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Prediction of slope failure in open-
pit mines using a novel hybrid 
artificial intelligence model based 
on decision tree and evolution 
algorithm
Xuan-Nam Bui   1,2, Hoang Nguyen   3 ✉, Yosoon Choi   4 ✉, Trung Nguyen-Thoi5,6, Jian Zhou7 
& Jie Dou8

In this study, the objective was to develop a new and highly-accurate artificial intelligence model for 
slope failure prediction in open-pit mines. For this purpose, the M5Rules algorithm was combined with 
a genetic algorithm (GA) in a novel hybrid technique, named M5Rules–GA model, for slope stability 
estimation and analysis and 450-slope observations in an open-pit mine in Vietnam were modeled using 
the Geo-Studio software based on essential parameters. The factor of safety was used as the model 
outcome. Artificial neural networks (ANN), support vector regression (SVR), and previously introduced 
models (such as FFA-SVR, ANN-PSO, ANN-ICA, ANN-GA, and ANN-ABC) were also developed for 
evaluating the proposed M5Rules–GA model. The evaluation of the model performance involved 
applying and computing the determination coefficient, variance account for, and root mean square 
error, as well as a general ranking and color scale. The results confirmed that the proposed M5Rules–GA 
model is a robust tool for analyzing slope stability. The other investigated models yielded less robust 
performance under the evaluation metrics.

Slope collapse is a critical hazard in open-pit mines as it can be of any scale, small or large, and directly affect 
people, equipment, and production processes (Fig. 1). Therefore, analysis and calculation of slope stability are of 
vital importance for preventing disasters that occur because of such instabilities.

Numerical methods1,2 and three-dimensional techniques3 for slope stability analysis were applied to various 
geological structures,. Wei, et al.4 combined the generalized Hoek-Brown and strength reduction method to eval-
uate the stability of slopes in rock mass. Many types of seismic actions were also investigated and assessed for 
the stability of slopes in different conditions5–9. However, owing to the complexity of geological structures, slope 
stability is a challenging aspect for large open-pit mining projects10.

Furthermore, as soil layers exhibit heterogeneous characteristics, geotechnical and geological uncertainties 
can worsen the poor estimation of slope stability11,12. The random finite element method (RFEM) and limit equi-
librium method (LEM), as well as other modeling methods based on finite elements and stochastic simulation, 
were typically applied to calculate slope stability13–16.

In recent years, more advanced computational techniques have been widely applied in many fields17–20, particu-
larly in the prediction of landslides including slope stability21–23. Artificial intelligence (AI) is a powerful tool capable 
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of replacing traditional methods such as slope stability and landslide24–26, blast-induced problems (e.g., ground 
vibration, air over-pressure, fly-rock, rock fragmentation, etc.)27–32, optimization in mine planning33,34, and geology 
and geophysics35–37. For slope stability prediction, Qi and Tang38 developed six different soft computing models 
based on a meta-heuristic algorithm (i.e., firefly optimization) and machine learning algorithms (i.e., random forest, 
logistic regression, gradient boosting machine, support vector machine, decision tree, and multilayer perceptron 
neural network). A promising result was found in their study for predicting slope stability when the area under the 
receiver operating characteristic curve reached up to 0.967. Sakellariou and Ferentinou39 introduced an artificial 
neural network (ANN) model that used geometrical and geotechnical parameters to predict the factor of safety 
(FOS) based on their database of experiments. In another study, Samui40 applied support-vector machine (SVM) for 

Figure 1.  Slope collapse disaster in an open-pit mine in Vietnam.

Figure 2.  Workflow of the M5Rules model.

Figure 3.  Description of GA with operators.
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slope stability analysis using a database of practical investigations. Choobbasti, et al.41 also conducted similar work 
with ANN models. Despite the high appreciation from researchers for the effectiveness of AI techniques in predict-
ing slope stability, experimental data are often insufficient because of time and cost constraints.

To overcome the abovementioned limitations, various simulation software based on RFEM and LEM meth-
ods, among others, were introduced (such as OptumG2 and Geo-Studio)42,43. Based on these tools, slope stability 
prediction was analyzed and accurately evaluated for many models. Moreover, scientists have applied a big-data 
approach to AI for slope stability analysis44–46. Chakraborty and Goswami47 simulated 200 cases with different 
shear strengths and geometric parameters to evaluate slope stability using ANN and multiple linear regression 
(MLR). Jellali and Frikha48 used OptumG2 to generate 30,000 elements and predicted slope stability using the 
particle swarm optimization (PSO) algorithm with promising results. Mojtahedi, et al.49 applied the Monte Carlo 
technique using Geo-Studio software with 224 datasets. Saleh50 applied ANN to a database of 2,180 simulated 
slope cases using Geo-Studio software. Qi and Tang38 attempted to develop six soft computing models using 
optimization approaches based on firefly algorithms (FFA), concluding that an FFA–SVM model was the best. 
Koopialipoor, et al.51 applied various hybrid AI models, such as ANN-PSO, ANN-ICA (imperialist competitive 
algorithm), ANN-GA (genetic algorithm), and ANN-ABC (artificial bee colony), based on OptumG2 software 
analysis results. They found that the ANN-PSO model provided better performance than the other models. Gao, 
et al.52 successfully developed a promising hybrid model called ICA–ANN based on the combination of ANN 
and ICA with 400 OptumG2 simulations. Qian, et al.53 also performed similar work for forecasting slope stability 
based on OptumG2 software.

The review of previous works reveals that AI techniques are widely applied in slope stability prediction and 
analysis. However, such methods are not applied in all areas/regions. Furthermore, many AI models and tech-
niques are yet to be investigated. To promote continued improvements in safety, development of knowledge, and 
enhancing slope stability, prediction performance in other areas is necessary. Therefore, a novel hybrid model, 
namely M5Rules–GA, for predicting slope stability (i.e., FOS) using a genetic algorithm (GA) and M5Rules 
was proposed and investigated in this study. It is worth mentioning that the team of authors developed the 
M5Rules-GA model for predicting the energy efficiency of buildings (i.e., heating load) with high accuracy54. 
However, it is not taking into account to predict and evaluate the stability of slopes. Furthermore, the perfor-
mance, as well as the parameters of the M5Rules-GA model, are different based on different databases. Therefore, 
the M5Rules-GA model was investigated to predict slope stability herein and it is considered as a novel model 
in this field. Besides, several ANNs, support-vector regression (SVR), and previously introduced slope stability 
prediction models (such as FFA-SVR, ANN-PSO, ANN-ICA, ANN-GA, and ANN-ABC) were also implemented 
for a comprehensive comparison of the proposed M5Rules–GA model. There were 450 simulations of open-pit 
mine slopes in Vietnam, as a database for predicting slope stability.

Background: M5Rules and GA
In this study, eight AI techniques were used to develop slope failure predictive models, including ANN, SVR, 
M5Rules, PSO, FFA, ICA, ABC, and GA. However, the details for ANN, PSO, FFA, ICA, ABC, and SVR tech-
niques were presented in many previous works19,55–60. Therefore, these details are not included in the present 
study. This section highlights the background of M5Rules and GA for developing the new hybrid M5Rules–GA 
model.

Figure 4.  Flow chart of M5Rules–GA model for analyzing slope stability.
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M5Rules.  M5Rules is well-known as an enhanced model of the M5 model with rules61. It is a type of deci-
sion tree algorithm in machine learning that can be applied for regression and classification problems62,63. In 
regression, M5Rules is based on a combination of regression tree models64. In addition, the partial and regres-
sion tree (PART) algorithm is applied to generate the rules for the M5 tree model65. These rules can improve the 
performance of the M5 tree model rather than the regression tree models, and it is called M5Rules. In M5Rules, 
the tree can be developed based on the four following options: pruned/unpruned tree; smoothed/unsmoothed 
predictions; build regression tree/rule; and define the minimum number of instances per leaf66. The workflow for 
the development of the M5Rules model is shown in Fig. 2.

Genetic algorithm.  Meta-heuristic algorithms are well-known as robust algorithms for optimization 
problems. Among those, the GA has one of the dominant performances in optimization based on the theory of 
Darwin67,68. Four steps are conducted in GA for finding an optimal function: genetics, mutation, natural selection, 
and crossover. Before implementing an optimization of an objective function, GA needs an initial population 
and their fitness are calculated69,70. Note that the number of population of individuals is generated heuristically 
or randomly71. In GA, the quality of the population can be improved by the selection operator. Subsequently, two 
individuals are generated with higher fitness using the crossover operator. Mutation operators can create a new 
generation with better performance in the population by randomly modifying some genes72. It is worth mention-
ing that replacement strategies can be applied to replace the current generation by newly generated offsprings. 
There are two main types of replacement: generational and steady-state replacements73. In addition, other related 
replacement strategies, such as elitism, delete n-last, delete n, random replacement, weak parent replacement, and 
both parents replacement, can be applied for replacement of generation in GA74. The structure and the framework 
of the GA are simulated in Fig. 3.

Figure 5.  Study area and its landscape via Google Earth.
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In GA, the cycle of operators (i.e., selection, crossover, and mutation) is employed and looped. To end the 
algorithm, two stopping conditions can be applied as follows:

	 1.	 Tcn the structure of the chromosome.
	 2.	 The change in fitness from newly generated offsprings is less than a specified constant.

Framework of M5Rules–GA model for slope stability analysis.  In this section, the M5Rules–GA 
model, which is the slope stability prediction model proposed in this study, is presented and highlighted. The 
performance of the M5Rules model is determined by its parameters. Pruning and smoothing tasks can be applied 
during the development of the M5 tree model. Additionally, rules and the number of instances per leaf are 
important parameters affecting the performance of the M5Rules model. Therefore, the GA is applied to optimize 
the parameters of the M5Rules model: pruned, smoothed, rules, and the number of instances per leaf. Note that 
the PART algorithm generates rules for the M5 tree model. With each round, GA searches the M5Rules model 

Features H α γ C ϕ FOS

Min. 5 65 12.83 11.22 7.3 0.76

1st Qu. 5 65 20.09 15.6 14.5 1.29

Median 10 70 21.85 16.85 16.8 1.41

Mean 10 70 21.87 16.96 16.8 1.42

3rd Qu. 15 75 23.71 18.3 19.3 1.54

Max. 15 75 31.53 23.34 27.8 1.98

Table 1.  Summary of the features of inputs and output.

Figure 6.  Visualization of slope stability database.
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parameter values with the M5Rules model performance evaluated using a fitness function (i.e., root mean square 
error (RMSE)). The search process is performed until the optimal M5Rules model is found, i.e., the model with 
the most extreme fitness function value. The framework of the M5Rules–GA model is illustrated in Fig. 4.

Statistical criteria.  To evaluate the accuracy and error of the developed models, RMSE, determination coef-
ficient (R2), variance account for (VAF), and color intensity were applied based on the measured and predicted 
values on both training and testing phases. They were calculated according to Eqs. (1–3).
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Figure 7.  Optimizing the M5Rules model with the GA procedure.

Figure 8.  ANN models for analyzing slope stability in this study.
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where n represents the number of instances, and y , yi, and ŷi represent the average, measured, and modeled 
values of the response variable, respectively.

Case study
For assessing the performance of the proposed M5Rules–GA model in practical engineering, a quarry mine in 
Vietnam was selected as a case study (Fig. 5). The parameters used to predict the stability of the slope included 
bench height (H), unit weight (γ), cohesion (C), angle of internal friction (ϕ), and slope angles (α); the FOS was 
assigned as the output parameter. Properties of the dataset used are detailed in Table 1.

As recommended by previous researchers, γ , α, H,, and C are the most influential parameters that have 
impacts on the FOS58,75. Therefore, these factors were provided to the Geo-Studio (version 2019) for the compu-
tations of FOS values. According to Zhou, et al.76, the slope is stable at FOS > 1. However, according to Sakellariou 
and Ferentinou39, the slope is stable only at FOS ≥ 1.2. Thus, for safety in mining, FOS was assigned at least 1.2. 
Therefore, the slopes will be stable if ≥ .FOS 1 2, and fail if < .FOS 1 2. In this study, 450 simulations were con-
ducted in the laboratory using Geo-Studio software based on the working conditions. The simulation results 
showed that the slopes of the study site included both stability and failure, i.e., . ≤ ≤ .FOS0 76 1 98. The datasets 
used in this study are visualized in Fig. 6, and summarized in Table 1.

Model

Training Testing

RMSE R2 RMSE R2

M5Rules-GA 0.022 0.985 0.024 0.983

ANN 5-8-1 0.033 0.971 0.031 0.970

ANN 5-11-1 0.033 0.973 0.030 0.975

ANN 5-8-11-1 0.032 0.971 0.027 0.978

ANN 5-12-16-1 0.033 0.970 0.032 0.969

SVR 0.032 0.975 0.030 0.974

FFA-SVR 0.027 0.978 0.029 0.976

ANN-PSO 0.026 0.980 0.026 0.980

ANN-ICA 0.028 0.977 0.029 0.976

ANN-GA 0.029 0.980 0.027 0.979

ANN-ABC 0.030 0.980 0.028 0.978

Table 2.  Performance of the slope stability evaluation models.

Model

Performance of the models Ranking

Runtime RMSE R2 VAF

Rank 
for 
RMSE

Rank 
for R2

Rank 
for VAF

Total 
ranking

M5Rules-GA 157.201 0.024 0.983 98.260 11 11 11 33

ANN 5-8-1 31.225 0.031 0.970 97.037 2 2 2 6

ANN 5-11-1 32.033 0.030 0.975 97.280 3 4 3 10

ANN 5-8-11-1 62.779 0.027 0.978 97.707 8 7 8 23

ANN 5-12-16-1 94.542 0.032 0.969 96.840 1 1 1 3

SVR 125.332 0.030 0.974 97.320 3 3 4 10

FFA-SVR 188.382 0.029 0.976 97.517 5 5 5 15

ANN-PSO 217.677 0.026 0.980 97.907 10 10 10 30

ANN-ICA 250.701 0.029 0.976 97.552 5 5 6 16

ANN-GA 282.772 0.027 0.979 97.751 8 9 9 26

ANN-ABC 314.388 0.028 0.978 97.647 7 7 7 21

Table 3.  Testing the performance of slope stability predictive models.
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Figure 9.  The accuracy and the converging of the M5Rules-GA model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.

Figure 10.  The accuracy and the converging of the ANN 5-8-1 model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.
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Results and discussions
To develop the models, the FOS database needs to be prepared and normalized. Accordingly, the dataset used 
should be split into two phases. As recommended in previous studies56,77,78, 80% of the database was used for the 
training of the models; the remaining 20% was used to assess the models’ performance. The training dataset was 
randomly selected, and all the abovementioned models were developed based on the same training phase and 
tested using the same testing phase.

For the development of the M5Rules–GA model, the step-by-step approach shown in Fig. 4 was applied. An 
initialization of the M5Rules model was developed based on its parameters and the training dataset, as the first 
step. To improve the model’s performance, the 10-fold cross-validation resampling technique was used. Next, 
the GA’s parameters were established as the second step: mutation probability (Pm), crossover probability (Pc), 
number variable (n), and number of populations (p). Pm, Pc, and n were set to 0.1, 0.8, and 5, respectively, and the 
values for p were set to 50, 100, 150, 200, 250, and 300. Additionally, the steady-state replacement method79 was 
applied in GA. RMSE was used as the fitness function, according to Eq. 1. The maximum number of iterations 
was set to 1000 to ensure the finding of the best values of the M5Rules model with the lowest RMSE value (i.e., 
best fitness value). Figure 7 shows that the M5Rules–GA model reached the best performance with p = 200 at the 
iteration of 412 (RMSE = 0.0218).

For SVR modeling, a kernel function was applied (i.e., radial basis function) with σ and C used as the main 
parameters for controlling SVR model performance. A 10-fold cross-validation80 was applied to increase the 
accuracy while preventing overfitting or underfitting of the SVR model. Furthermore, the Box-Cox transforma-
tion technique81 was applied to reduce the skewness of the data. A trial and error approach with various SVR 
models was conducted to determine the best SVR model for this study. The best SVR model for analyzing slope 
stability was found at σ = 0.014 and C = 276.385.

For ANN models, hidden model layers resist definition or explicit explanation. However, according to pre-
vious works28,82–84, ANNs with one or two hidden layer(s) can solve most problems. Therefore, a trial and error 
approach was conducted to find the best ANN models with one or two hidden layer(s). The min-max scale tech-
nique (i.e., [0,1]) was used as a normalization method for the dataset to avoid overfitting of the ANN models. 
Eventually, four ANN models were established: ANN 5-8-1, ANN 5-11-1, ANN 5-8-11-1, and ANN 5-12-16-1, 
called ANN 1, ANN 2, ANN 3, and ANN 4, respectively. Their structures can be seen in Fig. 8. In addition, the 
FFA-SVR, ANN-PSO, ANN-ICA, ANN-GA, and ANN-ABC models introduced by previous researchers were 
taken into consideration to predict FOS and compare with the developed M5Rules-GA model. To predict the sta-
bility of the slope, the FFA-SVR, ANN-PSO, ANN-ICA, ANN-GA, and ANN-ABC models were also developed 
through two phases: (1) Initializing an ANN model with initial weights and biases; (2) Optimizing the initializa-
tion ANN model by the FFA algorithm. Indeed, the weights and biases of the established ANN model were opti-
mized by the FFA algorithm aiming to improve the accuracy of the initialization ANN model. In other words, the 
role of the pairs ANN and M5Rules, FFA, ABC, PSO, ICA and GA are the same in this study. It should be noted 
that the Box-Cox transformation technique was applied to preprocess the dataset aiming to prevent overfitting 

Figure 11.  The accuracy and the converging of the ANN 5-11-1 model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.
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Figure 12.  The accuracy and the converging of the ANN 5-8-11-1 model in predicting FOS. (a) Different 
between the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.

Figure 13.  The accuracy and the converging of the 5-12-16-1 model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.
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of the M5Rules and SVR models. For the ANN models, the MinMax [0,1] technique was used to normalized the 
dataset for the same purposes as those of M5Rules and SVR models. Ultimately, the performance of the slope 
stability evaluation models on both training and testing datasets are computed in Table 2.

Based on Table 2, it is worth mentioning that all the models performed very well in predicting the slope stabil-
ity without overfitting. However, it is hard to recognize which model is the best among them. Therefore, once the 
models were well-established based on the training dataset, their performance should be tested using the testing 
phase with performance indices (i.e., RMSE, R2, VAF, a general ranking, and color range). The purpose of using 
multiple metrics, ranking, and color intensity methods is to recognize the best model in those of the developed 
models. Furthermore, the testing dataset is taken into account as the new dataset in practical; thus, evaluating 
the performance of the models on the testing dataset will provide an overview of the reliability of the models in 
practice. Also, to evaluate the performance of the models through the training time (runtime), the total time of 
training of the models was calculated in Table 3. It is worth mentioning that the runtime of the models highly 
depends on the hardware of the computer used. Herein, a workstation computer with the Intel(R) Xeon(R) dual 
CPU X5675 3.07 GHz, 24 GB RAM, and K5000 VGA (5.0 GB) was used to train the models. The testing results of 
the predictive models, as well as their ranking, are listed in Table 3.

Based on Table 3, it is clear that the training time of the hybrid models is higher than the single models. This 
problem is due to the calculation volume of the hybrid models is higher than the individual models with many 
repetitions. Of those, the training time of the M5Rules-GA model is lowest among the hybrid modes developed 
(i.e., M5Rules-GA, FFA-SVR, ANN-PSO, ANN-ICA, ANN-GA, ANN-ABC) with 157.201 seconds. Whereas, the 
training time of the ANN-PSO model is higher than those of the M5Rules-GA models even though its accuracy 
is slightly lower than the M5Rules-GA model. Another hybrid model based on the GA, i.e., ANN-GA, also taken 
more training time than the M5Rules-GA model (i.e., 282.772 seconds). They showed that the optimization of 
M5Rules is faster than the ANN model.

Regarding the accuracy of the models, a color range can preliminarily provide a performance evaluation of 
the models. Green and white represent the best and worst performances, respectively. Table 3 showed that the 
proposed M5Rules–GA model provided the best performance among the developed models in this study. In 
contrast, the ANN 5-12-16-1 model yielded the worst performance. Considering the accuracy/performance of 
the proposed M5Rules-GA and previously introduced models (i.e., FFA-SVR, ANN-PSO, ANN-ICA, ANN-GA, 
and ANN-ABC), it can be seen that the accuracy of the M5Rules-GA model is also higher than the other hybrid 
models. Indeed, the total ranking of the M5Rules-GA model was 33, whereas the best hybrid model among 
the FFA-SVR, ANN-PSO, ANN-ICA, ANN-GA, and ANN-ABC models only received a total ranking of 30 
(ANN-PSO). It is worth mentioning that the role of the GA is the optimization of parameters of the models (such 
as M5Rules and ANN). However, we can see that the performance of the M5Rules-GA model is better than the 

Figure 14.  The accuracy and the converging of the SVR model in predicting FOS. (a) Different between the 
actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.
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Figure 15.  The accuracy and the converging of the FFA-SVR model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.

Figure 16.  The accuracy and the converging of the ANN-PSO model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.
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Figure 18.  The accuracy and the converging of the ANN-GA model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.

Figure 17.  The accuracy and the converging of the ANN-ICA model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.
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ANN-GA model. This finding indicates that the M5Rules model is fitter than the ANN models. The FOS predic-
tions, correlation schemes, and their 90% confidence level of the models are illustrated in Figs. 9–19.

Figure 19.  The accuracy and the converging of the ANN-ABC model in predicting FOS. (a) Different between 
the actual and predicted FOS values. (b) Correlation analyses of the actual and predicted FOS values.

Figure 20.  Assessment of the models using Taylor diagram.
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Considering further evaluation criteria, such as standard deviation, centered root mean square (RMS) dif-
ference, and correlation coefficient, a Taylor diagram was drawn to visualize and comprehensively assess the 
developed models, as shown in Fig. 20. As seen in the figure, the proposed M5Rules-GA was on the smallest arcs 
of standard deviation, centered RMS difference, and correlation coefficient. A closer look at the models shows that 
the standard deviations of the M5Rules-GA and other models do not differ considerably as they seem to be on 
the same arc. However, centered RMS difference and correlation coefficient of the proposed M5Rules-GA model 
were superior.

Conclusions
Based on the results of this study, the proposed M5Rules–GA model provided the best accuracy among all the 
investigated models for slope stability forecasting. The M5Rules model was substantially enhanced using GA 
optimization, thereby achieving outstanding performance. We expect M5Rules–GA model to be useful in evalu-
ating and predicting slope stability at mines, thus preventing and minimizing slope collapse damage. In addition, 
the other models also showed positive results, and they might be considered in other instances. Although the 
performance of the proposed M5Rules–GA model was interpreted in the context of the present study’s dataset, 
we suggest its broader application to other regions with extended datasets.
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