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ABSTRACT

Microbial communities within the soil of Laurentian Great Lakes coastal wetlands drive biogeochemical cycles and provide
several other ecosystem services. However, there exists a lack of understanding of how microbial communities respond to
nutrient gradients and human activity in these systems. This research sought to address the lack of understanding through
exploration of relationships among nutrient gradients, microbial community diversity, and microbial networks. Significant
differences in microbial community structure were found among coastal wetlands within the western basin of Lake Erie
and all other wetlands studied (three regions within Saginaw Bay and one region in the Beaver Archipelago). These diversity
differences coincided with higher nutrient levels within the Lake Erie region. Site-to-site variability also existed within the
majority of the regions studied, suggesting site-scale heterogeneity may impact microbial community structure. Several
subnetworks of microbial communities and individual community members were related to chemical gradients among
wetland regions, revealing several candidate indicator communities and taxa that may be useful for Great Lakes coastal
wetland management. This research provides an initial characterization of microbial communities among Great Lakes
coastal wetlands and demonstrates that microbial communities could be negatively impacted by anthropogenic activities.

Keywords: microbial ecology; wetland soil ecology; Laurentian Great Lakes; network analysis; 16S rRNA gene sequencing;
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INTRODUCTION

The Laurentian Great Lakes of North America are one of the
largest freshwater systems on Earth, and are critical in sup-
porting biogeochemical cycles, freshwater resources, biodiver-
sity and economic viability of the surrounding region. Notably,

the Great Lakes region has been impacted by anthropogenic
pressure, with cumulative stress having a particular impact on
the western basin of Lake Erie (LE) (Danz et al. 2007; Uzarski et al.
2017). These negative impacts extend to ecological transition
zones between upland and aquatic environments in the form
of coastal wetlands that border the Great Lakes (Uzarski 2009).
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Agricultural runoff, atmospheric deposition, and urbanization
influence water chemistry and thereby reduce water quality and
impair these coastal wetlands (Trebitz et al. 2007; Morrice et al.
2008). Coastal wetlands border much of the Great Lakes coast-
line, where they make up nearly 200 000 ha of habitat between
the United States and Canada, despite reduction of this habi-
tat by approximately 50% since European colonization (Dahl
1990; Hecnar 2004; Sierszen et al. 2012). Further, the economy
of the Great Lakes is contingent on the existence and proper
functioning of coastal wetlands. In providing ecosystem services
and promoting biodiversity, these wetlands have an estimated
annual worth of $69 billion USD; the value of recreational fish-
ing alone is valued at $7.4 billion USD per year (Krantzberg and
de Boer 2008; Campbell et al. 2015). As such, negative anthro-
pogenic impacts on microbial communities could influence the
economic viability of the Great Lakes region, biodiversity reten-
tion and the functioning of critical elemental cycles, which com-
monly occur within freshwater wetlands.

While much research on coastal wetlands has flourished
in the wake of the 1972 Great Lakes Water Quality Agreement
(GLWQA), microbial communities within Great Lakes coastal
wetlands remain almost entirely uncharacterized (Hackett et al.
2017). The few research studies on microbial communities in
Great Lakes coastal wetlands have focused on the use of micro-
bial enzymatic assays as a tool to explore decomposition rates
and nutrient limitation (Jackson, Foreman and Sinsabaugh 1995;
Hill et al. 2006). Community diversity, structure, and taxonomic
composition have been largely overlooked. As the microbial
communities within Great Lakes coastal wetlands have yet to
be fundamentally described, it is important to gather baseline
data on what microbes exist within these systems, to eluci-
date how these microbes could be interacting, and to determine
to what extent microbial diversity may already be impacted
by anthropogenic chemical disturbance. Microbial communi-
ties contribute substantially to the ecological functioning of
coastal wetlands (such as carbon and greenhouse gas cycling,
and redox-mediated chemical processes), and these wetlands
are vital in the retention of chemical pollutants (e.g. heavy met-
als), sediments and excess nutrients (e.g. N and P). Coastal wet-
lands mitigate the effects of these pollutants and reduce pollu-
tion impacts on the Great Lakes themselves (Wang and Mitsch
1998; Sierszen et al. 2012).

Soil depth can impact microbial communities and essential
biogeochemical cycles in wetlands. Specifically, carbon miner-
alization occurs within wetland soils via redox processes medi-
ated by microbial communities, and these processes contribute
to pollution mitigation and atmospheric greenhouse gas flux
(Conrad 1996; Reddy and DeLaune 2008). Wetland soils often
become chemically structured with increasing depth through
sequential reduction of electron acceptors that decrease in
metabolic favorability to microbes due to thermodynamic con-
straints (Conrad 1996; Reddy and DeLaune 2008; Kögel-Knabner
et al. 2010). As a result of these changes with soil depth, micro-
bial community composition shifts to reflect chemical and func-
tional changes (Lüdemann, Arth and Liesack 2000; Edlund et al.
2008; Luna et al. 2013; Lipson et al. 2015; Broman et al. 2017). Con-
centration of carbon electron donors can also influence the ver-
tical stratification of redox processes, and by extension, has been
suggested to decouple the dogmatic relationship between verti-
cal microbial community structure turnover and soil depth as
controlled by electron acceptors (defined as relative proportions
of microbial taxa within a community) (Achtnich, Bak and Con-
rad 1995; Alewell et al. 2008; Goldfarb et al. 2011). As an example

of how this may apply to natural environments, increased car-
bon and nutrient influx from anthropogenic activities (such as
agricultural pressure) may impact microbial community struc-
ture within coastal wetlands. Impacts to microbial community
composition may extend to shifts in chemical cycles and redox
processes as a consequence, as disturbance to microbial com-
munity structure can often lead to a shift in community func-
tion (Shade et al. 2012). However, while community structure
may be indicative of environmental gradients within wetlands,
taxonomic identification of microbes which respond to human
pressures is necessary to appreciate which fraction of wetland
microbial communities are most sensitive to environmental dis-
turbances.

Networks of microbial taxa exist within microbial commu-
nities, and impacts to individual members could affect entire
networks (Faust and Raes 2012). Thus, it is important to explore
hypothetical microbial networks within natural environments,
and their relationships to changing environmental conditions.
Understanding how microbial networks respond to physico-
chemical shifts could aid in predicting how a future change
in environmental conditions (perhaps caused by anthropogenic
activity) may impact local microbial communities. Further, iden-
tifying microbial taxonomic and diversity responses to envi-
ronmental stressors caused by human activity is the first step
in developing biological indicators that can predict levels of
anthropogenic stress on natural environments, such as wet-
lands. Physicochemical and biological indicators have been con-
tinuously developed to determine which biological taxa are most
sensitive to anthropogenic pressures within freshwater wet-
lands, and by extension, how these biological responses can
inform scientists and managers about the health of coastal wet-
lands along the Great Lakes (Uzarski et al. 2017). These indices
have been established for physical and chemical attributes (such
as nutrient levels, urbanization, land use, etc.), as well as several
eukaryotic taxonomic groups (e.g. macrophytes, macroinverte-
brates, fish, anurans and birds) (Uzarski et al. 2017). However,
as different taxonomic indicators highlight unique pressures on
wetland systems, indicators based on different biological groups
can often conflict in their assessment of wetland ecosystem
health. As such, it is necessary to examine a wide range of bio-
logical indicators to assess different aspects of wetland ecosys-
tem health. A biological index for bacteria and archaea has yet to
be developed for responses to human impacts within freshwater
coastal wetlands (Uzarski et al. 2017). A first step in establishing
a microbial index is to uncover specific networks of microbial
taxa (Sims et al. 2013; Urakawa and Bernhard 2017) and diversity
patterns found to be related to environmental gradients linked
to anthropogenic activity (e.g. soil nutrient levels) among Great
Lakes coastal wetlands.

This study sought to provide an initial characterization of
microbial communities within soils of Great Lakes coastal wet-
lands bordering the western basin of LE, Saginaw Bay of Lake
Huron, and northern Lake Michigan. Great Lakes coastal wet-
lands have been extensively researched and vary widely in the
degree to which they are impacted by human activity (Uzarski
et al. 2017). This study explored how environmental gradients
among coastal wetlands were related to microbial community
structure. Additionally, relationships among microbial commu-
nities and changing environmental conditions with increasing
soil depth were also explored within each wetland site. It was
predicted that microbial community structure would be related
to environmental gradients among and within coastal wetland
regions of the Great Lakes, and elevated nutrient levels within
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wetlands would decouple the relationship between microbial
community structure and soil depth with respect to coastal wet-
lands lower in nutrient levels, as has been suggested in previ-
ous studies (Achtnich, Bak and Conrad 1995; Alewell et al. 2008).
Through high-throughput sequencing of the 16S rRNA gene and
microbial network analyses, variations in key microbial taxa and
subcommunities related to environmental gradients established
by wetlands were identified.

MATERIALS AND METHODS

Study site and field sampling

In the summer of 2014, wetland soil cores were collected within
Laurentian Great Lakes coastal wetland ecosystems. Specifi-
cally, soil cores were collected from ten sites across five regions,
including two sites in the western basin of LE, three sites in
eastern Saginaw Bay (ESBT), two sites in northern Saginaw Bay
(NSB), two sites in western Saginaw Bay (WSB) in Lake Huron,
and one site in the Beaver Island archipelago (BA) in Lake Michi-
gan (Fig. 1). These sites were selected as they corresponded to
environmental gradients, as well as human impact gradients
based upon SumRank scores (an index assessing land use and
water quality) as described in Uzarski et al. (2017) (Fig. S1, Sup-
porting Information). Soil cores were collected by hand-driving
plastic core tubes (∼ 5 cm diameter) vertically into the soil. Repli-
cate soil cores within a site were collected at approximately 60
m apart. Among wetlands, samples were collected within the
same vegetation zone across sites (either dominated by cattails,
genus Typhus, or bulrush, genus Shoenoplectus) as an attempt to
control for collection bias, as different vegetation zones can har-
bor microbial communities distinct from other vegetation zones
(Tang et al. 2011). Cores were sampled to a depth of at least 6 cm
(except for one core that was sampled to a depth of 4 cm) and
were immediately flash frozen in a dry ice ethanol bath. Sam-
ples were transported on dry ice to Central Michigan University
wherein they were stored at −80◦C.

Triplicate cores were taken at five wetland sites while dupli-
cate cores were taken at five other wetland sites. Global Position-
ing System coordinates were recorded at each sampling loca-
tion. For sample extraction and sectioning, cores were extruded
while still frozen via a custom-built core extruder. The edge of
the core was warmed with a heat gun to allow the soil core
to pass efficiently through the plastic container, however, the
inner-core did not thaw during extrusion. Ice was applied to the
plastic core liner to prevent accelerated thawing. Beginning from
the top surface of soil, 2 cm sections were cut via an ethanol
and flame-sterilized hacksaw blade and the sectioned core sam-
ples were placed into Whirl-Pak bags and stored at −80◦C. The
extruder face plate was sterilized between cuts of the same core
with ethanol. The extruder device was fully cleaned and steril-
ized between cores with physical scrubbing and ethanol steril-
ization.

Microbial community analysis

Each soil sample was analyzed independently for microbial
community analyses. DNA was extracted from ∼0.25 g of soil
using a MoBio PowerSoil DNA Isolation Kit (Mo Bio, Carlsbad,
CA) following the standard manufacturer’s protocol. Concentra-
tions of extracted DNA were assessed using a Qubit R© 2.0 fluo-
rometer (Life Technologies, Carlsbad, CA) to ensure successful
DNA extraction and quantification for sequence library prepara-
tion. DNA samples were sent to Michigan State University (East

Lansing, MI) for library preparation and sequence analysis at the
Research Technology Support Facility. The V4 region of the 16S
rRNA gene was amplified for downstream sequencing with the
commonly used primers 16Sf-V4 (515f) and 16Sr-V4 (806r) and
a previously developed protocol (Caporaso et al. 2012; Kozich
et al. 2013). Paired-end 250 bp sequencing was accomplished
via a MiSeq high-throughput sequencer (Illumina, San Diego,
CA). Acquired DNA sequences were filtered for quality and ana-
lyzed using MOTHUR v 1.35.1 (Schloss et al. 2009) following the
MiSeq SOP (available at https://www.mothur.org/) with modifi-
cations. Scripts used for sequence processing can be found at
the GitHub repository associated with this study (https://github
.com/horto2dj/GLCW/). Briefly, paired end sequences were com-
bined into single contigs. Sequences that contained homopoly-
mers > 8 bases, and those less than 251 or greater than 254
bp were removed. Sequences were aligned against the Silva (v
119) rRNA gene reference database (Quast et al. 2012). Sequences
which did not align with the V4 region were also subsequently
removed from analysis. Chimeric DNA was searched for and
removed via UCHIME (Edgar et al. 2011). Sequences were clas-
sified via the Ribosomal Database Project (training set v 9; Cole
et al. 2013) with a confidence threshold of 80. Sequences classi-
fied as chloroplast, mitochondria, eukaryotic, or unknown were
removed. Remaining sequences were clustered into Operational
Taxonomic Units (OTUs) at 0.03 sequence dissimilarity using the
opticlust clustering algorithm. Sequence data associated with
this research have been submitted to the GenBank database
under accession numbers SRR6261304–SRR6261377 (Horton et al.
2017).

Chemical analysis

Each soil layer (top, middle and bottom) was analyzed separately
for local chemistry at each site. Within each site, soil samples
of the same depth (i.e. top, middle, and bottom soil samples)
among duplicate/triplicate cores were combined and homoge-
nized to obtain enough soil for chemical analyses. For chemi-
cal analysis, soil samples were sent to Michigan State Univer-
sity Soil & Plant Nutrient Lab (East Lansing, MI) to analyze for
% total N (‘TN’), total P (‘TP’, ppm), total S (‘TS’, ppm), NO3

−

(ppm), NH4
+ (ppm), % organic matter (‘OM’), % organic carbon

(‘OC’) and C:N. In the field, a YSI multiprobe (YSI Inc., Yellow
Springs, OH) was used to measure pH of the water residing
directly above each collected soil core. Soil pH was measured
but the data were measured after removal from the wetland sys-
tem. Thus, soil pH measurements were likely compromised by
oxidation, and cannot be reliably used in this study. Other data
generated for this study, along with R code for replication of sta-
tistical methodology, can be found in the GitHub repository at
https://github.com/horto2dj/GLCW/.

Statistical analyses

Statistical analyses were completed using R statistical software
version 3.2.2 (R Core Team 2015) unless otherwise stated. Code
used for statistical analyses (and bioinformatic workflow) in this
study can be found in the associated GitHub repository (https:
//github.com/horto2dj/GLCW/). For the chemical analysis of the
sediment, significant correlations (r > 0.7, P ≤ 0.001) were found
among NH4

+, OM, OC, TN and latitude. Thus, downstream anal-
yses combined these values into one parameter, ‘NUTR’, repre-
sented by OM values, as this variable was the most strongly cor-
related with each of the other variables.

https://www.mothur.org/
https://github.com/horto2dj/GLCW/
https://github.com/horto2dj/GLCW/
https://github.com/horto2dj/GLCW/
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Figure 1. Geographic map displaying locations of sites sampled within this study. Colors of points correspond to region sampled.

Physicochemical analysis
Differences in chemical profiles between samples within and
among wetland regions were visualized using Principal Com-
ponent Analysis (PCA). Prior to PCA, percentages were arc-
sin square root transformed and ratios were log transformed.
Additionally, Pearson correlation analyses were performed to
search for significant correlations between chemical variables.
Collinearity in the dataset was addressed by combining highly
correlated environmental variables (r > 0.7, P ≤ 0.001). Only one
of the correlated variables was included in PCA to remove exag-
geration of correlated variables in PCA structure. Permutational
Multivariate Analysis of Variance (perMANOVA; Anderson 2001)
was used to determine the influences of region and soil depth
on physicochemical composition of samples, and 95% confi-
dence intervals were established to compare differences among
groups. Chemical depth profiles were also visualized for each
wetland site to understand shifts in measured environmental
variables with increasing soil depth.

Alpha diversity analysis
Alpha diversity analyses were performed to explore variation in
OTU richness and evenness among wetland sites, regions and
soil depths, as well as to determine whether observed trends
were driven by environmental variables. Prior to alpha diver-
sity analyses, sequence abundance for each sample was sub-
sampled to the lowest sequence abundance for any one sample
(n = 48 226 sequences). Singletons were maintained within the
sequence dataset for alpha diversity analyses, as alpha diversity
indices can be reliant on the presence of singletons for proper
estimation. Alpha diversity was calculated for each site using
MOTHUR, including Chao1 richness and non-parametric Shan-
non diversity. Linear mixed-effect models and ANOVAs were
used to test influences of wetland site, region, and soil depth
on alpha diversity, controlling for wetland site as a random
effect. Linear models and ANOVAs were used to test for varia-
tion in alpha diversity among wetland sites. If significant varia-
tion was found within an ANOVA result, post-hoc comparisons
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were implemented between sample groups using Tukey’s Hon-
est Significant Differences (HSD) tests with Bonferroni adjust-
ments (P-values obtained by number of comparisons) for pair-
wise comparisons.

Beta diversity analysis
Beta diversity analyses were used to evaluate variation in micro-
bial community structure among wetland sites, regions and soil
depths, and to assess the extent to which observed variation was
explained by environmental conditions. Singletons and double-
tons were removed from the dataset for beta diversity analy-
ses. All sequence data were maintained for beta diversity analy-
ses and transformed using the DeSeq2 (Love, Huber and Anders
2014) package, which normalizes OTU abundances among sam-
ples using a variance stabilizing transformation (VST) (McMur-
die and Holmes 2014). The phyloseq (McMurdie and Holmes
2013) and Vegan (Oksanen et al. 2007) packages were used to
compare beta diversity among samples. Dissimilarity in micro-
bial community structure among samples within and among
sites was visualized using non-metric multidimensional scaling
(NMDS) plots based on pairwise Bray–Curtis dissimilarity esti-
mates. The function envfit of the Vegan package was used to
evaluate correlations between chemical parameters and micro-
bial community structure among samples according to NMDS.
pH was not included in this analysis (see issues raised above
under chemical analysis) but it cannot be ruled out that pH
had an even larger effect than the parameters here consid-
ered. ‘Depth’ was also implemented as a dummy variable to
test for correlation between depth and microbial community
structure.

To test for significant differences in beta diversity among
wetland sites, regions and soil depth, perMANOVA were imple-
mented. Specifically, these tests evaluate significant variation
among within group and between group means (Clarke 1993;
Anderson 2001; Anderson and Walsh 2013). If perMANOVA found
significant differences among groups at the global level, pair-
wise perMANOVA tests between groups were implemented with
Bonferroni significance adjustments to control for multiple pair-
wise comparisons. Anderson’s permutation of dispersions test
(Anderson 2006; Anderson, Ellingsen and McArdle 2006) was
used to test for differences in variance of community structure
among sample groups (i.e. sites, regions, soil depths). Tukey’s
HSD tests were implemented with adjusted P-values for multi-
ple pairwise comparisons if significant differences in dispersion
were found among groups.

To explore relationships between regional microbial commu-
nity structure and environmental variables, NMDS plots were
generated for each individual region. Applying NMDS to each
region also allowed for the assessment of the correlational rela-
tionship between community structure and soil depth (as a
dummy variable) and other environmental variables (using the
envfit function) within individual regions. To test for differences
in microbial community structure between/among sites within
a region, as well as among depths within a region, perMANOVA
was implemented individually for each region.

Taxonomic analyses
Dominant microbial taxa were explored in order to charac-
terize microbial communities within Great Lakes coastal wet-
lands. Differential abundance analysis was performed for micro-
bial OTUs between significantly different wetland regions and
soil depths (according to perMANOVA results with all micro-
bial samples included) using the DeSeq2 package. OTUs which
did not appear at least twice within 10% of samples explored

were omitted from differential analyses to minimize spuri-
ous relationships, and OTUs which were not significantly dif-
ferentially abundant at P < 0.001 were omitted from further
exploration.

Network analyses
To explore relationships between microbial sub-communities
and individual OTUs to environmental variables, Weighted Cor-
relation Network Analysis (WGCNA) was implemented on OTU
relative abundances using the WGCNA package (Langfelder and
Horvath 2008; Langfelder and Horvath 2012), executed as previ-
ously described (Guidi et al. 2016; Henson et al. 2018) with mod-
ifications. OTUs which did not possess at least two sequences
across 10% of samples were removed from network analyses.
These OTUs were removed to eliminate OTUs with potentially
spurious correlations to environmental variables or other OTUs,
as well as to reduce computational stress of analyses. Remain-
ing OTU abundances across samples were normalized using
VST performed as described previously for beta diversity anal-
yses. To ensure scale-free topology of the network, the dis-
similarity matrix generated through VST was transformed to
an adjacency matrix by raising this dissimilarity matrix to a
soft threshold power. A threshold power of P = 4 was chosen
to meet scale-free topology assumptions based upon criterion
established by Zhang and Horvath (2005). Scale-free topology
of network relationships was further ensured through regres-
sion of the frequency distribution of node connectivity against
node connectivity; a network is scale-free if an approximate
linear fit of this regression is evident (see Zhang and Horvath
(2005) for more in-depth explanation). A topological overlap
matrix (TOM) was generated using the adjacency matrix, and
subnetworks of highly connected and correlated OTUs were
delineated with the TOM and hierarchical clustering. Repre-
sentative eigenvalues of each subnetwork (i.e. the first princi-
pal component) were correlated (Pearson) with values of mea-
sured environmental variables to identify the subnetworks most
related to said environmental variables. The subnetworks with
the highest positive correlations to environmental variables of
interest (e.g. NO3

−, C:N, etc.) were selected for further anal-
yses of relationships among subnetwork structure, individual
OTUs, and environmental variables. Partial least square regres-
sion (PLS) was used to test predictive ability of subnetworks
in estimating variability of environmental parameters, which
allowed for delineation of potential indicator subnetworks and
OTUs. Pearson correlations were calculated between response
variables and leave-one-out cross-validation predicted values.
If PLS found that regression between actual and predicted val-
ues was below minimum threshold of R2 = 0.3, WGCNA anal-
ysis was halted for that network, as the network was deemed
to lack predictive ability of that environmental variable. Vari-
able importance in projection (VIP) (Chong and Jun 2005) anal-
ysis was used to determine the influence of individual OTUs in
PLS. A high VIP value for an OTU indicates high importance in
prediction of the environmental response variable for that OTU.
For network construction and visualization purposes, the min-
imum correlation value required between two OTUs to consti-
tute an ‘edge’ between them was delineated at different r val-
ues for each network related to an individual environmental
variable (ranging between 0.1–0.25), as co-correlations between
OTUs within some networks were stronger than others. The
number of co-correlations an OTU has with other OTUs within
a network defines its ‘node centrality’ (as described by Henson
et al. 2018).
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Figure 2. PCA illustrating separation of samples based upon soil geochemistry. Shapes and colors correspond to different wetland depths and regions, respectively,
as listed in the legend. Percentages on axes represent explained variance of that principal component. Vectors represent impact of specific environmental variables
on sample distribution. NUTR represents OM values, which correlated significantly (P ≤ .01, r > 0.56) to NO3

−, OC, OM, S and TN. Ellipses represent 95% confidence

intervals of regional groupings.

RESULTS

Chemical analyses

Environmental data were analyzed with a PCA and PC1 and
PC2 explained 56.2% and 20.6% of the variation among sam-
ples, respectively (Fig. 2). perMANOVA found significant differ-
ences in physicochemical profiles based on region (R2 = 0.570, P
≤0.001) and depth (R2 = 0.058, P ≤ 0.01). LE coastal wetlands were
chemically distinct from other wetland regions (ESBT and NSB;
adjusted P = 0.01) according to perMANOVA and pairwise per-
MANOVA based on Euclidean distance. Ninety-five % confidence
intervals demonstrated no overlap between LE coastal wetlands
and other coastal wetlands (Fig. 2). This separation was related
to increased NUTR, NO3

− and S.
Increasing depth within cores showed a consistent shift in

environmental variables, except in those sites located in the
western basin of LE (Fig. S2, Supporting Information). Specif-
ically, OM, OC and TN consistently decreased with increasing
depth within each region except LE. Similarly, C:N increased
with depth in each region except LE, wherein the C:N ratio
remained relatively low (∼12) and stable with increasing soil
depth. Within the LE wetland region, pH was more acidic in
the overlying water with respect to all other wetland regions
(Table S1, Supporting Information). However, pH was still rel-
atively neutral within LE (average pH = 7.26 ± 0.24), whereas
other wetland regions (regions within Saginaw Bay and Beaver
Archipelago) experienced slightly more basic pH, with average
pH among these regions ranging between 7.72–8.39. Supplemen-
tal information on site location, physicochemical water and soil

data, and additional metadata can be found in Tables S2 and S3
(Supporting Information).

Alpha diversity

Sufficient depth of sampling was reinforced by rarefaction curve
analysis (Fig. S3, Supporting Information). Good’s coverage val-
ues ranged between 89.3%–93.5% for each region at the sub-
sampled value of 48 226 sequences. Chao1 richness estimates
varied significantly among wetland regions (F = 8.38, P ≤ 0.05),
as well as wetland sites (F = 16.78, P ≤ 0.001). Pairwise com-
parisons found that the LE region had significantly higher (P ≤
0.01) Chao1 estimates than NSB and WSB regions (Fig. 3; Table
S4, Supporting Information). Additionally, pairwise comparisons
found a high degree of significant variability (P ≤ 0.01) in Chao1
estimates among wetland sites (Table S4, Supporting Informa-
tion). Further, Shannon diversity levels also significantly varied
among wetland sites (F = 4.57, P ≤ 0.001), with site LE D hav-
ing significantly higher (P ≤ 0.01) Shannon diversity levels than
sites ESBT A and WSB B (Table S4, Supporting Information). Soil
depth did not influence alpha diversity levels.

Shannon diversity and Chao1 were both positively correlated
with measured environmental variables (Table 1). Specifically,
Chao1 estimates increased with NO3

−, P and S concentrations
(P ≤ 0.01), and were weakly positively correlated (P ≤ 0.05) with
NUTR. Additionally, Shannon diversity levels increased along-
side NUTR and S (P ≤ 0.001), and were weakly positively corre-
lated with NO3

− (P ≤ 0.05). There were no significant relation-
ships between alpha diversity and C:N, and alpha diversity was
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Figure 3. Boxplot diagram comparing Chao1 diversity among wetland regions. Boxes with the same letter are not significantly different, while those with no common

letters are significantly different (P ≤ 0.01). Lines within boxes represent the median, hinges represent +/− 25% quartiles, whiskers represent up to 1.5x the interquartile
range. Colors represent wetland region.

not negatively correlated with any of the measured environmen-
tal variables.

Beta diversity

Beta diversity among regions
Multivariate analyses were implemented to explore relation-
ships between microbial communities and environmental gra-
dients among wetland regions. NMDS demonstrated separation
of microbial communities based on wetland site, region and soil
depth (Fig. 4). Substantiating this result, perMANOVA confirmed
that differences in microbial community structure were signif-
icantly related to wetland region (R2 = 0.220, P ≤ 0.001), site
(R2 = 0.119, P ≤ 0.001) and soil depth (R2 = 0.070; P ≤ 0.001).
Post-hoc pairwise perMANOVA found that community structure
within the LE region was significantly distinct (P ≤ 0.01) from all
other wetland regions (Table 2). LE was consistently found to be
significantly distinct from other wetland regions after five per-
mutations of random subsampling each wetland site to dupli-
cate samples to account for uneven sampling. No significant dif-
ferences in community structure were found between any other
wetland regions compared. Additionally, microbial community
beta diversity was distinct (P ≤ 0.003) between the top soil depth
and the middle and bottom soil depths. However, no signifi-
cant differences in microbial community structure were found
between the middle and bottom soil depths (Table 2). Variation
in microbial community structure was significantly correlated (P
≤ 0.001) to depth (r = 0.41), NO3

− (r = 0.20), NUTR (r = 0.60) and S
(r = 0.41), and also correlated (P ≤ 0.016) with C:N (r = 0.11) and
P (r = 0.14) (Table S5, Supporting Information).

Beta dispersion tests suggested significant variation in struc-
tural variance among regions (P ≤ 0.05), however, Tukey’s HSD
test using adjusted P-values for multiple comparisons did not
find any significance (P > 0.05) between pairwise comparisons of
regional groups. There were no differences in community struc-
tural dispersion among soil depths.

Table 1. Correlations between alpha diversity metrics and mea-
sured environmental variables. Asterisks represent significance val-
ues where P ≤ 0.001 (∗∗∗), P ≤ 0.01 (∗∗) and P ≤ 0.05 (∗).

Chao1 Shannon

P 0.31∗∗ − 0.09
S 0.42∗∗∗ 0.45∗∗∗

NO3
− 0.42∗∗∗ 0.24∗

C:N − 0.03 − 0.2
NUTR 0.24∗ 0.41∗∗∗

Beta diversity within regions
Microbial community associations with environmental vari-
ables were also explored within regions to examine variation
among wetland sites. Individual NMDS plots of each region iden-
tified relationships between microbial community structure and
several environmental variables using vector-fitting regression,
and strengths of these relationships were dependent upon the
wetland region explored (Fig. 5; Table S5, Supporting Informa-
tion). Depth was significantly related (P ≤ 0.05) to microbial
community structure in all wetland regions except NSB and LE.
However, microbial community structure may have been more
strongly related to depth in NSB (r = 0.35, P = 0.071) than LE
(r = 0.19, P = 0.40). NUTR was significantly related (P ≤ 0.01) to
community structure within regions BA (r = 0.82), ESBT (r = 0.51),
and LE (r = 0.66). C:N was related (P ≤ 0.01) to community struc-
ture within regions of Saginaw Bay (i.e. ESBT [r = 0.65], NSB
[r = 0.58] and WSB [r = 0.58]). Beta diversity was not significantly
associated with concentrations of NO3

− in any region.
To test for significant differences in microbial beta diversity

within regions, perMANOVA was used to evaluate differences
in microbial community structure among soil depths and sites
within wetland regions (Supplemental Table 5). Depth did not
significantly explain microbial community structure within the
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Figure 4. NMDS plot illustrating separation of samples based upon differences in microbial community structure. Shapes and colors correspond to different depths
and wetland regions, respectively, as listed in the legend. Vectors represent correlations of environmental variables to the distribution of the microbial communities

represented in the plot.

Table 2. Pairwise perMANOVA results comparing pairwise differences between wetland regions and differences between wetland soil depths.
Values represent significant (P ≤ 0.01) R2 results, and n.s. represents lack of significance (P > 0.01).

Region BA ESBT LE NSB WSB

BA –
ESBT n.s. –
LE 0.507 0.401 –
NSB n.s. n.s. 0.524 –
WSB n.s. n.s. 0.435 n.s. –

Depth Top Middle Bottom

Top –
Middle ∗∗ –
Bottom ∗∗ n.s. –

region LE (P = 0.65), however, it did explain differences in micro-
bial community structure within the other wetland regions,
specifically BA (R2 = 0.414; P = 0.006), ESBT (R2 = 0.154; P = 0.001),
NSB (R2 = 0.161; P = 0.093) and WSB (R2 = 0.259; P = 0.014). Signif-
icant differences in microbial community structure were found
among different wetland sites within regions ESBT (R2 = 0.192;
P = 0.001), LE (R2 = 0.236; P = 0.004) and NSB (R2 = 0.140;
P = 0.003). As only one site was sampled within the BA region,
testing for differences among wetland sites within the BA region
could not be accomplished.

Taxonomic analyses

At the level of Phylum, wetland sites were dominated by sim-
ilar consortia of bacteria and archaea. Soils had a high rel-
ative abundance of Proteobacteria, with Deltaproteobacteria and
Betaproteobacteria comprising the largest fraction of Proteobacte-
ria (ranging between 7%–15% of all taxa; Fig. 4, Supporting Infor-
mation). Other relatively abundant bacteria included the phyla
Bacteroidetes, Chloroflexi, Verrucomicrobia, Firmicutes, Acidobacte-
ria, Chlorobi, Actinobacteria and Planctomycetes, and the classes
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Figure 5. NMDS plots of each wetland region demonstrating separation of samples based upon differences in microbial community structure, including (A) BA, (B) ESBT,
(C) LE, (D) NSB and (E) WSB. Shapes and colors correspond to different depths and wetland sites, respectively, as listed in the legends. Vectors represent correlations
of environmental variables to the distribution of microbial communities represented in the plots.

Gammaproteobacteria and Alphaproteobacteria within the phylum
Proteobacteria. One archaeal phyla, Euryarchaea, was abundant
within wetland soils, ranging between 2%–5% relative abun-
dance within each wetland site. Between 21%–32% of bacterial
and archaeal taxa among sites were unclassified.

Differential analysis comparing the LE region to all other wet-
land regions (i.e. BA, ESBT, NSB and NSB) identified 1182 OTUs
which were differentially abundant across 44 Classes within
15 Phyla (Fig. 6). Differential analysis comparing the top sec-
tion of wetland soil to the bottom section of wetland soil found
516 OTUs which were differentially abundant between the two
zones across 33 Classes within 15 Phyla (Fig. 7).

Network analyses

WGCNA was used to explore strong relationships between sub-
communities and individual OTUs with environmental parame-
ters within Great Lakes coastal wetlands. After removal of OTUs
that did not have at least two representative sequences in at
least 10% of samples, a total of 7562 OTUs remained for WGCNA.
In determining scale-free topology of the OTU network, a soft

power threshold of 4 was reached, and an R2 of 0.87 was estab-
lished as linear fit from the regression of the frequency distribu-
tion of node connectivity against node connectivity (Fig. S5, Sup-
porting Information). Of the 33 constructed subnetworks, the
same one (subnetwork ‘orange’) was found to be most strongly
correlated to both NUTR (r = 0.94) and NO3

− (r = 0.55) (Fig.
S6, Supporting Information). A separate subnetwork (‘pink’) was
strongly correlated (r = 0.74) to C:N. All correlations of subnet-
works to environmental variables were significant (P ≤ 0.001).
OTU VIP values ≤ 1 were removed due to the large amount of
OTUs within subnetworks correlated with C:N for visualization
purposes.

For subnetwork relationships to NUTR (including OM, OC,
NH4

+, and TN), PLS analysis found that 69 OTUs were 93.8%
predictive of variance in NUTR (Fig. S7, Supporting Informa-
tion). OTU co-correlation networks were constructed using an
OTU co-correlation threshold of 0.25, with strong correlations
(r > 0.59) between all OTUs and NUTR (Fig. 8). Of the top 15
OTUs contributing to PLS regression by VIP score, seven were
related to Betaproteobacteria, five were related to Anaerolineaceae
(within Chloroflexi) and one representative OTU was related to
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Figure 6. Differential analysis results comparing differentially abundant OTUs between the LE region and all other wetland regions (i.e. BA, ESBT, NSB, and WSB). Points

represent individual OTUs, and OTU placement above or below the ‘0’ line represents an OTU’s corresponding logarithmic fold change at log2. OTUs below the ‘0’ line
represent OTUs which were more relatively abundant within the LE region, and OTUs above the ‘0’ line represent OTUs which were more relatively abundant within
other wetland regions. Color of point represents phylum identity, and columns represent the Class to which an OTU was confidently assigned (bootstrap value of 100).

each of Bellilinea (Chloroflexi), Desulfobacterales (Deltaproteobacteria)
and Rhizobiales (Alphaproteobacteria).

For subnetwork relationships to C:N, PLS found that 144
OTUs were 59.0% predictive of variance in C:N (Fig. S8, Support-
ing Information). Networks were constructed using an OTU co-
correlation threshold of 0.1, within positive or negative correla-
tions (r > +/− 0.2) between OTUs (VIP > 1) and C:N (Fig. 9). Of the
top 15 OTUs by VIP score within the network, two OTUs related to
Bacteroidetes were negatively correlated with C:N. Other top OTUs
were positively related to C:N, including seven OTUs related to
Anaerolineaceae, four OTUs which were unclassified Bacteria, and
one representative OTU related to each of Bacillus (Firmicutes) and
Chloroflexi.

DISCUSSION

Microbial diversity driven by chemistry within Great
Lakes coastal wetlands

This study suggests that anthropogenic disturbance patterns
correspond to microbial community differences in Great Lakes
coastal wetlands as is consistent with other taxonomic groups
such as plants, birds, fish and invertebrates (Howe et al. 2007; Tul-
bure, Johnston and Auger 2007; Uzarski et al. 2009; Cooper, Gyekis
and Uzarski 2012; Uzarski et al. 2017). Microbial communities
appear to respond uniquely to potential anthropogenic influ-
ence, as diversity increased with increasing nutrient levels in
the coastal wetlands explored in this study. However, microbial

community structure was significantly dissimilar between LE
and all other wetland regions, and these differences were related
to physicochemical differences among coastal wetlands (Figs. 2
and 4, Table 2). As the wetlands within the LE region maintained
the highest nutrient concentrations within the soil, it is possi-
ble that anthropogenic stressors related to nutrient loading (and
potentially other pollutants) could be driving structural differ-
ences in microbial communities among Great Lakes coastal wet-
lands. Further, network analysis found several taxa/sub commu-
nities that were highly correlated to nutrient levels across wet-
lands explored in this study. Previous research has found that
nutrient levels (e.g. C, N, P, etc.), to varying degrees, can influ-
ence microbial community composition and structure (Hartman
et al. 2008; Peralta, Ahn and Gillevet 2013; Ligi et al. 2014; Arroyo,
de Miera and Ansola 2015). LE coastal wetlands (and the water-
shed which drains into them) have been historically impacted
by anthropogenic pollution and agricultural practices, particu-
larly in comparison to other coastal wetlands within the Lauren-
tian Great Lakes region. This has been demonstrated by multiple
ecological indices (e.g. Cvetkovic and Chow-Fraser 2011; Uzarski
et al. 2017) and physicochemical uniqueness (increased levels of
nutrients and particulate matter) within the western basin of LE
(Danz et al. 2007; Trebitz et al. 2007; Cvetkovic and Chow-Fraser
2011; Uzarski et al. 2017). Data presented in this study corrobo-
rate this historical evidence of human impact and nutrient load-
ing in the western basin of LE (Fig. 2; Fig. S1, Supporting Infor-
mation), which may be influencing the LE wetlands explored in
this study.
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Figure 7. Differential analysis results comparing differentially abundant OTUs between the top and bottom wetland soil zones. Points represent individual OTUs, and
OTU placement above or below the ‘0’ line represents an OTU’s corresponding logarithmic fold change at log2. OTUs below the ‘0’ line represent OTUs which were

more relatively abundant within the top soil layer (0–2 cm), and OTUs above the ‘0’ line represent OTUs which were more relatively abundant within the bottom soil
layer (4–6 cm). Color of point represents phylum identity, and columns represent the Class to which an OTU was confidently assigned (bootstrap value of 100).

High nutrient influx could also be influencing the chemical
and microbial vertical structure within coastal wetland soils.
Microbial community and chemical (e.g. C, N, P) vertical struc-
ture was not evident within the first 6 cm of soil of coastal wet-
lands with elevated nutrient levels (e.g. LE sites). The lack of ver-
tical chemical gradients is unlikely to exclusively explain a cor-
responding lack of vertical microbial community structure, as
some wetland sites lower in nutrient levels also did not expe-
rience vertical chemical gradients in this study (e.g. West Sag-
inaw Bay). One possibility is that a lack of vertical chemical
structure in conjunction with high nutrient levels in wetland
soils could reduce vertical microbial community structure. It
has been previously demonstrated that concentrations of car-
bon electron donors may influence redox gradients within wet-
land soils (Achtnich, Bak and Conrad 1995), and wetland micro-
bial communities have been demonstrated to correspond with
soil redox gradients (Lüdemann, Arth and Liesack 2000; Edlund
et al. 2008; Lipson et al. 2015). However, connections between
microbial community metabolic shifts with soil depth and levels
of dissolved organic carbon in situ remain unresolved in freshwa-
ter wetlands (Alewell et al. 2008). Alternatively, another explana-
tion for lack of vertical community structure could be microsite
heterogeneity throughout the soil matrix. Previous research in
freshwater wetland soils has suggested that microsite hetero-
geneity may explain coexistence of microbial functional guilds
(Alewell et al. 2008; Angle et al. 2017), which could substantially

reduce vertical microbial community structural gradients. How-
ever, it is necessary to better link microbial community diver-
sity, microbial activity, chemical structure, and microsite het-
erogeneity to establish relationships between microbial com-
munities and freshwater soil structure. As a caveat, it is possi-
ble that chemical and microbial structuring still exists within
wetlands with high nutrient levels, yet is not evident within
the first 6 cm of soil or at the spatial scale measured in this
study. Nevertheless, microbial communities within coastal wet-
lands with high nutrient levels did not follow the same pat-
tern of vertical structure evident in other comparable coastal
wetlands, either chemically or biologically, further suggesting
that the integrity of microbial communities within coastal wet-
land systems may be susceptible to negative anthropogenic
pressure.

While relationships between microbial diversity and nutri-
ent levels among coastal wetlands are strong, other unexplored
variables unique to LE (such as geologic history) could also be
influencing uniqueness of chemical and microbial profiles in LE
coastal wetlands. The LE coastal wetland sites explored here
were barrier (protected) wetlands, while other wetland sites
explored in this study are all classified as lacustrine (open water)
wetlands (www.greatlakeswetlands.org). As such, wave action
from the Great Lakes impacted wetlands within the western
basin of LE to a lesser degree than other wetlands, thereby
reducing sediment export rates into the Great Lakes themselves.

http://www.greatlakeswetlands.org
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Figure 8. Network visualization and results of PLS analysis on the subnetwork most correlated with NUTR. The y-axis represents correlation of OTU to OC values,
whereas the x-axis represents the node centrality. Points represent OTUs, and the color of points corresponds to the phylum to which an OTU belongs. Point size
corresponds to VIP score of that OTU. The top 15 OTUs are labeled within the graph with corresponding lowest taxonomic identification possible, and the level of that
classification. D = Domain; P = Phylum, C = Class, O = Order, F = Family, G = Genus.

Hydrologic energy was found to impact wetland primary pro-
ductivity and respiration in Lake Huron coastal wetlands, sug-
gesting Great Lakes ecosystems may exert unique environmen-
tal forces on wetland microbial communities (Cooper, Steinman
and Uzarski 2013). Low carbon export rates or elevated sedi-
mentation rates may exist in the western basin of LE as con-
sequence of low wave action in these wetlands, which may
influence the chemical and biological structure (such as verti-
cal microbial community structure) within wetland soils of this
region. Nevertheless, previous research at the same wetland
locations explored in this study have demonstrated that wet-
lands within the western basin of LE are highly degraded with
respect to other wetlands (Uzarski et al. 2017), particularly with
respect to physicochemical conditions. Additionally, the same
vegetation zone (dominated by cattails or bulrush) was sam-
pled among all wetlands explored in this study as an attempt
to reduce bias in distinct environmental conditions which may
exist in other vegetation zones among wetland sites. Burton,
Stricker and Uzarski (2002) suggested that soil organic content
was related to plant zonation in Great Lakes coastal wetlands.
Further research would be necessary to fully tease apart the
effects of anthropogenic stress and other natural contributions
to differences in microbial communities among coastal wet-
lands.

An examination of lacustrine wetlands, excluding LE wet-
lands, within this study did not reveal significant differences

in microbial community beta diversity among regions (Fig. 4;
Table 2). However, none of the lacustrine wetlands experi-
enced nutrient levels as elevated as the LE barrier wetlands,
and as such, it is difficult to elucidate whether microbial com-
munities in lacustrine wetlands would experience the same
degree of microbial community distinctiveness, as was evident
in LE wetlands, if similar nutrient levels were reached. Physico-
chemical profiles were not significantly distinct among lacus-
trine wetland sites. Interestingly, despite geographic separa-
tion, lacustrine wetlands did not experience a significant vari-
ation in microbial community structure, suggesting that a core
microbiome may exist among lacustrine wetlands of the Great
Lakes.

Taxonomic patterns among wetland regions and soil
depths

At the level of phylum, Great Lakes coastal wetlands shared
many similarities regardless of environmental conditions (Fig. 4,
Supporting Information), and shared dominant groups such as
Deltaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bac-
teroidetes and Chloroflexi. These bacterial groups have been com-
monly found within other wetland soils (Hartman et al. 2008;
Ansola, Arroyo and de Miera 2014; Arroyo, de Miera and Ansola
2015). However, there were distinct differences in community
composition among wetland regions as demonstrated by per-
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Figure 9. Network visualization and results of PLS analysis on the subnetwork most correlated with C:N. The y-axis represents correlation of OTU to C:N, whereas the
x-axis represents the node centrality. Points represent OTUs, and the color of points corresponds to the phylum to which an OTU belongs. Point size corresponds to
VIP score of that OTU. Only OTUs with a VIP score > 1 were displayed for visualization purposes. The top 15 OTUs are labeled within the graph with corresponding
lowest taxonomic identification possible, and the level of that classification. D = Domain; P = Phylum, C = Class, O = Order, F = Family, G = Genus.

MANOVA and NMDS, particularly between LE and all other
regions. More specifically, several Planctomycetes OTUs were
less abundant within LE than within other wetland regions
(Fig. 6), suggesting this taxonomic group may thrive in less
impacted wetland soils. This pattern was similar for other
groups of bacterial taxa, including Spartobacteria, Sphingobacte-
ria, Clostridia and Caldilineae, as well as archaeal taxa including
methanogenic Methanomicrobia such as Methanocella, Methanoreg-
ula, Methanosaeta and Methanosarcina. It is important to rec-
ognize that, while unique patterns in archaeal diversity were
found among wetland regions, primers employed in this study
were not designed to explore archaeal diversity, and thus this
representation of archaeal diversity is likely incomplete. Sev-
eral Acidobacteria OTUs were uniquely abundant in LE wet-
lands (e.g. Acidobacteria Groups 6, 17 and 18). Acidobacterial
abundance has been shown to increase with decreasing pH
within soil environments (Jones et al. 2009), and as such, the
relatively lower pH of LE water with respect to other wetland
regions may be driving this trend within freshwater coastal
wetlands.

Several other taxonomic groups of microbes were differ-
entially abundant among wetland soil habitats, often depen-
dent on soil depth. Perhaps most interestingly, archaeal OTUs
within Chrenarchaeota and Euryarchaeota were more relatively
abundant in soils between 4–6 cm in depth, particularly within
Classes Thermoprotei, Methanomicrobia and Methanobacteria. Many
of these OTUs were identified to the genus level, including

the methanogenic Methanosaeta, Methanoregula and Methanobac-
terium. Recent research has suggested that methanogenic activ-
ity can often be highest within oxygenated soils, which can
occur within the top 10 cm of freshwater wetland soils (Angle
et al. 2017). As soils within our study were sampled to a maxi-
mum depth of 6 cm, it is possible that methanogens within Great
Lakes coastal wetlands may be active in the oxygenated layer
of soils, particularly between 4–6 cm where oxygen, while pos-
sibly present, is lower than layers of soil directly above. How-
ever, oxygen was not measured within the soil of this study,
and thus further research would be necessary to understand
whether oxygen is permeating to 4 cm depth in wetland soils
explored herein. Within the top 0–2 cm of soil, several bacte-
rial OTUs were differentially abundant, most notably within tax-
onomic groups such as Alpha-, Beta- and Gammaproteobacteria,
several groups of Acidobacteria, Spartobacteria, Verrucomicrobiae,
Planctomycetes and Sphingobacteria.

Relationships between microbial subnetworks and
environmental gradients

Through network analyses, multiple subcommunities were
delineated which were significantly related to environmental
gradients (such as nutrients C, N, and P) among coastal wetlands
sampled in this study. Specifically, a subnetwork of 69 micro-
bial taxa was 93.8% predictive of nutrient level variation among
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coastal wetland soils. Several microbial taxa within this subcom-
munity were individually predictive of nutrient levels to a high
degree, including several OTUs within Anaerolineaceae, one OTU
within genus Anaerolinea, and another within genus Bellilinea.
From the genus Anaerolinea, two thermophilic chemoorgan-
otrophs (Anaerolinea thermophila and Anaerolinea thermolimosa)
have been isolated (Sekiguchi et al. 2003; Yamada et al. 2006).
Only one isolated member has been established within the
genus Bellilinea (Bellilinea caldifistulae); it has been described as
a thermophilic, fermentative, obligate anaerobe which thrives
in co-culture with methanogens (Yamada et al. 2007). It is
unlikely that the OTUs found in our study are the same species
as the isolated Anaerolinea and Bellilinea species, as coastal
wetland soils are not high-temperature environments neces-
sary for thermophilic species. Additionally, no OTUs related
to methanogenic archaea were found within this subnetwork,
suggesting that Anaerolineacea OTUs within coastal wetland
soils may fluctuate independently of any specific methanogenic
OTUs. It is possible that the Bellilinea OTU found within the sub-
network is related to nutrient level concentrations. This would
support fermentative metabolism as noted within Bellilinea cald-
ifistulae. It is important to note that several other studies have
discovered OTUs related to Anaerolineaceae within wetland soils,
with upwards of 90% relative abundance among Chloroflexi OTUs
within these systems (Ansola, Arroyo and de Miera 2014; Deng
et al. 2014; Hu et al. 2016). This suggests that there are proba-
ble mesophilic species yet to be isolated within this ubiquitous
family of bacteria, which may be of high importance within wet-
land soils. Interestingly, the majority of OTUs (61 out of 69 OTUs)
within the subnetwork most related to NUTR shifts were also
differentially abundant between LE and all other regions (Fig. 6).
The parallels drawn between these two analyses highlights the
potential importance of NUTR (NH4

+, OM, OC, and TN) in driving
differences in microbial OTU abundances between LE and other
coastal wetland regions.

Betaproteobacteria were also found to significantly predict
nutrient levels among coastal wetlands. Betaproteobacteria have
previously been documented in wetlands (Wang et al. 2012; Ligi
et al. 2014) and they been found to correlate with nutrients in
freshwater sediments (Wang et al. 2012). An OTU related to Rhi-
zobiales, a bacterium known to fix nitrogen (see reviews, O’Hara
2001; Garg and Geetanjali 2007), was also documented to cor-
related with nutrients, thus implicating microbial shifts due to
nitrogen cycling. Hu et al. (2016) found that both Betaproteobacte-
ria and Anaerolineae were positively related to TN levels, which
is consistent with the data presented here, and these two taxa
were suggested to contribute to higher levels of heterotrophic
activity. Further, Anaerolineaceae OTUs were consistently related
to increasing C:N, suggesting that many taxa within this family
have preference for recalcitrant carbon sources. This relation-
ship is possible as other studies have seen taxa within Anaero-
lineaceae abundant in anaerobic digestors (Mcllroy et al. 2017) and
Anaerolineaceae have been shown to degrade long chain alka-
nes (Liang et al. 2015 and Liang et al., 2015, 2016). As C:N also
tends to increase with soil depth, it is also probable that the
putatively obligate anaerobic Anaerolineaceae are coinciding with
decreasing oxygen levels and/or changing metabolism require-
ments with increasing soil depth.

Development of biological indices and establishment of indi-
cator taxa have been suggested as necessary for microbial
communities within wetlands (Uzarski et al. 2017), particularly
through the use of high-throughput sequencing technologies
which now allow for deep assessment of microbial community
composition and structure within environmental samples (Sims

et al. 2013; Urakawa and Bernhard 2017). Specifically, within
Great Lakes coastal wetlands, it is integral to develop ecosys-
tem health indicators based upon multiple different groups
of taxonomy, as separate biological indices can present con-
trasting assessments of wetland health (Uzarski et al. 2017). As
microbial indicators have yet to be established in Great Lakes
coastal wetlands, this research begins the first steps in explor-
ing how microbial communities can be used as an additional
and potentially important ecosystem health indicator. In addi-
tion to their importance as biological signals for environmen-
tal health, microbial indicator taxa may play prominent roles
in bioremediation of excess nutrients and pollutants found
within anthropogenically impacted coastal wetlands. Network
analyses in this study have allowed for the generation of sta-
tistically correlated subcommunities of diverse microbial taxa
related to nutrient levels among Great Lakes coastal wetlands,
and could assist in further understanding of which micro-
bial taxa may be responding to anthropogenic stress in these
ecosystems.

CONCLUSIONS

This study marks the first comprehensive characterization of
microbial communities within Great Lakes coastal wetlands.
Coastal wetlands are integral in the proper functioning of bio-
geochemical cycles and environmental sustainability of the
Great Lakes. While it has long been known that anthropogenic
pressure can impact animal and plant communities within
these Great Lakes coastal wetlands, this study provided evi-
dence that these pressures may also be influencing microbial
communities and may be influencing biogeochemical cycles by
extension. Alpha and beta diversity were both related to nutri-
ent gradients among and within regions, suggesting that vari-
ability in microbial community structure is highly coupled to
geochemistry within wetland soils. We propose that wetland
microbial community structure can also potentially be used to
assess a wetland for monitoring purposes. As illustrated within
this study, wetland microbial community structure and depth
are decoupled within the wetlands experiencing the highest
nutrient levels, likely originating from terrestrial inputs due to
human activity. As such, multivariate statistics (as used in the
methods of this study) may prove useful in examining rela-
tionships between wetland soil depth and microbial community
structure alongside microbial network analyses, which could
provide biological indicators of nutrient loading stress on coastal
wetland habitats. We propose that wetland microbial commu-
nity structure can also potentially be used to assess a wetland
for monitoring purposes.

Further, this study provides insight on microbial commu-
nity subnetworks and individual OTUs, which were predictive
of chemical concentrations, and may be useful for future man-
agement of Great Lakes coastal wetland systems. Within sub-
networks existed multiple taxa with strong individual rela-
tionships to environmental gradients among coastal wetlands
throughout the Great Lakes. Even further, several commu-
nity members within these subnetworks were taxonomically
related (such as OTUs related to Anaerolineaceae within Chlo-
roflexi), suggesting that specific taxonomic groups of microbes
may be useful to explore further as potential biological indica-
tor groups. This study highlights the strength of network anal-
yses (such as WGCNA) in delineating hypothetical networks
of interacting microbes, and whether these networks are pre-
dictive of physical or chemical gradients measured within an
environment.
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SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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