimates based on molecular and morphological data indicating the origin of most 
diapsid lineages during the Permian1,2, several lineages of diapsids are recognized in the fossil record for the first 
time only in the Middle Triassic, such as squamates, rhynchocephalians, tanystropheids, and drepanosaurs2–4. 
Other lineages that first appeared in the fossil record in the Early Triassic or Late Permian considerably increase in 
abundance and taxonomic representation during the Middle Triassic, such as ichthyosauromorphs, sauroptery-
gians, and turtles5–7. Additionally, there is a generally poor vertebrate fossil record for the Early Triassic, partially 
owing to the relatively long period of recovery from the Permian-Triassic mass extinction8,9. All of those factors 
combined make the Middle Triassic of fundamental importance to understand the recovery of global faunas after 
the greatest mass extinction of the Phanerozoic, and the initial diversification of characteristic components of the 
modern vertebrae biota, such as archosauromorph and lepidosauromorph reptiles.

Among the tetrapod lineages that began diversifying in the fossil record at least by the Middle Triassic, lep-
idosauromorphs are one of the most diverse, representing one of the largest lineages of diapsid reptiles today 
(alongside birds), with ca. 10,500 described species10,11. The earliest putative stem-lepidosauromorphs first appear 
in the fossil record in the Late Permian—e.g. Palaeagama12,13—whereas crown lepidosauromorphs are first rec-
ognized in the Middle Triassic, represented by the oldest known squamate2 and rhynchocephalians14,15. However, 
the Triassic record of lepidosauromorphs is, in general, still extremely poor when compared to other lineages of 
diapsid reptiles4–7. Currently, only a few Triassic localities provide diagnostic lepidosauromorph taxa, including: 
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the Czatkowice quarry in Poland (Early Triassic); the Vellberg locality in Germany (Middle Triassic); the Dont 
Formation in the Italian dolomites (Middle Triassic); the Lossiemouth Sandstone Formation in Northeast 
Scotland (Middle-Late Triassic); the Santa Maria Formation (Linha Bernardino locality) and Caturrita Formation 
(Linha São Luiz locality), in Southern Brazil (Late Triassic); and the Tytherington and Cromhall quarries in South 
West Britain (Late Triassic)14,16–21. Most of those localities bear only one or two valid lepidosauromorph species, 
with the most speciose of those currently represented by the collection of quarries in Southwest Britain, which 
include remains from six rhynchocephalian species: Diphydontosaurus avonis, Planocephalosaurus robinsonae, 
Clevosaurus hudsoni, Clevosaurus minor, Clevosaurus cambrica, Clevosaurus sectumsemper22–26. Therefore, most 
of the early fossil record of lepidosauromorphs remains largely unknown.

Here, we report a new partially articulated fossil lepidosauromorph from the Middle Triassic deposits of 
Vellberg in Southern Germany. The new species described here falls into the smallest size cluster so far collected 
from the site, and likely represents the first juvenile individual from that locality. This new taxon depicts a mosaic 
of features that are generally observed in both early evolving rhynchocephalians and squamates, suggesting 
stem-lepidosauromorphs may have survived up to the Middle Triassic. It further demonstrates a more complex 
scenario on dental evolutionary patterns among early lepidosaurs. Finally, this and other findings from Vellberg 
indicate this is one of the richest sites in the world to understand early lepidosauromorph evolution. Together 

Figure 1.  Picture (a) and line drawing (b) of the holotype material of Vellbergia bartholomaei. Scale bars 
approximately 5 mm. Abbreviations: af articulation facet, de dentary, ds dental shelf, fr frontal, mx maxilla, na 
nasal, de dentary, ju jugal, pa parietal, pm premaxilla, po postorbital, pof postfrontal, prf prefrontal, q quadrate, 
qj quadratojugal, sp splenial.
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with other taxa from this locality, Vellberg may also hold fundamental clues to understand the evolution of body 
size subsequent to the Permian-Triassic mass extinction.

Results
Systematic palaeontology
Lepidosauromorpha Gauthier, 1984
Vellbergia n. g.
Vellbergia bartholomaei n. sp. (Figs. 1, 2, S1–S5)
Type: SMNS 91590, an approximately 12.5 mm long partial skull exposed in left-lateral view (Figs. 1–3; S1–S4).
Type locality: Schumann limestone quarry, Vellberg (Eschenau), Germany
Type horizon: Grey mudstone bed #6 (Schoch, 2002), Untere Graue Mergel, Lower Keuper, Middle Triassic 
(Ladinian).
Etymology: Vellbergia is named after the type locality; species name honoring Alfred Bartholomä of Neuenstein, 
who collected for many years in the Middle Triassic of Germany and donated much valuable material to public 
collections.
Diagnosis: Vellbergia bartholomaei is distinct from other lepidosauromorphs, including Fraxinisaura, by the 
following combination of features: symphysis strongly turned medially, T-shaped postfrontal, frontal with 
distinct antero-lateral and large postero-lateral processes; prefrontal dorsoventrally deep and not expanded 

Figure 2.  CT images of Vellbergia. Cross section trough (a) the left maxilla and (b) right dentary with grey 
miniatures below showing position of the slices. 3D renderings of the (c) postorbital (with CT slice) and (d) 
squamosal. Scale bars: (a and b) 0.7 mm, (c) 1.5 mm and 0.7 mm, (d) 0.95 mm. Abbreviations: d dentary, ds 
dental shelf, fo foramen, or orbital rim, pp posterior process, rd ridge, sp splenial, t tooth.
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anteriorly; small and narrow teeth, maxillary tooth row extending to posterior rim of the orbit. See Supplementary 
Information for full anatomical description.

Discussion
Features of Vellbergia, such as the presence of well-developed subolfactory processes of the frontal, the presence of 
a ventrolateral process of the nasal, posterior teeth located apicolingually, and narrow, slender and short teeth rel-
ative to the lower jaw (Figs. 1–3; S1–S4), make Vellbergia distinct from other known lepidosauromorphs from the 
same locality, such as Fraxinisaura27 and a lower jaw previously attributed to cf. Diphydontosaurus15. Additionally, 

Figure 3.  More details of Vellbergia. (a) Lateral and (b) medial views of the three-dimensional rendering 
(left) of the jugal and their corresponding line drawings (right), (c) left prefrontal with excess matrix removed 
(original segmentation in Fig. S2), and (d) CT scan (above) and line drawing (below) showing the relative 
positions of the prefrontal and the upper jaw. Scale bars: (a and b) 0.95 mm, (c) 2 mm, and (d) 2.5 mm. 
Abbreviations: af articular facet, ap anterior process, fo foramen, ju jugal, mx maxilla, op opening, po 
postorbital, pp posterior process, prf prefrontal.
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the relatively large size of the orbit in relation to the rest of the skull, and the overall diminutive size of the skull, 
suggest Vellbergia was not a fully grown individual. However, we disregard it as a hatchling or a young juvenile by 
the high degree of ossification of cranial bones like frontals and nasals. Unless Vellbergia had exceptionally high 
growth rates, even adults of this species would have comprised one of the smallest tetrapods found in the Middle 
Triassic fauna from Vellberg.

In all our phylogenetic analyses, Vellbergia is recovered as a stem-lepidosauromorph (Figs. 4, and S7–S10). 
Using equal-weights maximum parsimony (EWMP), Bayesian inference (BI) with morphological data only, and 
BI with combined morphological and molecular data, Vellbergia is recovered in a polytomy with Sophineta28, rhy-
nchocephalians, and squamates (Figs. 4, and S7, S9, S10). Maximum parsimony analysis with implied weighting 

Figure 4.  Time-scaled phylogeny depicting the relationships of Vellbergia based on the combined analysis of 
morphological and molecular data using Bayesian inference. Node positions do not reflect exact divergence 
times; branch lengths not to scale.

Figure 5.  Taxon stability plotted against taxon completeness based on the posterior trees obtained from the 
Bayesian inference analysis. All taxa are identified in Table 1 below. Regression line in blue and 95% confidence 
interval in grey. Labels for extant taxa (~100% completeness) are omitted for simplicity.
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(IWMP) (Fig. S8), also indicates Vellbergia it is a stem-lepidosauromorph, and a sister taxon to crown lepido-
sauromorphs (=Lepidosauria: Squamata + Rhynchocephalia), with Sophineta recovered as a stem-squamate. 
Palaeagama, as in previous analyses of this data set2, does not have a strong negative impact on tree resolution, 
but behaves as a rogue taxon among different analysis (Fig. 5). Whereas in parsimony-based analyses Palaeagama 
is recovered on the lineage leading to archosauriforms, in BI analyses it falls in the polytomy at the base of 
Lepidosauromorpha (BI-morphology only), or as the earliest evolving stem-lepidosauromorph (BI-combined 
data).

Overall, our results indicate Vellbergia is a stem-lepidosauromorph outside Rhynchocephalia and Squamata, 
with uncertain affinities relative to the latter two clades and Sophineta. Importantly, despite the holotype 
of Vellbergia being less complete than other putative early evolving lepidosauromorphs (i.e. Sophineta and 
Palaeagama), it is more stable in its phylogenetic placement than those other candidate stem-lepidosauromorphs 
(Fig. 5). Yet, given its incompleteness and the consequent reduced stability of Vellbergia relative to other taxa 
among the Bayesian posterior trees (reflected on its overall low leaf stability), we prefer to take a conservative 
approach and consider Vellbergia as a putative stem-lepidosauromorph pending the recovery of additional 
material.

Important morphological attributes of Vellbergia, most notably the elongate and slender jaw bones, the deeper 
post-dentary region of the jaw relative to the anterior region, and the far posteriorly reaching maxillary tooth row 
can be found on some other early diverging diapsid species, such as Prolacerta and Youngina29,30, thus showing 
these features were retained into the early part of the lepidosauromorph evolutionary history as well. The pos-
torbital is found partially, and the squamosal completely, within the matrix (Fig. 2c,d). The former is typically 
diapsid, while the latter is very similar to Diphydontosaurus24. The jugal has a posterior process, although its full 
length cannot be estimated because it is incomplete (Fig. 3a,b). The prefrontal is also incomplete, lacking the ante-
rior extension as suggested by the articular facets on the frontals (Fig. 1). The prefrontal is a ventrally elongated 
bone that forms the entire anterior border of the orbit. Additionally, the ventralmost portion of the prefrontal is 
hidden within the matrix, behind the maxilla (Fig. 3c,d). Such dorsoventrally expanded prefrontal is commonly 
observed among rhynchocephalians due to the absence of the lacrimal in most of those taxa, suggesting that the 
lacrimal was possibly absent in Vellbergia (but which we cannot confirm at the present).

Most importantly, however, is the contribution of the anatomical features of Vellbergia to our understand-
ing of the early evolution of lepidosauromorphs. For instance, the strongly recurved symphysis of the lower 
jaw (Figs. 1, S1, S2, S4) is remarkably similar to early diverging rhynchocephalians, such as Gephyrosaurus31 
and Diphydontosaurus24 (TRS, pers. obs.; Figs. S5, S6). Also, the dentition in Vellbergia has an apicolin-
gual placement on the jaw (Fig. 2a), which is somewhat intermediate to the condition observed in the poste-
rior teeth of Gephyrosaurus and Diphydontosaurus (resembling some of the intermediate dentary teeth in 
Diphydontosaurus). However, Vellbergia still retains a splenial bone (Figs. 1, 2b, S4), by which it differs from all 
known rhynchocephalians. Such mosaic of early lepidosaurian features provides support for its placement as a 
stem-lepidosauromorph and may imply a more complex evolutionary scenario for the acquisition of acrodonty 
in early lepidosaurs—i.e. implying the acquisition of some level of acrodonty (i.e. at least part of the dental tissue 
being located on the apex of the labial wall of the jaw bone32–34) outside rhynchocephalians among Triassic lepido-
saurs. Cases of even partial development of the acrodont condition are extremely rare in non-lepidosauromorph 
reptiles33, such as in the captorhinid Opisthodontosaurus32. However, the evolution of acrodonty or pleuroacro-
donty (respectively, total or partial placement of the dental tissue on the apex of the jawbone) has occurred at 
least five independent times in lepidosauromorphs: in sphenodontians, priscagamids, acrodontans, borioteiioids, 
and trogonophid amphisbaenians33–36. Vellbergia thus demonstrates that this important dental character, which 
is conspicuous and diagnostic for some lepidosaur lineages (e.g. sphenodontians and acrodontans in particular), 
was already undergoing homoplastic evolution on the earliest stages of lepidosaur evolution.

The currently available data indicate that Vellbergia is geologically younger than other stem-lepidosauromorphs 
found to date, such as Sophineta (Early Triassic) and Palaeagama (Late Permian), although the latter has less phy-
logenetic stability and it is sometimes recovered as more closely related to other diapsid lineages2 (Figs. S7, S8). 
With the recent phylogenetic recharacterization of Marmoretta (Middle Jurassic of Britain) as a stem-squamate 
in the most comprehensive diapsid/lepidosaur data set available to date2 (and herein), Vellbergia represents 
the youngest record of an early evolving lepidosauromorph. It also indicates that stem-lepidosauromorphs 
(Vellbergia), rhynchocephalians15 and stem-squamates2 occurred across islands that, today, correspond to central 
Europe during the Middle Triassic, with at least stem-lepidosauromorphs and rhynchocephalians cohabiting 
what is today South Germany.

Recent excavations in the upper Middle Triassic of Germany have revealed a plethora of new taxa, most of 
which comprehend small-bodied forms when compared to other tetrapod-bearing basins of this time frame. 
These are the deposits of Kupferzell and Vellberg, which have produced new temnospondyls37,38, chroniosuch-
ians39, and a wide range of amniotes17,40. Apart from some enigmatic taxa17, the amniote fauna is dominated by 
diapsids, among which there are archosauriforms17, a putative choristodere, stem-turtles5,41 and also early evolv-
ing rhynchocephalians15 and one putative stem-lepidosauromorph27— the latter currently undergoing system-
atic revision. In addition to the new taxon described here and the two previously recognized lepidosauromorph 
species from Vellberg, two other undescribed lepidosauromorphs are known from the site (GS, RRS, in prep.), 
making the Vellberg locality to rival the lepidosauromorph diversity from the Late Triassic of Southwest Britain. 
Further, considering the higher frequency of articulated or partially articulated specimens from Vellberg (thus 
differing from the Polish and British Triassic localities), and its considerably older age in relation to the British 
deposits, we consider that the Vellberg locality represents one of the most important Triassic sites towards under-
standing the early evolution of lepidosauromorphs.

Besides the good representation of lepidosauromorphs, Vellberg is characterized by a large number of tetra-
pod fossils of small body size. Among reptiles, most species currently known for this locality are no longer than 

https://doi.org/10.1038/s41598-020-58883-x


7Scientific Reports |         (2020) 10:2273  | https://doi.org/10.1038/s41598-020-58883-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

40 mm in jaw length, even among archosauriforms (Sues et al.; in rev.). The exceptions are the archosauriform 
Jaxtasuschus (~80 mm skull length) and two large pseudosuchians (Batrachotomus and an unnamed taxon). The 
frequent appearance of small body sizes contrasts with younger Triassic deposits, in which different tetrapod 
body size classes are considerably better represented. They vary from small reptiles (e.g. lepidosaurs, parareptiles 
and cynodonts) with 20–50 mm in mandible/head length to archosaurs with mandible/head length and estimated 
body mass 10–15 times longer/larger, such as in the Santa Maria and Caturrita formations in Southern Brazil 
(Ladinian-Norian), Ischigualasto Formation in Northwest Argentina (Carnian–Norian), the Chinle Formation in 
the Southwest USA (Carnian-Rhaetian), among others42–45. A high representation of small-bodied faunal assem-
blages is more frequently observed in Triassic localities that are older than Vellberg, from Induan to the Anisian/
Ladinian (first ~7–10 Myr in the Triassic). The Lilliput effect is a suggested phenomenon in which animals of 
small body sizes had higher rates of survival following the end-Permian, especially in lower latitudes. Smaller 
body sizes are capable of better heat exchange, thus providing a functional advantage during periods of fast cli-
matic change, like the global warming around the Permian-Triassic mass extinction9,46,47. Such higher representa-
tion of small-bodied taxa after the Permian-Triassic mass extinction was first identified for marine invertebrates, 
but it has also been found more recently in terrestrial vertebrate faunas, such as in Early Triassic deposits in 
Russia, South Africa and Poland16,46,47. The low availability of Early and early Middle Triassic terrestrial deposits 
worldwide bearing tetrapod remains limits the assessment of body size class transitions over time. However, the 
location of Vellberg at a low latitude during the Ladinian (27°N)48, especially when compared to other known, 
higher-latitude contemporary localities (eg.: Santa Maria Formation, Brazil, ca. 45°S), may suggest that some low 
latitude localities still had a predominantly small bodied fauna by the middle Ladinian (240 Mya, or 12 Myr after 
the Permian-Triassic extinction), and thus a longer lasting influence of the Lilliput effect.

The observed small-bodied predominance remains to be confidently demonstrated and could, however, indi-
cate a collecting bias instead. Small-bodied fossils require special search strategies. Since these efforts are not as 
commonly deployed as techniques more suitable for macrofossils, recovery of small body size diapsids is usually 
a by-product of finding other, more frequently targeted groups, such as archosaurs49. This could create a bias 
towards larger body sizes being sampled in most Middle to Late Triassic deposits (although this cannot explain 
the absence of, theoretically easier to find, large-bodied taxa in earlier Triassic strata). In any case, be it natural or 
human biased, concentrating collection efforts in these areas will reveal more details on the early evolution of lep-
idosauromorphs and other diapsid reptiles. Present-day vertebrate diversity is considerable among small-bodied 
animals49, such as lepidosaurs11. However, size-class bias in fossil sampling efforts, and preservation potential, 
currently pose as important limitations towards accurately assessing small-bodied vertebrates diversity50. The 
exploration of small-bodied vertebrates in Vellberg has already provided fundamental data towards understand-
ing key points in the early radiation of diapsid reptiles, thus indicating we may be missing important parts of the 
reptile evolution by overlooking small size class materials.

Methods
Specimen availability.  The holotype and only specimen of the new taxon is housed in the Staatliches 
Museum für Naturkunde Stuttgart, Germany under the number SMNS 91590. The anatomical analysis was 
made with the aid of computed-tomography (CT) scans performed with a Metrotom 800 Generation 1 scanner  
(S. Tomaschko Zeiss Computertomographie Dienstleistung, Essingen, Germany) using 110 kV and 265 µA at 
500 ms and a voxel size of 17,94 µm. Segmentations and measurements were made in the software VG Studio 
Max 2.0 (Volume Graphics, Heidelberg, Germany). A complete anatomical description is provided in the 
Supplementary Material.

Morphological and molecular data sets.  In order to assess the phylogenetic placement of Vellbergia bart-
holomaei among diapsid reptiles, we included it in the recently published phylogenetic data matrix of Simões et al.2.  
This data set includes the largest taxonomic sampling available for early diapsid reptiles, and also includes con-
siderable revisions on the construction of morphological characters based on discussions provided by51,52. This 
data set contains both a morphological and a molecular partition sampled for all of the extant taxa included in 
the data set. Owing to the beneficial effect of removing rogue taxa in phylogenetic analysis, especially in the gain 
in resolution in support53, we removed two taxa that operate as wildcards in the previous version of this data set 
(Paliguana12,13 and Pamelina54) [Simões et al.2, Extended Data Fig. 9]. Not all taxa identified as wildcards were 
removed (e.g. Palaeagama12,13 and Sophineta28), in order to find a balance between increase in tree resolution and 
support versus keeping a taxonomic sampling relevant to the questions addressed in the present study. Our results 
consist of morphology only, as well as morphological and molecular (combined evidence) analyses.

Parsimony analysis.  Analyses are conducted in TNT v. 1.155 using the New Technology Search (NTS) algo-
rithms. Tree searches are conducted using 1,000 initial trees by random addition sequences (RAS) with 100 iter-
ations/round for each of the four NTS algorithms: Sectorial Search, Ratchet, Drift and Tree Fusing. The output 
trees are used as the starting trees for subsequent runs, using 1,000 iterations/rounds of each of the NTS algo-
rithms. The latter step is repeated once again, and the final output trees are filtered for all the most parsimonious 
trees (MPTs).

Bayesian inference analyses.  Analyses are conducted using Mr. Bayes v. 3.2.656. As there are no changes 
to the molecular data set we used2, molecular partitions and models of evolution are the same as that study. The 
morphological partition is analysed with the Mkv model (given that autapomorphies are included in the data set, 
but there are no invariable characters). Rate variation across characters is sampled from a gamma distribution, 
and analyses used 4 independent runs with 6 Markov chains each, sampling at every 1000 generations, for a total 
of 50 million generations. Convergence of independent runs is assessed using: average standard deviation of split 
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frequencies (ASDSF ~ 0.01), potential scale reduction factors (PSRF ≈ 1 for all parameters) and effective sample 
size (ESS) for each parameter is greater than 200.

Leaf stability analysis.  Leaf stability was assessed using RogueNaRok53, which allows assessing the differ-
ence between the highest and the second highest support values for alternative resolutions of each taxon quartet/
triplet in the data set (LSdif)57. We applied this method to the posterior trees from the Bayesian inference analysis 
including both morphological and molecular data. Because of the large number of taxa and large number of trees, 
it was necessary to downsample the total number of posterior trees from each analysis (100,000 trees after dis-
carding burn-in). The final sample consisted of 10,000 trees (selecting one at every 10 trees) using the Burntrees 
script for Perl58.

Data availability
The CT data of Vellbergia barthomolaei, as well as the data matrix used in the phylogenetic analyses can be 
accessed on Dryad under the following address: https://doi.org/10.5061/dryad.d2547d7zs.
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