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SUMMARY

Immunotherapeutics are frequently associated with adverse side effects due to
the elicitation of global immune modulation. To lower the risk of these side ef-
fects, recombinant DNA technology is employed to enhance the selectivity of
cell targeting by genetically fusing different biomolecules, yielding new species
referred to as multi-specific biologics. The design of new multi-specific biologics
is a central challenge for the realization of new immunotherapies. To understand
the molecular determinants responsible for regulating the binding between
multi-specific biologics and surface-bound membrane receptors, we developed
a multiscale computational framework that integrates various simulation ap-
proaches covering different timescales and spatial resolutions. Ourmodel system
of multi-specific biologics contains two natural ligands of immune receptors,
which are covalently tethered by a peptide linker. Using this method, a number
of interesting features of multi-specific biologics were identified. Our study
therefore provides an important strategy to design the next-generation biologics
for immunotherapy.

INTRODUCTION

The past decade has witnessed the rise of immunotherapies for the treatment of cancers, autoimmune dis-

eases, and infectious diseases through the strategic modulation of the patient’s immune system (Yang,

2015; Gun et al., 2019; Kruger et al., 2019). Traditionally, immunotherapies have relied on high-affinity

monoclonal antibodies and Fc fusion proteins to selectively engage presented cell surfaces or soluble

signaling molecules, resulting in clinically beneficial immune modulation. In the cases of cancers and infec-

tious diseases, these agents can block inhibitory signals or enhance stimulatory signals, resulting in global

immune enhancement, albeit with the risk of adverse autoimmune effects. For example, function-blocking

antibodies (e.g., nivolumab and pembrolizumab) that recognize the inhibitory receptor (e.g., programmed

cell death-1 [PD-1]) stimulate global immunity by competing with the programmed death-ligand 1 (PD-L1)

for PD-1 engagement, so they are cutting-edge treatments for a range of malignancies, including mela-

noma, renal cell cancer, and non-small cell lung cancer. Analogously, immunotherapeutic strategies that

globally reduce immune responsiveness can effectively treat autoimmune diseases; however, in this

case, patients are at increased risk from a wide range of opportunistic infections and malignancies that

would otherwise be managed by an unperturbed immune response. For example, Orencia is a soluble

Fc-fusion of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) that competes with CD28 for binding

the B7 ligands, inhibiting the CD28-associated stimulatory pathways (Pardoll, 2012). Blocking CD28 stim-

ulation causes global immune suppression, making Orencia a leading treatment for autoimmune diseases,

including rheumatoid arthritis (Bluestone et al., 2006). However, although these biologics activate recep-

tors on targeted cells, they simultaneously bind to the same type of receptors on the surfaces of other cells,

directing a broad immune response (Michot et al., 2016), which can lead to many harmful side effects (Seror

and Mariette, 2017).

One strategy to minimize these side effects is developing chimeric constructs in which biomolecules with

distinct functions are covalently tethered to yield multi-specific biologics (Baldo, 2015; Padte et al., 2018;

Thakur and Lum, 2016). For instance, bispecific T cell engagers (BiTEs) comprise two protein fragments

connected by a linker (Huehls et al., 2015): one fragment binds to a T cell-specific molecule, such as

CD3, whereas the other binds to an antigen on a tumor cell. The bispecific nature of BiTEs creates specific
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localization and physical coupling between cytotoxic T cells and tumor cells, which kills tumor cells. A va-

riety of other bispecific fusion proteins have also been reported. For example, Way et al. designed mole-

cules with enhanced selectivity composed of antibody fragments for cellular targeting tethered via pep-

tides or nucleic acid linkers to signaling molecules, such as cytokines and erythropoietin (Way et al.,

2014). Tavernier et al. similarly coupled affinity domains (i.e., single-domain camelid nanobodies) to cyto-

kines (e.g., interferon [IFN] a and tumor necrosis factor [TNF]) via GLY-SER linkers, with promising results in

preclinical murine tumor models (Uze and Tavernier, 2015). Finally, Quayle et al. reported a platform on

which single-chain peptide-major histocompatibility complex (MHC) constructs are covalently linked to a

variety of costimulatory, co-inhibitory, and cytokine molecules (e.g., interleukin [IL]-2) (Quayle et al., 2020).

The sc-pMHC domain acts as an ‘‘address’’ to target specific T cell clones for the delivery of a range of co-

modulatory domains, resulting in clonal-selective T cell modulation, thus eliminating the side effects of cur-

rent immunotherapies that elicit global immune modulation. This platform has demonstrated efficacy in a

preclinical tumor model and synergy with anti-PD-1 treatment. As illustrated by these examples, the devel-

opment of new multi-specific biologics is an exceptionally active area for the realization of new immuno-

therapies that can enhance treatment efficacy and reduce the risk of side effects (Weidle et al., 2013). A re-

maining challenge, however, is the need for additional strategies to predict, engineer, and control the

specificity of biologics in terms of receptor targeting and biological function (Dimasi et al., 2009).

Computational approaches have become a cornerstone of modern drug development (Kontoyianni, 2017;

Sliwoski et al., 2014) because, compared with experimental approaches, in silico modeling is much less la-

bor-intensive or time-consuming and enables large-scale evaluations of chemical space and design fea-

tures for subsequent prioritization and experimental validation (Carnero, 2006). Most applications of

computational approaches in drug design have focused on and made significant contributions to the

development of small chemical compounds (Katsila et al., 2016), peptide-based biomolecules (Farhadi

and Hashemian, 2018), and therapeutic antibodies (Choong et al., 2017). In contrast, computational efforts

involving multi-specific biologics have been hindered by their complexity and the limitations of the most

common computational approaches, such as protein-protein docking (Kaczor et al., 2018) and molecular

dynamic (MD) simulations (Karplus and Petsko, 1990). For instance, the benchmark results from computa-

tional docking show that the binding interfaces of protein-protein interactions are not only more diverse

and more challenging to predict than the binding sites of small molecules on protein surfaces (Villoutreix

et al., 2008) but also their binding rates and binding affinities are more difficult to estimate (Brender and

Zhang, 2015; Xiong et al., 2017; Qin et al., 2011). Moreover, although MD simulations have become a

mature method to study the atomic details associated with protein dynamics (Pan et al., 2019; Plattner

et al., 2017), the intense computational requirements generally precludes them from being applied to sys-

tems over biologically relevant timescales (Im et al., 2016). Finally, it is critically important but experimen-

tally demanding to trace the binding kinetics between biologics and their protein targets within the cellular

environments on the plasma membrane. This requirement is also a significant challenge for most current

simulation techniques due to the size of these macromolecules and the heterogeneity of their cellular en-

vironments (Ramis-Conde et al., 2008; Chakrabarti et al., 2012; Krobath et al., 2009).

To overcome these limitations, we developed a new multiscale framework to characterize the dynamics of

binding between multi-specific biologics and their receptors on the plasma membranes of mammalian

cells. Two natural ligands of immune receptors, MHC and PD-L1, are artificially connected by a peptide

linker as a test model of multi-specific biologics. Analogous to the natural response, in which the modula-

tion of a naive T cell requires both primary engagement between a T cell receptor (TCR) and MHC and a

secondary coregulatory signal (Figure 1A), the bispecific MHC-PD-L1 conjugate will selectively target

and modulate only T cells expressing the corresponding TCR on their surfaces (Figure 1B). Based on the

hypothesis that the interactions between ligands and receptors can be modulated by the conformational

dynamics of linkers joining them (Chen et al., 2013), we further designed virtual fusion proteins with three

linkers that represent various lengths and degrees of flexibility. The impacts of these linkers on the dy-

namics of the biologics have been captured by microsecond-level MD simulations. Moreover, we applied

a kinetic Monte Carlo (kMC) algorithm to calculate the rates of TCR/MHC and PD-L1/PD-1 binding and

evaluated the impact of protein variants with various affinities on these binding processes. The MD and

kMC results were integrated into a low-resolution model to simulate the kinetics of a large system contain-

ing hundreds of biologics and cell-surface receptors on a timescale of 108 nanoseconds. With this multi-

scale simulation method, we found that cells expressing high levels of cognate TCR were much more sen-

sitive to ligand concentration than cells with low expression levels of TCR, indicating that surface density is
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an important parameter that can be exploited for selective cell targeting. Interestingly, our simulations also

revealed a negative cooperativity between TCR/MHC and PD-L1/PD-1 binding in the biologics. Mutations

that strengthen the PD-L1/PD-1 binding can weaken the interaction between TCR and MHC, even if the

TCR/MHC binding interface is not changed. Given the topological design of the biologics in whichmultiple

functional modules are covalently linked together, we also observed spatial patterns in which membrane

receptors were assembled into small clusters on cell surfaces. Finally, we found that longer, more flexible

linkers were more efficient at targeting cell-surface receptors within the system we examined. Taken

together, the computational strategy adopted in this study sheds light on the development of new bio-

pharmaceutics and future immunotherapeutic strategies.

RESULTS

The results from themultiscale simulations are organized as follows. In the first section, we describe how we

constructed the rigid body (RB)-based model and tested the general properties of binding between bis-

pecific fusion proteins and their receptors. In the second section, we characterize the conformational dy-

namics of the bispecific fusion protein with all-atom MD simulations. The third section calculates the asso-

ciation rates of binding between wild-type and mutated bispecific fusion proteins and their receptors with

residue-based kMC. Finally, we integrate the MD and kMC results into the rigid body-based model in the

last section.

Construct a Rigid Body (RB)-Based Model for Cell-Surface Targeting of Multi-Specific

Biologics

Our test model of multi-specific biologics is a soluble fusion protein composed of two functional modules,

MHC and PD-L1, connected by a genetically encoded peptide linker. As described in the Methods section,

we constructed an RB-based model to simulate the binding between the two components of the fusion

protein and their cognate cell-surface receptors (i.e., TCR and PD-1, respectively) (Chen et al., 2017). Spe-

cifically, the plasma membrane is represented by a square plane at the bottom of a three-dimensional

simulation box. The area of the square is 1 mm2, and the height of the simulation box is 250 nm. Both

TCR (blue in Figure 2A) and PD-1 receptors (orange in Figure 2A) are represented as rigid cylinders

randomly distributed on the surface. The height and radius of each cylinder are 8 and 4 nm, respectively,

which are comparable to the size of real protein structures. Single binding sites (yellow dots in Figure 2A)

are placed on top of each receptor, through which it binds to the corresponding ligand in the fusion

Figure 1. The Biological Background of Binding

between Bispecific Biologics and Cell Surface

Receptors

(A and B) The traditional two-signal hypothesis for T cell

activation (A) requires specific engagement between

TCR and MHC-epitope molecules followed by a

secondary modulatory message through the

engagement between costimulatory molecules, such

as PD-L1 and its receptor PD-1. This combinatory signal

can be mimicked by an artificial fusion protein

containing MHC-epitope and modulatory domains

with a peptide linker (B). This fusion protein is used as a

specific model of multi-specific biologics to test our

multiscale simulations.
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protein/biologic. The extracellular region is represented by the space above the plasma membrane;

several multi-specific biologics are located in this three-dimensional volume. Each functional module in

the biologic is simplified as a rigid spherical with a given radius (4 nm). The two RB modules within a single

fusion protein, representing MHC (red in Figure 2A) and PD-L1 (green in Figure 2A), respectively, are

Figure 2. The Rigid Body-Based Model and General Simulation Results

(A–C) An initial configuration of our RB-based model was set up to simulate the binding between cell-surface receptors

and multi-specific biologics (A). The plasma membrane is represented by a square plane at the bottom of a three-

dimensional simulation box. Receptors are randomly distributed on the membrane, whereas biologics are located in the

space above. Each functional module in the biologics is simplified as a spherical RB. Modules are connected by a flexible

linker, and receptors are represented by RBs of cylinders. Two types of cells were exposed to the biologics. The specific

immune cell that aims to be targeted by the biologics expresses cognate TCR highly, whereas cells in the control model

contain low levels of TCR. The simulation results of both cell types are plotted in (B) as a function of time. The results of the

high-expressing cells are shown with solid curves, whereas the results of the low-expressing cells are shown with dashed

curves. The statistical fluctuations after these systems reached equilibrium were calculated. Specifically, the means and

standard errors of the curves within the last 5 3 107 ns are listed as follows: 45.31 G 1.55 (black solid), 30.86 G 1.69 (red

solid), 29.17 G 1.92 (green solid), 21.24 G 1.60 (black dashed), 28.28 G 2.86 (red dashed), 15.82 G 1.36 (green dashed).

We also changed the numbers of biologics in the extracellular region from 50 to 300. The results are summarized in (C) for

both high-expressing (gray) and low-expressing cells (red). The numbers of biologics that formed complexes with both

TCR and PD-1 are plotted as bars, whereas the numbers of biologics in which the PD-L1 module is bound to PD-1 are

plotted as circles. The means and standard errors of the gray circles from 50 to 300 are listed as follows: 35 G 6.5, 69 G

11.4, 101G 18, 137G 24.5, 155G 30.6, and 180G 34.7. The means and standard errors of the gray bars from 50 to 300 are

listed as follows: 31G 7.3, 66G 14, 94G 20.7, 119G 27.4, 134G 29.7, and 159G 33.7. The means and standard errors of

the red circles from 50 to 300 are listed as follows: 26G 6.5, 64G 13, 83G 18.7, 109G 23.1, 131G 27.4, and 156G 35. The

means and standard errors of the red bars from 50 to 300 are listed as follows: 14 G 4.1, 23 G 5.5, 20 G 4, 23 G 4.3, 21 G

4.3, and 25 G 4.6. t tests were further performed between bars, as well as between circles at different numbers of

biologics. The calculated p values less than 0.0001 are given four asterisks. The p values between bars are marked as black

asterisks, whereas the p values between circles are marked as blue asterisks.
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tethered together by peptide linkers (gray dots in Figure 2A) possessing variable degrees of flexibility. On

the surfaces of MHC and PD-L1, we also assign single binding sites (yellow dots in Figure 2A) for interaction

with their corresponding receptors. Following the initial configuration, the movements of receptors and bi-

ologics and their binding were simulated by a diffusion-reaction algorithm until the system reached equi-

librium. The Methods section describes the detailed simulation process. A sensitivity analysis on the simu-

lation with different binding affinity values was first carried out, the results of which the Supplemental

Information and Figure S3 summarizes.

Based on the sensitivity analysis, we further changed the density of the membrane receptors on the cell

surfaces. Considering that membrane receptors can exhibit many expression profiles in different cells,

this study specifically compares two models. The first model expressed TCR highly, representing the spe-

cific immune cells targeted by the fusion protein; in contrast, the control model hardly expressed TCR. Spe-

cifically, we assumed that the expression level in the control model was lower than the expression level of

the first model by one order of magnitude. As a result, 300 copies of TCR were distributed on the surface of

the high-expressing cells, giving a surface TCR density of ~102 molecules per mm2, which was within the

range of experimental observation for T cells (Brameshuber et al., 2018). In contrast, the low-expressing

cell had 30 copies of TCR on its surface. The surfaces of both cells also contained 300 copies of PD-1 re-

ceptors (Li et al., 2017). In both models, 50 copies of fusion protein were exposed to the receptor-

embedded cell surfaces.

Figure 2B shows the simulation results of these two systems. The numbers of molecules that bound to re-

ceptors on the surfaces of the high-expressing cells are plotted by solid curves as a function of simulation

time, whereas the numbers of molecules that bound to receptors on the surfaces of the low-expressing

cells are plotted by dashed curves. The numbers of bound MHC and PD-L1 in both systems are plotted

by curves in black and red, respectively. The curves in green show the temporal changes of the fusion pro-

teins’ functional modules binding to their corresponding receptors. The figure suggests that MHCmodules

in almost all biologics-targeted cells expressing high levels of TCR by the end of the simulation. In contrast,

less than half the MHC interacted with TCR in the low-expressing cells. We also compared the interaction

dynamics between PD-1 and PD-L1 in the high-expressing cells with their interactions in the low-expressing

cells, and interestingly, the number of bound PD-L1 in the low-expressing cells increased faster at the

beginning of the simulation than in the high-expressing cells. As the simulation continued, we observed

more complexes forming between PD-1 and PD-L1 in the high-expressing cells until they had more than

the low-expressing ones.

We suggest that this dynamic behavior can be explained as follows. As an MHC module bound to a TCR,

the entire biologics diffused with the receptor on the cell surface. This constraint gave the unbound PD-L1

module in the same molecule greater accessibility to search the space proximal to the surface area, raising

the probability that it would encounter a vacant PD-1 receptor. In other words, the higher number of bound

MHC modules raised the local concentration of the biologics above the membrane surface of the cell that

expressed high levels of TCR, promoting the binding of PD-L1. Consequently, more interactions between

PD-L1 and PD-1 occurred in the high-expressing cells than in the low-expressing ones, although the

expression levels of PD-1 in both were the same. Finally, we counted the number of biologics in which

both MHC and PD-L1 bound to receptors. Because the functional response of T cells needs the engage-

ment of both TCR and coregulatory receptors, the number of biologics with both bound MHC and PD-

L1 on cells is the variable directly related to the biological outcome of cell signaling. As a result, Figure 2B

shows that the number of biologics with both bound MHC and PD-L1 is almost twice as high in the high-

expressing cells than the low-expressing cells, indicating that multi-specific biologics canmuchmore effec-

tively bind to the surfaces of their targeted immune cells.

We also tested the concentration dependence of multi-specific biologics in cell-surface targeting. Specif-

ically, the numbers of biologics in the extracellular region rose from 50 to 300 in simulations of both high-

and low-expressing cells. We counted how many biologics formed complexes with both TCR and PD-1 at

the end of each simulation; Figure 2C summarizes these results as histograms. The number of biologics

with both MHC and PD-L1 engaged under different concentrations are plotted as gray bars for the high-

expressing cells and red bars for the low-expressing cells. The figure shows that many more biologics

bound to both TCR and PD-1 on the surfaces of the high-expressing cells as the extracellular concentration

of biologics increased. In contrast, due to the limited number of TCR on the surface of the low-expressing
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cells, there were almost no changes in the numbers of biologics with both bound MHC and PD-L1 as the

concentration increased, suggesting that the immune cells with a specific type of TCR weremuchmore sen-

sitive to changes in concentration than other cells. In other words, the high specificity of T cell surface tar-

geting can be achieved more easily under high concentrations of multi-specific biologics.

We also plotted the numbers of interactions between PD-L1 and PD-1 in Figure 2C. The figure shows that

the number of these interactions increased as the concentrations of extracellular biologics rose. More inter-

estingly, we always found more interactions in the high-expressing cells (gray circles) than the low-express-

ing ones (red circles), although there was no difference in the surface density of PD-1 or the binding affinity

between PD-1 and PD-L1. The only possible reason for this difference is the expression level of TCR. While

the high expression of one receptor on the cell surface can recruit more bispecific fusion proteins to the

membrane-proximal area, the other vacant module in the biologics is likely to encounter its receptor.

Our observations, therefore, suggest that the expression level of one receptor can affect the binding of

the other receptor to the bispecific fusion proteins.

In summary, we explored the binding of specifically designed biologics to the surfaces of various cell types

by implementing an RB-based model coupled with a diffusion-reaction simulation. We demonstrated the

possibility that these biologics can target only a preselected type of immune cells, providing a mechanism-

based rationale for using fusion proteins to minimize the potential side effects of immunotherapy. The

following studies systematically analyze the detailed binding and dynamic parameters in this RB-based

model with higher-resolution simulations.

Characterize the Conformational Dynamics of the Bispecific Fusion Proteins

The polypeptide linker between two contiguous domains controls the conformational flexibility of a multi-

domain protein and modulates its functions by restraining inter-domain motions and orientations (Bagow-

ski et al., 2010; Vogel et al., 2004). In biopharmaceutics, multi-domain proteins are synthesized by genet-

ically fusing therapeutic modules using recombinant DNA technology (Berger et al., 2015). The interplay

among various protein modules in these biologics is significantly impacted by the compositions, lengths,

and structures of their linkers. The direct fusion of protein modules without a linker often impairs bioactiv-

ities due to steric incompatibilities that interfere with the binding function (Bai et al., 2005; Bai and Shen,

2006). Therefore, we hypothesize that the linker segment joining MHC and PD-L1 in our system also plays

an important role in regulating the function of the bispecific fusion proteins. Specifically, we propose that

the linker can control the receptor binding of the fusion protein by modulating its intramolecular confor-

mational dynamics. To evaluate this hypothesis, we designed three types of linkers of different lengths

and sequences. The first is called GS30, which has a total length of 30 amino acids. It contains six repeats

of the sequence composed of four glycines followed by a serine (i.e., (Gly4Ser)6). This linker is thought to

possess intrinsic disorder due to the flexibility of glycine (Van Rosmalen et al., 2017). The second and third

linkers, PLP15 and PLP30, contain 15 and 30 consecutive prolines, respectively. In contrast to the flexible

linker GS30, these two linkers are considered more rigid and have well-defined secondary structures,

and their initial structures were modeled by following the standard conformation of the left-handed

poly-L-proline helix (Adzhubei and Sternberg, 1993). The Methods section describes the specifics of con-

structing the structural models of the fusion proteins and their linkers, and Figures 3A–3C show their initial

structures.

The all-atom MD simulations of these fusion proteins were performed on an Anton 2 supercomputer; the

Methods section summarizes the detailed protocols of system preparation and simulation setup. A 2.5-ms-

long trajectory was generated to sample the conformational space for each of the three systems. Snapshots

taken along the simulation trajectory of the protein with linker GS30 were plotted from Figures 3D–3G as a

demonstrating system. These figures show that whereas the individual tertiary structures of the MHC and

PD-L1 modules were preserved during the simulation, the GS30 linker explored many configurations, from

compact to extended conformations. As a result, there were large changes in the spatial separation be-

tweenMHC and PD-L1, and their relative orientations also varied considerably. A conformational ensemble

was constructed based on the MD simulation results for each fusion protein. Along the simulation trajec-

tory, the structure of each protein was captured every 1 ns. These structures were superimposed onto the

initial conformation by RB superposition, and the average position and orientation of MHC and PD-L1 in

the fusion protein were derived from the structural ensemble. The distances between the centers of

mass in the average positions of MHC and PD-L1 were 7.7, 7.6, and 9.7 nm for proteins with the linkers
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GS30, PLP15, and PLP30, respectively. We attribute the differences in the average lengths between PLP15

and PLP30 to the number of residues in these two linkers, whereas the differences betweenGS30 and PLP30

are due to their inherent internal flexibility (i.e., the glycine-rich linker can explore more conformations and

thus exhibit a shorter end-to-end distance).

For each structure in the ensemble, we also calculated the deviation of each functional module from its

average conformation. Figure 4 plots the distributions of these deviations, showing the probability that

a given magnitude of deviation is observed in the system. Figure 4A shows the probability distributions

of the distance deviation from the average position of MHC, and the distributions were averaged over

all three translational degrees of freedom. Similarly, Figure 4B shows the average distance deviation of

PD-L1 over three translational degrees of freedom. Both figures suggest that all deviations form extended

distributions even for the linkers of poly-prolines, indicating that these linkers are less rigid than expected.

This observation is consistent with recent experimental measurements (Ruggiero et al., 2016). More specif-

ically, the distributions of the protein with the linker GS30 (black squares) are wider than linkers PLP15 (red

circles) and PLP30 (green triangles), whereas the distributions of the linker PLP15 have the narrowest dis-

tribution. Moreover, both linkers PLP15 and PLP30 form normal distribution, whereas the distribution of

the GS30 linker is bimodal, probably resulting from the fact that the linker is intrinsically disordered. In addi-

tion to the translational deviations, Figures 4C and 4D show the probability distributions of deviation from

the average orientation of MHC and PD-L1, respectively. The distributions were averaged over all three

Figure 3. The Initial Structure of Bispecific Biologics with Different Domain Linkers and Selected Snapshots from

Molecular Dynamics Simulations

(A–G) In our test model of multi-specific biologics, we computationally fused two functionally independent protein

modules with three types of peptide linkers. The structural models of these fusion proteins are shown here for the linkers

GS30 (A), PLP15 (B), and PLP30 (C). One module of the fusion proteins is MHC, which is shown in red, whereas the other is

PD-L1, which is shown in green. The linkers connecting these two modules are highlighted in gray. A 2.5-ms-long

trajectory was generated by the Anton supercomputer to sample the conformational space for each of the three systems.

Some representative snapshots are selected from the simulation of linker GS30 at 0.2 ms (D), 0.5 ms (E), 1.0 ms (F), and 1.5 ms

(G).
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rotational degrees of freedom. Interestingly, the results show that the distributions of GS30 are not wider

than those of the other two linkers, different from the distributions of translational deviations. This is due to

the fact that the rotations of each functional module in a fusion protein are largely controlled by the cova-

lent bonds that directly connect the functional module to the linkers and are thus less sensitive to linker

flexibility. Comparing Figure 4C with Figure 4D, it seems that the rotational variations of PD-L1 are slightly

larger than MHC. We speculate that this difference in the distribution of rotational deviation is caused by

the molecular weight of MHC being larger than PD-L1. Smaller proteins tend to diffuse more easily than

larger proteins and therefore result in higher conformational fluctuations. Importantly, these probability

distributions will be used in the RB-based model to adjust the spatial separation and orientation between

MHC and PD-L1 within each simulation step, so that the effect of different linkers on receptor binding can

be taken into account. The algorithmic details are described in the Methods section.

Estimate the Binding between Functional Modules in Biologics and Their Receptors

AlthoughMHC and PD-L1 are connected together as a single unit, in our test system, they functioned inde-

pendently by interacting with their corresponding receptors. The association rates between these two li-

gands and their receptors are estimated by residue-based kMC simulations; the Methods section de-

scribes the detailed simulation algorithm. In practice, two pairs of ligand-receptor interactions were

simulated separately. The human B7 TCR and MHC class I molecule HLA-A 0201 with a viral peptide

TAX (sequence LLFGYPVYV) was used as a specific model system to study the interaction between TCR

and MHC (Ding et al., 1998). The atomic coordinates of this complex are taken from the PDB id 1BD2.

At the beginning of the simulation, the two proteins were coarse-grained into a residue-based represen-

tation and randomly positioned such that the distance between their binding interfaces was kept under a

Figure 4. The Conformational Dynamics of the Bispecific Biologics Obtained from Molecular Dynamics

Simulations

(A–D) Conformational ensembles were constructed based on the MD simulation results for all three fusion proteins. We

calculated the deviations of both functional modules in the fusion proteins from their average conformations and

compared the differences in the distributions of these deviations between different linkers. The probability distributions

of the distance deviation from the average position of MHC are shown in (A), those of the distance deviation from the

average position of PD-L1 in (B), those of the rotational deviation from the average orientation of MHC in (C), and those of

the rotational deviation from the average orientation of PD-L1 in (D).
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cutoff value dc, as shown in Figure 5A. After selecting initial conformations, both proteins diffused against

each other under the guidance of their inter-molecular interactions, which included hydrophobic and elec-

trostatic effects. The two proteins either diffused away from each other or formed the complex before the

end of simulations (Figure 5A). To obtain statistically meaningful results, 103 simulation trajectories were

generated with different initial conformations but constrained by the same cutoff value. From these trajec-

tories, we counted how frequently the TCR/MHC complexes were formed and systematically scanned

different cutoff values from 15 to 25 Å. Figure 5C plots the relation between the distance cutoff dc and

the frequency of complexes formation as black squares, showing that the highest frequency of association

was over 0.45 when the value of distance cutoff equaled 15 Å. However, the association rate dropped as the

distance cutoff increased, indicating that complexes are more difficult to form between TCR and MHC if

they are initially separated farther from each other.

Previous experiments showed that mutations at the interface of TCR andMHC strongly affected their inter-

action. For example, the R65A mutation in MHC reduced the binding affinity between TCR and MHC (Ble-

vins et al., 2016). As shown in Figure 5B, ARG65 is directly involved in the binding interface of the complex.

Figure 5. Estimation of Association Rates for Binding between TCR and MHC

(A–C) We simulated the association between TCR and MHC with a residue-based kinetic Monte Carlo algorithm (A). The

human TCR B7 and MHC class I molecule HLA-A 0201 with a viral peptide TAX (sequence LLFGYPVYV) was used as a test

system (PDB id 1BD2). Multiple simulation trajectories were started from different values of the distance cutoff dc. We

counted how many encounter complexes were formed among these trajectories. We also tested the effect of mutant

R65A on the association. The residue ARG65 is located directly on the binding interface between TCR and MHC (B). The

calculated frequencies of association at various distance cutoffs were plotted in (C) with error bars for both wild-type

(black) and mutant (red). Consistent with the experiment, our simulation results indicate that the mutation of a single

residue on the surface of MHC can significantly affect its binding with TCR. The calculated means and standard errors of

the association rates for the wild-type from 15 to 25 Å are listed as follows: 0.47 G 0.036, 0.453 G 0.038, 0.429 G 0.05,

0.368G 0.037, 0.269G 0.027, 0.236G 0.034, 0.186G 0.018, 0.152G 0.035, 0.072G 0.035, 0.054G 0.03, and 0.08G 0.025.

The calculated means and standard errors of the association rates for the mutant from 15 to 25 Å are listed as follows:

0.124 G 0.025, 0.084 G 0.015, 0.079 G 0.023, 0.087 G 0.028, 0.077 G 0.01, 0.03 G 0.013, 0.021 G 0.013, 0.017 G 0.014,

0.016 G 0.013, 0.001 G 0.001, and 0 G 0. t tests were performed to the two datasets at all values of distance cutoff. p

values less than 0.0001 are given four asterisks.
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To test the effect of this mutant, we replaced the side chain of ARG65 in the wild-type MHC molecule with

ALA. The kMC simulation was then applied to generate 103 trajectories under different distance cutoff

values. Based on the statistical analysis of these trajectories, the frequencies of association at various dis-

tance cutoffs were calculated (red circles in Figure 5C). Comparing with the wild-type, the figure shows that

the mutation dramatically weakened the association between TCR and MHC. The highest frequency of as-

sociation dropped from 0.45 in the wild-type to lower than 0.2 in the mutated system. Consistent with the

experimental data, our simulations indicated that the mutation of a single residue on the surface of MHC

could significantly impact its binding with TCR.

Parallel to the TCR/MHC interaction, the complex formed between human PD-1 and its ligand PD-L1 was

evaluated with the same simulation approach. The atomic coordinates of this complex were taken from the

PDB id 4ZQK (Zak et al., 2015). Following the same simulation procedure, 103 trajectories were carried out

with different initial conformations in which the distances between the binding interfaces of PD-L1 and PD-

1 fell under a specific cutoff value dc (Figure 6A). Different distance cutoffs from 12 to 20Å were tested, and

for each cutoff, we calculated the frequency of association by counting howmany complexes were success-

fully formed among all the trajectories. Figure 6C plots the relation between dc and the frequency of com-

plex formation as black squares. We further examined mutations that affect the association between PD-L1

and PD-1—specifically, two surface residues on PD-L1, GLU58, and ARG113, which are directly involved in

Figure 6. Estimation of Association Rates for Binding between PD-1 and PD-L1

(A–C) The association between PD-L1 and PD-1 was also simulated with the same residue-based kinetic Monte Carlo

algorithm (A). The complex formed by human PD-L1 and PD-1 was used as a test system (PDB id 4ZQK). Multiple

simulation trajectories were started from different values of the distance cutoff dc. We also counted how many encounter

complexes were formed among these trajectories. Two polar residues at the binding interface, GLU58 and ARG113, were

specifically selected (B). We tested the effect of these two mutants on the association. The calculated frequencies of

association at various distance cutoffs were plotted in (C) with error bars for both wild-type andmutants. Interestingly, the

association is weakened in mutant E58A (red circles) but strengthened in mutant R113A (blue triangles) relative to the

wild-type (black squares). The calculated means and standard errors of the association rates for the wild-type from 12 to

20 Å are listed as follows: 0.529 G 0.023, 0.369 G 0.025, 0.292 G 0.043, 0.182 G 0.036, 0.161 G 0.018, 0.078 G 0.021,

0.06 G 0.02, 0.068 G 0.024, and 0.037 G 0.014. The calculated means and standard errors of the association rates for the

mutant E58A from 12 to 20 Å are listed as follows: 0.458 G 0.031, 0.266 G 0.032, 0.178 G 0.035, 0.105 G 0.017, 0.109 G

0.025, 0.048 G 0.023, 0.023 G 0.017, 0.027 G 0.016, and 0.029 G 0.016. The calculated means and standard errors of the

association rates for the mutant R113A from 12 to 20 Å are listed as follows: 0.598 G 0.02, 0.475 G 0.036, 0.361 G 0.047,

0.267 G 0.042, 0.243 G 0.036, 0.146 G 0.012, 0.156 G 0.015, 0.131 G 0.029, and 0.091 G 0.029. The one-way analysis of

variance (ANOVA) was performed to the three datasets at all values of distance cutoff. p values less than 0.0001 are given

four asterisks.
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the binding interface (Figure 6B). We predicted that altered electrostatic interactions at the binding inter-

face would lead to differences in binding between two proteins, and we evaluated the behavior of the E58A

and R113A mutants relative to wild-type PD-L1. The kinetic Monte Carlo simulation was then applied to

these mutants to generate 103 trajectories within the same range of distance cutoff values, and based

on the statistical analysis of these trajectories, the frequencies of association were calculated. As shown

in Figure 6C, the association is weakened in the E58A mutant (red circles) compared with the wild-type.

In contrast, interestingly, the association is strengthened in the R113A mutant (blue triangles) relative to

the wild-type. The effects of these two mutants on the association between PD-L1 and PD-1 can be vali-

dated using experimental methods, such as surface plasmon resonance (Daghestani and Day, 2010).

In summary, using computational simulations, we could calculate the rate of association between ligands in

our designed biologics and their targeted receptors. We further demonstrated that we could estimate how

mutations of specific residues at the binding interfaces between ligands and receptors affected the asso-

ciation rates. Finally, these association rates for both wild-types and mutants will be integrated into the RB

model as input parameters to realistically simulate the binding between biologics and receptors.

Integrate the Dynamic and Binding Parameters into the RB-Based Simulations

The association rates of TCR/MHCand PD-1/PD-L1 bindingwere calculated by the statistical analysis of the kMC

simulation results and provided parameters to guide the association between biologics and receptors in RB-

based simulations. Specifically, the association rate between wild-type MHC and TCR is 3.5 3 10�2 ns�1, and

the association rate between wild-type PD-1 and PD-L1 is 3.0 3 10�2 ns�1. Moreover, the binding affinities

for TCR/MHC and PD-1/PD-L1 interactions were used to guide the dissociation of biologics and receptors.

The values of binding affinities for the interactions between wild-type ligands and receptors were derived

from previous experimental measurements: the dissociation constant for the interaction between wild-type

MHC (HLA-A 0201) and TCR (B7) is 1.33 10�6M (Davis-Harrison et al., 2005), corresponding to a binding energy

of�8.01 kcal/mol, whereas the dissociation constant for interaction between wild-type PD-1 and PD-L1 is 6.363

10�6M (Lazar-Molnar et al., 2017), corresponding to a binding energy of �7.11 kcal/mol. In addition to these

binding parameters, dynamic parameters were also obtained from the Anton all-atomMD simulations tomodel

the relative positions and orientations of MHC and PD-L1 in biologics; these dynamic parameters are specific to

each of the three linkers. With these parameters, the RB-based simulations incorporated realistic information

about the energetic features at the ligand/receptor binding interfaces, the sequence and structural patterns

of different linkers, and their impacts on receptor targeting. For instance, Figure 7A plots the final configuration

from a specific simulation scenario in which biologics contained wild-type MHC and PD-L1 and were connected

by theGS30 linker. The figure shows thatmost biologics were bound to their targeted receptors on cell surfaces.

Interestingly, these complexes formedby biologics and receptorswere spatially localized in small clusters on the

plasmamembrane.We speculate that the complicated topology of large oligomers formed between the bispe-

cific fusion proteins and their multiple receptors causes local crowding on cell surfaces, leading to this aggrega-

tion. The spatial organization of membrane receptors based on the binding of biologics can be validated using

experimental methods, such as super-resolution microscopy.

The effects of different mutations in the biologics on receptor targeting were further estimated and compared

with the wild-type. Specifically, four types of biologics mutants were tested. The first (MT1) contained the

mutated residue R65A in the MHC functional module. The association rate and binding affinity between

MHC and TCR in MT1 are 8.0 3 10�3 ns�1 and -5.48 kcal/mol, respectively. The second and third mutants

(MT2andMT3) contained themutated residues E58AandR113A in the functionalmodule of PD-L1, respectively.

The association rate and binding affinity between PD-L1 and PD-1 inMT2 are 1.53 10�2 ns�1 and -5.3 kcal/mol,

whereas the association rate and binding affinity in MT3 are 4.53 10�2 ns�1 and -9.0 kcal/mol, respectively. The

last mutant (MT4) contained doublemutations with both R65A inMHC and E58A in PD-L1. As described above,

the biologics with these mutations were positioned above a 13 1 mm surface area containing 300 TCR and 300

PD-1. Starting with the same initial conditions, Figure 7B summarizes the simulation results of all these mutants

and compares them with the wild-type system, as shown by the black curve. The numbers of biologics that

bound to both TCR and PD-1 on the surfaces are plotted as a function of simulation time. The figure indicates

that all mutants weakened the targeting effect of the biologics. In particular, the double mutant (MT4) almost

totally abolished the receptor binding, as shown by the green curve in Figure 7B.

More interestingly, Figure 7B suggests that MT3 (orange curve) also reduced the number of biologics that

bound to both TCR and PD-1, even though the binding between PD-1 and PD-L1 was strengthened in the
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mutant. To understand how this positive mutant resulted in a negative effect on surface targeting, we per-

formed a more detailed analysis in Figure 7C. In addition to comparing the number of biologics in which

both functional modules bound to their targeted receptors between wild-type (blue solid curve) and MT3

(blue dashed curve) mutants, we further compared the number of biologics with one of two functional mod-

ules bound to its corresponding receptor. The number of bound PD-L1 in wild-type biologics is plotted by a

red solid curve, the number of bound MHC in wild-type biologics is plotted by a black solid curve, and the

number of bound PD-L1 and MHC in MT4 is plotted by red and black dashed curves, respectively. The

Figure 7. The Rigid Body Simulation Results After the Integration of Conformational Dynamics and Binding

Constants from the High-Resolution Models

(A–E) The final configuration of the RB simulation is shown in (A), in which biologics containing wild-type MHC and PD-L1

with the GS30 linker were exposed to cells expressing high levels of TCR. In (B), we tested the effect of mutations in

different functional modules on receptor targeting. The means and standard errors of the curves in this plot within the last

2 3 108 ns are listed as follows: 142.5 G 6.61 (black), 43.32 G 4.28 (red), 75.57 G 5.06 (blue), 126.45 G 5.69 (orange), 7.65

G 2.99 (green). In (C), we show the mutation that strengthens the PD-L1/PD-1 binding (MT3) can weaken the interaction

between TCR and MHC, even if the TCR/MHC binding interface is not changed. The means and standard errors of the

curves in this plot within the last 2 3 108 ns are listed as follows: 233.27 G 4.51 (black solid), 173.79 G 3.22 (red solid),

147.39 G 3.15 (blue solid), 190.21 G 2.02 (black dashed), 224.26 G 2.52 (red dashed), 130.87 G 2.41 (blue dashed). In (D),

we also tested how different types of linkers affect the binding between biologics and receptors on the surface of both

high- and low-expressing cells. The means and standard errors of the curves in this plot within the last 23 108 ns are listed

as follows: 147.39G 3.15 (black solid), 111.71G 3.34 (red solid), 124.91G 3.96 (green solid), 22.02 G 1.30 (black dashed),

19.93 G 0.57 (red dashed), 20.21 G 1.31 (green dashed). To achieve both statistical significance and computational

accessibility, we carried out multiple trajectories with a relatively smaller simulation setup for all three linker systems, the

statistical distributions of which are shown in (E) as a box-whisker plot. The box of each distribution in the plot includes the

25th–75th percentile range for the number of biologics bound to both TCR and PD-1, while their average number is

marked in the middle of each box. The whisker indicates the outlier of the distribution with the coefficient equal to 1.5.
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figure shows more bound PD-L1 in wild-type biologics than MT3, which can be explained by the strength-

ened interaction between PD-1 and PD-L1 due to themutation of residue ARG113. However, the figure also

shows that the number of bound MHC decreased in MT3, although the interaction between MHC and TCR

in the mutant remained unchanged. In other words, if the binding of one functional module is too strong, it

prevents the other functional module in the biologics from reaching its receptor. Our results thus suggest

that MHC and PD-L1 in the bispecific fusion proteins are negatively coupled with one another while seeking

their respective receptors. This observation could also explain why the number of biologics that bound

both TCR and PD-1 is lower in the mutant. This negative cooperativity of binding between different func-

tional modules should be considered during the design of new multi-specific biologics in the future.

We further examined the effects of linker type on the interactions between multi-functional biologics and

receptors. As described earlier, the parameters of translation and rotational deviations from each func-

tional module were derived from MD simulations for biologics with GS30, PLP15, and PLP30 linkers, which

controlled the distribution of distances and orientations between MHC and PD-L1. For the purpose of

simplicity, only wild-type MHC and PD-L1 were considered. As a result, three types of biologics were

exposed to two models of cells: those with high expression levels of TCR and those with low expression

levels of TCR. Figure 7D summarizes the simulation results of these six combinations of scenarios, with

the numbers of biologics that bind to both TCR and PD-1 plotted as a function of simulation time. The

figure shows no difference when biologics with all three linkers were targeted to low-expressing cells, as

plotted by the dashed curves. However, when they interacted with receptors on the surfaces of the high-

expressing cells, they behaved very differently. Specifically, the GS30 linker resulted in the highest number

of biologics targeting both TCR and PD-1 (black curve), whereas the linker PLP15 led to the lowest number

of biologics with both ligands MHC and PD-L1 bound to their receptors (red curve).

To achieve both statistical significance and computational accessibility, we performedmultiple trajectories

on a relatively smaller simulation setup for all three linker systems. In detail, 10 trajectories were generated

for each system, with each trajectory extending for 53 107 ns and starting from a random configuration with

100 biologics distributed in the extracellular region plus 100 TCR and 100 PD-1 on the bottom of the simu-

lation box with a volume of 5003 5003 200 nm3. We counted the numbers of biologics that bound to both

TCR and PD-1 at the ends of all trajectories. Figure 7E plots the distributions of all three linkers. Consistent

with Figure 7D, the figure indicates that the GS30 linker systematically resulted in more receptor targeting

than the other two linkers, whereas the system with the PLP15 linker yielded the least receptor targeting.

We applied one-way analysis of variance (ANOVA) to test the statistical significance of our observation

(Welch, 1951), which yielded a calculated F-statistic score of 29.5 with a p value of 0.0001, suggesting

that variations of receptor binding caused by different linkers are statistically significant. Based on this sta-

tistical result, we suggest that longer, more flexible linkers in multi-specific biologics can play a positive role

in cell-surface targeting by enhancing the local conformational sampling of receptor binding.

This observation can also be explained by analyzing torsional angles between two functional modules in the bi-

ologics, which the Supplemental Information and Figure S2A also describe. We calculated the values of these

angles for all snapshots from the MD simulations and compared their distributions for biologics containing

different linkers. Figure S2B plots the results of the comparison as histograms, showing that linker GS30 forms

a uniform distribution within the range �180� to +180� (red bars). In contrast, multiple peaks were observed in

the distribution of linker PLP15 (black bars), indicating the packing preference between two functional modules.

Intuitively, a linker with amore uniform torsional-angle distributionmay have a lower bias in seeing binding part-

ners for the second module once the first is bound. This entails that biologics with this type of linker can bind to

more receptors on cell surfaces. Moreover, while biologics with longer, more flexible linkers can target more re-

ceptors, we can further assume that they are more sensitive to mediate the T cell coregulatory pathways. This

predictionmay be validated by T cell stimulation assays. For instance, when we exposed biologics with different

linkers to CD8+ 8.3 T cells, we expected that the high conformational dynamics in linkers such as GS30 would

enhance T cell activation so that stronger signals of T cell proliferation would be detected than the biologics,

which carry shorter, less flexible linkers, such as PLP15.

CONCLUDING DISCUSSIONS

Increasingly, biological medications derived from living organisms are garnering approval from the Food

and Drug Administration for treating many cancers, such as melanoma (Kinch, 2015). However, adminis-

tering these immunotherapeutic biologics often has extensive side effects (Ott et al., 2017; Wanchoo
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et al., 2017) because these molecules can simultaneously activate many off-target immune cells and elicit

global immune modulation. To lower these risks, recombinant DNA technology is frequently implemented

to genetically fuse naturally occurring molecules to form multi-specific biologics with enhanced specificity

for binding to their targeted cells (Baldo, 2015). Although computational methods provide opportunities to

understand the functional characteristics of these multi-specific biologics on a quantitative level, the feasi-

bility and practicality of these approaches are limited by the trade-off between the timescales that can be

evaluated and the accuracy that can be achieved. To address these challenges, we constructed a compu-

tational framework that integrates simulation algorithms on different levels to understand the binding be-

tween multi-specific biologics and surface-bound membrane receptors. We applied the method to an ar-

tificially designed biologic, in which two functional modules were covalently tethered with a peptide linker.

The conformational dynamics of the biologics weremodulated bymodifying the length and composition of

the linker, and computational mutagenesis was performed to tune the binding between eachmodule in the

biologics with their respective receptors. This multiscale framework has revealed molecular and cellular

factors that regulate the binding specificity of biologics. For instance, cells expressing higher levels of tar-

geted receptors are more sensitive to variations in ligand concentrations. On the molecular level, we

demonstrated that the linker is an important, underappreciated contributor to modulating ligand-receptor

interactions. Moreover, the discovery that the mutations that impact affinity in one module can affect the

function of the other module suggests important considerations regarding the binding mechanisms of

multivalent multi-specific ligands. In summary, our method highlights the importance of computational

modeling in the development of next-generation biologics for immunotherapy.

One observation from our simulations is the negative cooperativity between the bindings of different func-

tional modules with their corresponding receptors. Our previous computational model (Chen et al., 2017)

indicated the mechanism underlying this negative coupling effect. With that model, we found that if the

lifetime of a ligand-receptor bond is much shorter than the average time of diffusion a ligand spends to

find its receptor, tethering different functional modules creates a negligible coupling effect. When the

binding affinities increase to a range in which the lifetime of a ligand-receptor bond is comparable to

the average diffusion time a ligand needs to find its receptor, one functional module in a biologics is highly

probable to find its receptor after the dissociation of other modules in the biologics. As a result, binding

one functional module in a multi-specific biologics positively enhances the binding of other modules.

When the binding affinities further increase to a range in which the lifetime of a ligand-receptor bond is

much longer than the average diffusion time a ligand needs to find its receptor; however, the binding of

one functional module in a multi-specific biologics could kinetically trap other functional modules from ap-

proaching their receptors when they diffuse. Consequently, negative cooperativity was obtained among

bindings of different functional modules. Consistent with this model, the simulation results of our study

suggest that the negative coupling between the binding of different functional modules is a result of

the enhanced association rate and binding affinity of the mutant MT3.

With our RB-based simulation, we could study the binding kinetics between cell surface-bound receptors

and multi-domain flexible ligands with both spatial information and a long timescale. Other mesoscopic

simulation techniques on a similar level can also be applied to study the dynamics of cellular systems, of

course. For instance, SpringSaLaD has recently been developed to study the function of receptor clustering

in cell signaling (Michalski and Loew, 2016), adopting a similar molecular representation and diffusion-re-

action algorithm. Unlike our method, however, the diffusions in SpringSaLaD are implemented by a Lange-

vin dynamic integrator. While applying this method to a system with multivalent interactions among mem-

brane-anchored receptors and adaptor, and effector proteins containing multiple binding motifs,

Chattarraj et al. found that receptor clustering was diminished by the increased flexibility of the interacting

molecules (Chattaraj et al., 2019). It would be interesting to apply SpringSaLaD to the molecular system in

this article and compare their output with ours. We expect both simulations to obtain qualitatively similar

results, that is, that biologics containing long, flexible linkers capturemore receptors due to enhanced local

conformational searching.

The test system in this study, the multi-specific biologic that connects MHC with PD-L1, was inspired by

prior work on the single-chain peptide MHC (Samanta et al., 2011). That work fused a peptide called

IGRP206–214, the b2m, and the heavy chain of the class I MHC molecule H-2Kd into one molecule. X-ray

diffraction analysis confirmed that the peptide was presented in the canonical binding groove of the heavy

chain. Further experiments showed that the protein reagent could induce the apoptosis of naive CD8+ 8.3
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T cells but had no effect on the non-cognate AI4 T cells. This work demonstrated the ability of single-chain

peptideMHC to achieve the specificity of T cell targeting. Its conjugation with the coregulatory protein PD-

L1 would also allow manipulation of the signaling response of these targeted cells, potentially eliciting a

therapeutic effect. This type of fusion protein also possesses unique advantages over other targeted bio-

logical therapies. For instance, they do not need to be internalized to carry out their functions, unlike anti-

body-drug conjugates, which suffer from a poor internalization rate (Sievers and Senter, 2013). For the

future generalization of our method, the coregulatory module in the multi-specific biologics can be re-

placed by any molecular category, such as an antibody, cytokine, or antibody fragment. For example,

instead of targeting the inhibitory pathway with PD-L1, TNF can be incorporated to initiate a stimulatory

pathway. With the antigen-specific MHC, the integration of a new regulatory module can shape the func-

tion of a specially selected T cell subgroup and avoid a global immune response. Alternatively, the current

model could be adapted to study other categories of multi-specific biologics. For instance, a single layer of

plasmamembrane was modeled in this study, but to study the binding properties of BiTE at the interface of

a T cell and a tumor, as mentioned in the Introduction, it could easily be extended to a system with two

layers of plasma membrane. The CD3 receptors and antigens would be placed on the surfaces of the

T cell and tumor cell, respectively, and BiTE would be distributed at the intercellular region so that one

fragment of this bispecific fusion protein could bind to CD3 and the other could bind to the antigen on

the opposite cell surface. This would quantitatively evaluate the functional impacts of BiTE on the coupling

between cytotoxic T cells and tumor cells. Using the multiscale simulation framework developed in this

study and its future extensions, we will be able to fine-tune the molecular features of different biologics,

such as the connectivity between different modules and their binding avidity. We will also be able to

tune the binding properties of each module through large-scale computational mutagenesis studies. In

summary, our study adds a powerful platform to a suite of existing approaches to engineer new biomole-

cules for immunotherapy.

Limitations of the Study

Further improvements to our simulation method will be made to overcome limitations associated with the

simplifying assumptions in the current model. For instance, in living cells, biomolecules occupy 20%–40% of

cytoplasmic volume, significantly affecting the thermodynamics and kinetics of molecular binding (Kozer

and Schreiber, 2004; Minton, 2001). Similarly, cell surfaces and interfaces are crowded by many membrane

receptors, adhesion molecules, and channels. Our simulation ignored the effect of cell-surface crowding,

which could affect the binding kinetics of multi-specific biologics with their targeted receptors. The spatial

heterogeneity and diversity of molecular composition on cell membranes can easily be introduced into the

RB-based model. Specifically, in addition to multi-specific biologics and their targeted receptors, we can

place many other cell-surface proteins on cell surfaces, which will collide repulsively with the biologics and

form nonspecific interactions with each other, thus allowing the effect of crowding on both diffusion and

binding to be studied. Additionally, the plasma membrane was modeled as a flat planar surface in this

study, and the effects of membrane fluctuations were not considered. In the future, a more realistic repre-

sentation of the plasma membrane will be constructed to model its collective motions as an elastic me-

dium. For instance, Voronoi tessellation (Zaninetti, 1989) might be applied to discretize a plasma mem-

brane into a 2D meshwork, and the conformation of the meshwork can be changed by the elastic

network model (Atilgan et al., 2001). We believe that the binding rates between receptors and multi-spe-

cific biologics will be sensitive to the collective motions of the plasma membrane. Conversely, the ligand-

receptor interactions on cell surfaces will affect the fluctuations of the plasma membrane. We expect this

cooperativity between receptor binding and membrane fluctuations to play an important role in regulating

the cell-surface targeting of multi-specific biologics. Finally, a hybrid simulation technique that combines

the approach in this article with the mathematic modeling of intracellular signaling pathways would allow

us to explore the impacts of certain biologics on the modulation of specific immune responses.

Resource Availability

Lead Contact

Yinghao Wu, Associate Professor, Albert Einstein College of Medicine, Bronx, NY 10461, Email: yinghao.

wu@einsteinmed.org.

Materials Availability

This study does not generate any new unique reagents.
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Data and Code Availability

All the source codes of these simulations are available for download at https://github.com/wulab-github/

BispAntonKMC. The source codes of the diffusion-reaction algorithm and the relevant subroutines were

written in FORTRAN77 format. This package also contains the probability parameters of the rotational

and translation variations for the three linker systems in this study, which were derived from the Anton2

all-atom MD simulations and used as input files for the program to change the conformations of bispecific

fusion proteins. The executable file, detailed instructions about the program, and sample output can also

be found in the repository.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Transparent Methods 

Simulate cell targeting of multi-specific biologics with a diffusion-reaction algorithm 

As described in the Results, an RB-based model was constructed to simulate the binding 

between cell-surface receptors and multi-specific biologics (Xie et al., 2014). In brief, the plasma 

membrane was represented by a flat surface below the extracellular region, each receptor was 

represented by an RB of cylinders, and each functional module in the biologics was simplified as 

a spherical RB. The sizes of these RBs were comparable to their real protein structures. Binding 

sites were assigned on the tops of receptors and on the surfaces of functional modules in 

biologics. Two functional modules were further tethered together. Considering the flexibility of 

peptide linkers, we allowed translational and rotational fluctuations between these two modules 

around their mean positions and orientations, as described later. Given the model representation 

and a randomly generated initial configuration (Figure 2a), the dynamics of the system evolved 

following a diffusion-reaction algorithm. Molecules were selected in random order for stochastic 

diffusion as the first scenario at each simulation time step. The biologics were free to diffuse 

throughout the simulation box, while diffusions of membrane-bound receptors were confined to 

the plasma membrane. A periodic boundary condition was applied for membrane receptors along 

both the x and y directions of the surface. The same 2D periodic boundary conditions were 

imposed in the extracellular region for biologics, and they were not allowed to move below the 

plasma membrane. If any biologics moved beyond the top of the simulation box, it bounced 

back. The amplitude and probability of the translational and rotational movements of each 

molecule were determined by its corresponding diffusion constant. To capture the internal 

conformational variations between MHC and PD-L1, an additional operation for each biologics 

module was implemented after diffusion to generate a small, random perturbation along their 

three translational and three rotational degrees of freedom. 

Specifically, the probability and corresponding amplitudes of these perturbations were 

derived from the Anton MD simulation results, as shown in Figure 4. The histograms in the 

figure indicate the probability distributions of translational and rotational variations around the 

average conformation of each functional module based on the MD sampling. They were first 

converted to a cumulative distribution by adding up all these probabilities from 0 to 1 so that the 

probability of conformational variations with specific amplitude could be related to the 

corresponding range in this cumulative distribution. A random number was then generated from a 
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uniform distribution between 0 and 1. The value of the random number was used to determine 

the amplitude of variations by checking the cumulative distribution range into which it fell. At 

each simulation time step, this procedure was carried out for each functional module to select the 

amplitudes of variations along its translational and rotational degrees of freedom. After various 

amplitudes were applied to change the positions and orientations of both functional modules in 

all biologics, their internal conformations were effectively changed. 

Reactions between biologics and receptors followed diffusions as the second scenario of 

the algorithm. Association is triggered if the distance between binding sites of the specific 

functional modules in a biologics and its corresponding receptor is below a predetermined cutoff 

value, and the probability of triggering association is determined by the association rate. In 

contrast, the dissociation between a pair of molecules is triggered by a probability that is 

calculated by the given values of their association rate and binding affinity. At the next time step, 

a pair of previously dissociated molecules has two possible scenarios: if their distance is still 

below the cutoff, reassociate as a geminate recombination, and if not, diffuse farther away from 

each other. The parameters of association rates and binding affinities are either calculated by a 

residue-based kinetic Monte Carlo simulation, as described below, or adopted from the 

experimental measurements in the literature. If one functional module in a biologics binds to a 

receptor, the entire biologics will move with the receptor as a single unit on a plasma membrane. 

While the bound module is attached to its receptor, its position and orientation change with the 

receptor while maintaining its internal conformation changes. In short, the probability 

distributions derived from the MD simulation will randomly perturb the position and orientation 

of the other vacant module, as described above, giving it the flexibility and kinetic freedom to 

seek its local conformational space and thereby be accessible for binding to its corresponding 

receptors on the plasma membrane. As this diffusion-reaction process iterates in both Cartesian 

and compositional spaces, the system will finally reach equilibrium. Finally, the reliability of the 

model to simulate the binding of soluble ligands and cell-surface receptors has been validated by 

a simpler testing system. Details about the model validation can be found in the following 

section and Figure S1. 

 

 

 



 

4 
 

Calculation of association rates using residue-based kinetic Monte Carlo simulations 

The kinetic Monte Carlo algorithm (Xie et al., 2017) was used to simulate the 

associations of TCR and MHC and PD-1 and PD-L1 with a coarse-grained model of protein 

structures. Each residue in the model was represented by a Cα atom plus the representative 

center of its side-chain, which was selected based on the specific properties of the amino acid. 

The simulation started with an initial conformation in which two molecules were placed 

randomly, whereas their corresponding binding interfaces were separated under the range of a 

given distance cutoff dc. Following the initial conformation, each protein diffused randomly 

within one simulation step. A physics-based scoring function guided the diffusions of proteins 

during these simulations. The scoring function contained terms that evaluated the electrostatic 

interaction and hydrophobic effects between proteins. Based on the calculated energy, the 

Metropolis criterion was applied to determine the probability of accepting the corresponding 

diffusional movements. The simulation trajectory was terminated if an encounter complex 

formed at the end of each simulation step through the corresponding interface. Otherwise, this 

simulation procedure was repeated until it reached the maximal time duration. 

Practically, this simulation algorithm was performed in parallel under different distance 

cutoffs to effectively estimate the association rate. Given a specific distance cutoff value, 103 

trajectories were carried out. Each trajectory started from a relatively different initial 

conformation but with the initial distances between the binding interfaces of ligands and 

receptors in all trajectories below this cutoff value. Encounter complexes were successfully 

formed in some of these 103 trajectories, while proteins diffused away from each other at the end 

of other trajectories. By counting how many encounter complexes formed among these 

trajectories, the value of the association rate was effectively calculated, as described by the 

statistical analysis in our previous study (Wang et al., 2018). By integrating these rate parameters 

into the RB-based model, we could realistically simulate the dynamics of how multi-specific 

biologics target their corresponding receptors on cell surfaces. To link the residue-based and the 

RB-based simulations under the same timescale, the maximal time duration to terminate each 

residue-based simulation trajectory is fixed to equal the time step in the RB simulation. In detail, 

each trajectory of residue-based simulation consists of 103 steps, and each step is 0.01 ns so that 

the total simulation time for each trajectory is 10 ns, which is a single time step in the RB 

simulation. 
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System setup and detailed protocol of Anton all-atom MD simulations 

The structural models of the bispecific fusion protein were constructed by 

computationally fusing two protein X-ray structures with a peptide linker. The MHC module, 

consisting of 375 amino acids, was adopted from the PDB ID 3NWM (Samanta et al., 2011), 

while the other module PD-L1 contained two immunoglobulin domains and was adopted from 

the PDB ID 4Z18 (Pascolutti et al., 2016). The target peptide in the groove of the original MHC 

was not modeled in the system to avoid instability during simulations. The C-terminus of the 

MHC light chain was connected to the N-terminal domain of PD-L1 by a peptide linker. 

Specifically, three types of linker with various lengths and sequences were constructed to provide 

a comprehensive test. As specified in the Results, the linker GS30 contained six copies of 

GGGGS fragments. Because there is no side-chain in glycine, this type of linker is assumed to 

have a high degree of flexibility. As a result, the initial structures of the linker were built by 

ModLoop (Fiser and Sali, 2003). The other two linkers, PLP15 and PLP30, were poly-prolines, 

which can form well-defined secondary structures as either more compact right-handed α-helices 

or more extended left-handed α-helices (Kumar and Bansal, 2016). Traditionally, the left-handed 

poly-proline is relatively more rigid and is thus more common in structural biology studies 

(Doose et al., 2007). As a result, the initial structures of linkers PLP15 and PLP30 in this study 

were built following the standard configuration of a left-handed α-helix. 

All the equilibrium simulations of constructed fusion proteins were run on the Anton 2 

supercomputer at the Pittsburgh Supercomputing Center (Shaw et al., 2009). Each system 

contained an average number of 2.52×105 atoms. Proteins were solvated with water molecules 

and neutralized by adding Na+ and Cl– ions. Figures 2a–2c show their initial structures. 

Systems were embedded into orthorhombic cells with approximate dimensions of 125×120×160 

Å with periodic boundary conditions. All production runs took the NPT ensemble with constant 

pressure (1 atm) and physiological temperature (310 K) using the Nose-Hoover thermostat. We 

chose the CHARMM36m force field for proteins and the TIP4P-D water model (Piana et al., 

2015). This water model enables more accurate simulation of the dynamics of proteins with 

intrinsic flexible linkers due to its increased water-dispersion interactions (Henriques et al., 

2015). The Gaussian-split Ewald algorithm (Shan et al., 2005) was used to compute the long-

range electrostatic interactions with a 64×64×64 Å mesh. The cutoff for short-range non-bonded 

interactions was at least 11 Å for all boxes. All the other system-optimized simulation parameters 
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in the Anton software were chosen by default. Finally, a 2.5 µs trajectory was collected from the 

Anton 2 supercomputer for each system. 

 

 

Model validation for the rigid-body-based simulation of binding between ligands and cell 

surface receptors 

 In order to evaluate the reliability of our rigid-body-based diffusion-reaction simulation 

method, we applied it to simulate a simple system in which only one type of receptors is 

expressed on membrane surface. They can form interactions with extracellular ligands which 

appear as monomeric form. We assume that this simple binding process between membrane 

receptors and soluble ligands can be described by the chemistry of surface adsorption, which has 

been well formulated by Langmuir Isotherm (Eckl and Gruler, 1988) as Θ =
ఈ[ெ]

ଵାఈ[ெ]
. In the 

Langmuir equation, Θ is the fraction of bound receptors on the 2D surface, [M] is the 

concentration of ligands in solvent. The Langmuir adsorption constant α is related to the binding 

equilibrium constant KD as α = 1/KD. As a result, the Langmuir equation indicates that there is a 

linear relation between the reciprocal of the surface fraction versus the reciprocal of the solvent 

concentration. In order to test if this linear relationship can be reflected by our model. We carried 

out simulations under different concentrations of soluble ligands. The size of the simulation box 

was fixed with a volume of 500×500×200 nm3 and number of surface receptors was fixed as 100. 

The binding affinity of ligand-receptor interaction was fixed as -10kT. For each tested 

concentration, the average value of surface fraction was calculated, as defined by the percentage 

of surface receptors that form complexes with soluble ligands from simulations. Figure S1 

presents the plots between the reciprocal of solvent concentration and the surface fraction. The 

figure shows that the reciprocal of the surface fraction and the reciprocal of the solvent 

concentration clearly form a linear relation. The Pearson correlation coefficient (PCC) from the 

linear regression is 0.995. Moreover, the slope of this linear curve indicates the equilibrium 

constant of binding. By fitting the data in the curve, we derived the equilibrium constant as 110 

μM, corresponding to an effective affinity of −9.1kT. This effective affinity from fitting the 

simulation results is very close to the original testing affinity of -10kT. Altogether, the linear 

relation between the reciprocal of the surface fraction and solvent concentration plus the 

successful reproduction of the equilibrium constant indicating the reliability of using the 
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diffusion-reaction method to simulate the binding between membrane-bound receptors and 

soluble ligands.  

 

 

Characterize the impacts of different linkers on conformational coupling between two functional 

modules 

In order to characterize the impacts of different linkers on the relative bending between MHC 

and PD-L1, the torsional angle between these two functional modules were derived from the MD 

simulation trajectories. The torsional angle can be determined as follow. Firstly, four 

representative points were selected from the biologics: the center of mass of MHC; the starting 

residue of the linker; the ending residue of the linker; and the center of mass of PD-L1. After the 

selection of these points, three vectors were built by connecting these points with each other. The 

torsional angle Φ is then defined as the dihedral formed by these three vectors, as shown in 

Figure S2a. The range of torsional angle is between -180° and +180°. Based on above 

definition, we calculated the value of angle Φ for all snapshots in the MD simulations. This 

calculation was carried out for all biologics that contain one of the three different linkers, and the 

distributions of calculated Φ values were plotted as histograms. The difference in these 

distributions among linkers are compared with each other in Figure S2b. The figure shows that 

linker GS30 forms a uniform distribution within the range from -180° to +180° (red bars). In 

contrast, multiple peaks were observed in the distribution of linker PLP15 (black bars), 

indicating the packing preference between two functional modules. Additionally, the linker 

PLP30 (blue bars) form a relatively less uniform distribution than GS30. Based on this figure, we 

speculate that a linker with more uniform distribution in torsional angle may have a lower bias in 

searching binding partners for the second module once the first one is bound. Consequently, we 

can further assume that the biologics with this type of linker can bind to more receptors on cell 

surface. Interestingly, this assumption can be validated by our rigid-body-based simulation 

results, in which we showed that the GS30 linker resulted in the highest number of biologics 

targeted to both TCR and PD-1, while the linker PLP15 led to the lowest number of biologics 

with both ligand MHC and PD-L1 bound to their receptors 
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Sensitivity analysis of how changes of binding parameters affect the results of rigid-body-based 

diffusion-reaction simulations 

In order to explore the sensitivity of our model to different binding parameters, we 

simultaneously changed both binding affinities between MHC and TCR, and between PD-L1 and 

PD-1. Both affinities were variated from -6kT to -14kT with an interval of 2kT. Therefore, a total 

number of 5×5=25 combinations were tested. For each combination, simulation was carried out 

from a random configuration with 100 biologics distributed in extracellular region, plus 100 TCR 

and 100 PD-1 on the bottom of the simulation box with a volume of 500×500×200 nm3. The 

length of each simulation trajectory is 1×108 ns. The overall results are summarized in Figure S3 

as two-dimensional contour plots. The x axis and y axis in the figure stand for the binding 

affinities of TCR/MHC and PD-1/PD-L1 interactions, respectively. The number of interactions 

formed between cell surface TCR and MHC in the biologics is represented by the color index of 

the contour in Figure S3a, with red stands for the highest number and blue for the lowest 

number. Similarly, the color index of the contour in Figure S3b gives the number of interactions 

formed between cell surface PD-1 and PD-L1 in the biologics, while the color index of the 

contour in Figure S3c gives number of biologics that bound to both TCR and PD-1 on cell 

surface. The contours show that the TCR/HMC and PD-1/PD-L1 interactions are mutually 

affected due the spatial tethering of two ligands in the bispecific biologics. More specifically, the 

TCR/HMC and PD-1/PD-L1 interactions can be positively enhanced with each other when their 

individual affinities are not too strong (shown by the upper-left corner in Figure S3a and lower-

right corner in Figure S3b). On the other hand, when both affinities of TCR/HMC and PD-1/PD-

L1 interactions become strong (the upper-right corners in Figure S3c), a negative coupling effect 

was observed between these two interactions. This sensitivity analysis is consistent with the 

results in which a mutation strengthening the PD-L1/PD-1 binding can weaken the interaction 

between TCR and MHC. Detailed explanation about the possible mechanisms underlying our 

observation is provided in the main text.  
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Figure S1: Model validation for the rigid-body-based simulation of binding between ligands 

and cell surface receptors, related to Figure 2. 
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Figure S2: Characterize the impacts of different linkers on conformational coupling 

between two functional modules, related to Figure 3. 
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Figure S3: Sensitivity analysis of our model to the changes of binding affinities, related to 

Figure 7. 
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