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Successful infectious disease interventions can result in large reductions in parasite
prevalence. Such demographic change has fitness implications for individual parasites
and may shift the parasite’s optimal life history strategy. Here, we explore whether
declining infection rates can alter Plasmodium falciparum’s investment in sexual versus
asexual growth. Using a multiscale mathematical model, we demonstrate how the
proportion of polyclonal infections, which decreases as parasite prevalence declines,
affects the optimal sexual development strategy: Within-host competition in multiclone
infections favors a greater investment in asexual growth whereas single-clone infections
benefit from higher conversion to sexual forms. At the same time, drug treatment also
imposes selection pressure on sexual development by shortening infection length and
reducing within-host competition. We assess these models using 148 P. falciparum
parasite genomes sampled in French Guiana over an 18-y period of intensive inter-
vention (1998 to 2015). During this time frame, multiple public health measures,
including the introduction of new drugs and expanded rapid diagnostic testing, were
implemented, reducing P. falciparum malaria cases by an order of magnitude. Consistent
with this prevalence decline, we see an increase in the relatedness among parasites, but
no single clonal background grew to dominate the population. Analyzing individual
allele frequency trajectories, we identify genes that likely experienced selective sweeps.
Supporting our model predictions, genes showing the strongest signatures of selection
include transcription factors involved in the development of P. falciparum’s sexual
gametocyte form. These results highlight how public health interventions impose wide-
ranging selection pressures that affect basic parasite life history traits.
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Due to its clinical relevance, the development of drug resistance is often the focus of
studies of malaria parasite evolution, but over the past decade it has become clear that
there are multiple ways Plasmodium falciparum (P. falciparum) continues to adapt to
humans, mosquitoes, and the environment (1–4). This adaptability means that parasites
like Plasmodium are moving targets, whose evolution must be incorporated into control
and elimination campaigns. One area of interest is the adaptive potential of life history
traits, which could impact growth and virulence within the human host as well as the
timing and extent of transmission to mosquitoes (5).

Plasmodium parasites have a complex life cycle that requires two successive hosts. Only
the parasite’s sexual gametocyte form can productively infect mosquitoes (the definitive
host where reproduction occurs); however, this form cannot further replicate within the
human (intermediate) host. A trade-off therefore exists between investing in asexual blood-
stage growth, which sustains the parasite’s short-term survival, and producing sexual forms,
which are required for reproduction and further human transmission. While this trade-off
is expected to vary across hosts and environments (6), it has been difficult to study since ac-
curately assessing the parasite’s sexual investment strategy is challenging. Conversion rate,
defined as the proportion of asexual parasites that convert into gametocytes at each round
of blood-stage replication, is difficult to quantify (7). Nevertheless, multiple approaches
have documented phenotypic variation in gametocyte production among genotypic
backgrounds, suggesting that no single sexual investment optimum exists. In artificially
induced human infections, estimated conversion rates were highly variable between infec-
tions, both in historical studies of malaria-induced neurosyphilis patients (8) and in recent
challenge studies (9). In vitro work has demonstrated that phenotypic differences in sexual
conversion exist among laboratory-cultured genotypes (10). Recent genomic evidence also
points to natural variation among parasite populations in key sexual development genes
(1, 4). In particular, transcriptional and genomic profilings of natural infections in
Sudan and Kenya have shown that sexual development varies in association with local
transmission rates (3), but these results have not been confirmed in other global regions.
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Modeling has complemented this empirical research by factor-
ing in the impact of further ecological and intrahost conditions.
Greischar et al. (11) showed that higher infectiousness at early
versus late infection time points provides different evolutionary
advantages to parasites as a function of infection length. Thus
the parasite’s optimal gametocyte investment strategy might be
impacted by ecological and epidemiological factors that alter in-
fection length (11). On a within-host level, increased investment
in asexual parasite proliferation can evade transmission blocking
immunity targeting gametocytes and can also provide a compet-
itive advantage against other genotypes in coinfections (12, 13).
The latter is of particular interest in a context of declining malaria
prevalence, where the fraction of infections containing multiple
genotypes is expected to decline, reducing levels of within-host
competition (14).

Here, we model within-host and population-level dynamics to
explore how intervention-induced population reduction impacts
the parasite’s optimal sexual investment strategy. We find that
successful intervention strategies create a favorable environment
for higher sexual conversion by reducing within-host competition,
resulting from a decrease of the fraction of polyclonal infections,
and shorter average infection length. We further substantiate these
models with empirical analysis of genomic data from French
Guiana. French Guiana experienced a dramatic decrease in re-
ported malaria cases from over 3,000/y in 1998 to under 300/y
in 2015. We sequenced and analyzed 148 genomes from across
this 18-y span and, as our model predicts, found evidence of
strong selection on genes regulating sexual commitment and
sexual form development. More broadly, the observed genomic
patterns demonstrate that selection remained effective, even in a
small, declining parasite population. Together, our modeling and
empirical results demonstrate how declining parasite prevalence
alone can lead to changes in an important transmission-related
phenotype. Further understanding this interplay will be key for
devising and monitoring successful intervention strategies.

Results

Multiscale Modeling Demonstrates That Reduced within-Host
Competition Favors Higher Sexual Investment. We assessed the
competitive advantage of different sexual investment strategies us-
ing a mathematical model that included within-host infection and
the dynamics of infectiousness, and tracked transmission between
human hosts at a population level (transmission model illustrated
in SI Appendix, Fig. S1). The deterministic within-host model
describes gametocyte density and asexual parasite growth, the
latter constrained by both innate and adaptive immune responses
that control peak parasitemia and infection length. Different
genotypes were defined by the parasite’s daily conversion rate from
asexual parasites to gametocytes, zu , set between 0.01 and 0.3. In
this model, two distinct genotypes are included and polyclonal
infections simultaneously contain both distinct genotypes. We
assume a common innate immune response to both genotypes
and a partially cross-reactive adaptive immune response between
genotypes.

In monoclonal infections—the expected scenario when parasite
populations are small—parasites show higher total infectiousness
as conversion rate increases (Fig. 1A and SI Appendix, Fig. S2).
Within the range of sexual conversion rates investigated, there
is always an advantage for higher sexual conversion in mon-
oclonal infections, as asexual growth remains high enough to
maintain a blood-stage infection, even with the highest invest-
ment into gametocytes. Conversely in polyclonal infections—
which are dominant when parasite populations are large—total

infectiousness over the course of the infection was higher for the
genotype with the lower conversion rate (Fig. 1B), for any con-
version rate pairs where zlow < zhigh and zhigh ∈ [0.13− 0.3]
(SI Appendix, Fig. S3). In the model, this within-host advantage
is driven by the cross-reactive immune response. Considering a
polyclonal infection with two genotypes, Slow and Shigh with
lower and higher sexual conversion rates, respectively, high levels
of Slow asexual parasites elicit an immune response that also affects
the parasite density of Shigh parasites. As a higher proportion
of Shigh asexual parasites convert into gametocytes, the asexual
parasite density is lower for Shigh relative to Slow at the point
of immune activation. As a result, over the entire course of the
infection, fewer Shigh asexual parasites convert into gametocytes
compared to Slow . As this is a direct result of the assumed
cross-reactivity between the immune responses against different
genotypes, the advantage of Slow in polyclonal infections is lost
when assuming little to no cross-reactivity (SI Appendix, Fig. S6).
In this model, cross-reactivity levels need to be no less than kCR =
0.7 to observe an advantage of Slow in polyclonal infections
(SI Appendix, Fig. S5). Immune competition leads to a trade-
off between within-host growth through asexual replication and
between-host transmission through gametocyte conversion. The
optimal sexual conversion rate is therefore dependent on the
presence of distinct genotypes in an infection, with Shigh having
highest transmission potential in monoclonal infections and Slow
having highest transmission potential in polyclonal infections.

We next investigated the relative advantage of these sexual
investment strategies at the population level by implementing
the within-host infection dynamics within an agent-based pop-
ulation model. We fixed the number of infected hosts at n =
5,000 for all simulations. Although mosquito dynamics were not
explicitly modeled, the mosquito distribution between hosts was
assumed to follow a negative binomial distribution to account for
transmission heterogeneity. Assuming that transmission intensity
impacts the number of superinfections found in a population, we
varied the average number of infected mosquitoes at each time
step, which is defined at the simulation onset and is constant
over time. The resulting average number of infectious mosquito
bites per newly infected host, referred to as mosquitoes per host
for simplicity, was considered a proxy to investigate different
transmission intensities (SI Appendix, Fig. S7). Polyclonal infec-
tions (infections containing both distinct genotypes) occur in two
ways in the model: through superinfection or cotransmission.
Superinfection, defined as an infection in a single host arising
from two or more mosquitoes, includes both polyclonal infection
and superinfection with multiple instances of the same genotype.
Cotransmission is defined as infection of a single host from a
single mosquito infected with both genotypes. Over the course of
a polyclonal infection, the probability of cotransmission depends
on the relative concentration of each genotype in the mosquitoes’
blood meal. Cotransmission is very likely within the first 20 d
of infection, followed by a decrease in cotransmission probability
for the remaining infection days (SI Appendix, Fig. S9). By vary-
ing the number of infected mosquitoes across simulations, we
modulated the mean number of infected mosquitoes per host and
therefore varied the opportunity for polyclonal infections to result
from superinfection at baseline. The proportion of polyclonal
infections resulting from superinfection in the first year of simula-
tion ranged between 0.29 and 0.40, for average number of infec-
tious bites per host between 1.13 and 1.33 (SI Appendix, Fig. S7).
This proportion varies throughout the simulation, as it is dynam-
ically linked to the number of monoclonal infections of both
genotypes present, as well as the number of polyclonal infections
(SI Appendix, Fig. S7).
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Fig. 1. Optimal sexual investment strategy in the population defined by within-host competition. (A and B) Infectiousness, as the probability of a feeding
mosquito becoming infected, for monoclonal (A) and polyclonal (B) blood-stage infections. In monoclonal blood-stage infections (A), infectiousness is consistently
greater for Shigh (dashed line, gray) parasites. In polyclonal blood-stage infections (B), the addition of within-host immune competition changes the optimal sexual
investment strategy. Compared to Slow gametocytes (gray), Shigh gametocytes are in the majority in the early days but have lower overall infectiousness over the
full course of the infection. The area under the curve is colored by the relative concentration of Slow gametocytes ([Glow]) over the total gametocytes concentration
([Gtot] = [Glow + [Ghigh]). Higher Shigh gametocyte concentrations are indicated in blue, versus in gray for higher Slow gametocyte concentrations. (C) Number of
infected hosts in the population (y axis), through time (x axis), assuming an average number of infectious mosquito bites per infected host of 1.17 (Left), 1.33
(Center), or 1.33 with 30% treatment (Right). Colors and labels indicate hosts infected with the lower sexually committing parasites (l) in black, higher sexually
committing parasites (h) in blue, polyclonal infections (p) in brown, and the overall number of infected hosts in gray. Lines indicate the median and shaded area
the minimum and maximum across five simulations.

At simulation onset Slow was defined as the majority genotype,
with Slow comprising 99% of the monoclonal infections and the
exact initial genotype frequencies dependent on the initial level
of polyclonal infections. Increasing the mean number of infected
and infectious mosquitoes per host in the population allows
for more polyclonal infections, provided that both genotypes
are present (SI Appendix, Fig. S7). Under this model, Slow was
maintained as the majority genotype throughout the simulated
time (3,000 d) when mosquitoes per host were high (Fig. 1C and
SI Appendix, Fig. S7). The Shigh genotype frequency became the
majority genotype when mosquitoes per host dropped to 1.26
or lower (SI Appendix, Fig. S7), and by day 3,000, Shigh fully
replaced Slow in the parasite population when mosquitoes per
host were at 1.17 or lower (Fig. 1C and SI Appendix, Fig. S7).
Overall, we found that mosquitoes per host had a large impact on
genotype frequencies, with two possible outcomes depending on
the number of infectious mosquito bites per newly infected host:
When mosquitoes per host were high, maintaining a high level of
polyclonal infection, Slow remained the dominant genotype and
Shigh was present almost exclusively within polyclonal infections;
when mosquitoes per host were low, the Shigh genotype frequency
increased until reaching fixation.

Increased Treatment Coverage Favors Higher Sexual Invest-
ment. We next focused on the effect of reduced infection length
on transmission, a selection pressure specifically imposed by in-
creased diagnosis, increased treatment coverage, and/or increased
treatment efficacy. We assumed infections to be treated when
a pyrogenic threshold parasitemia of 103.5 parasites per micro-
liter was reached, which falls within the range of pyrogenic
thresholds observed for the first fever episode (15, 16). In the
model, we varied the effect of treatment by varying probability
of treatment, resulting in different treatment coverage in the
population. When treatment coverage increases, both the number
of human infections and the number of infected mosquitoes
decrease, and consequently, the fraction of superinfections and
hence the fraction of polyclonal infections decrease (Fig. 1C
and SI Appendix, Fig. S8). We found that treatment, resulting
in shorter blood-stage infections and a decrease in the average
number of infectious mosquitoes per newly infected host, led
to a decrease in polyclonal infections and favored a shift toward
greater sexual investment (Fig. 1C and SI Appendix, Fig. S8).
For a given average number of infectious mosquitoes per newly
infected host at simulation onset, higher treatment coverage re-
sulted in a faster increase in the frequency of Shigh (Fig. 2A),
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Fig. 2. Genotype frequency increase defined by number of infectious mosquitoes per host and treatment coverage in the population. (A) Relative frequency

of the higher sexually committing genotype
(

Shigh
Shigh+Slow

)
(y axis), through time (x axis), with a frequency of Shigh that equals 0.01 at onset of simulation, for

different treatment coverage (colors). (B) Rate of Shigh genotype frequency increase (y axis) as a function of the average number of infectious mosquito bites per
newly infected host at onset of simulation (i.e., without treatment) (x axis). Rates of frequency increase were estimated by fitting a logistic growth function and
are normalized such that 1 represents the maximum rate across all simulations, and 0 represents the lower limit where no increase is observed during the time
of simulation (3,000 d). The three curves represent rates of frequency increase without treatment (gray), with 15% treatment (yellow), and with 40% treatment
(blue), with summary statistics showing median, minimum, and maximum across five simulations. Missing estimates indicate simulations for which no increase
in genotype frequency was observed, and thus no rate was estimated. (C) Average number of infectious mosquito bites per newly infected host after treatment
implementation (mean over the last 300 d of simulation) (y axis) as a function of the fraction of treated infections (x axis). Blue shades indicate the estimated rate
of Shigh genotype frequency increase, and simulations where Shigh frequency did not increase are indicated in dark gray. Median across five simulations is shown.
(D) Conceptual illustration of the potential mechanisms driving genotype selection, where increased treatment could select for higher sexual investment
genotypes by both shortening the infection and decreasing the number of infectious mosquitoes per host and thus reducing polyclonal infections.

with the fastest increase found in settings with a low number
of mosquitoes per host combined with high treatment levels
(Fig. 2B). At an individual level, treatment clears infections shortly
after infection onset, thus removing the immune-competitive
advantage of Slow over Shigh in treated polyclonal infections
(Fig. 1B and SI Appendix, Figs. S3–S5). Timing of treatment
impacts the results, however, as the later in the infection treatment
occurs, the more time is available for Slow to outcompete Shigh
within the host (SI Appendix, Figs. S4 and S5). If infections are
treated 16 d after blood-stage infection onset—as a result of
a higher pyrogenic threshold or delayed treatment seeking—
instead of 10 d as assumed in the transmission model, the ad-
vantage of Shigh over Slow is lost in the treated polyclonal
infections (SI Appendix, Fig. S4). At a population level, treatment
leads to a lower fraction of polyclonal infections (Fig. 2C and
SI Appendix, Fig. S8). In summary, increasing treatment coverage
selects for higher sexual investment via two mechanisms that
reduce within-host competition: fewer polyclonal infections and

reduced infection length (Fig. 2D), with the latter expected to be
sensitive to timing of treatment.

French Guiana Parasites Show Increasing Relatedness over a
Period of Declining Malaria Prevalence. To empirically assess
these model predictions, we assembled a longitudinal genomic
dataset from French Guiana that spanned from 1998 to 2015.
Over these years, French Guiana saw P. falciparum malaria cases
decline by an order of magnitude, driven by a large antimalaria
campaign that included the introduction of rapid diagnostic
tests (RDTs), distribution of insecticide-treated bed nets, and
a switch to Artemether-Lumefantrine as the official frontline
antimalarial treatment in 2008 (Fig. 3A) (17). Our dataset
includes 148 whole-genome sequenced monoclonal samples
derived from a combination of direct patient samples and newly
culture-adapted clones (<80 d). These mixed sources yielded
highly variable amounts of DNA and therefore highly variable
genome coverage following Illumina sequencing (Fig. 3B). Even
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Fig. 3. Whole-genome sequencing of longitudinally sampled parasites from French Guiana. (A) P. falciparum malaria cases in French Guiana dropped by an
order of magnitude between 1998 and 2015 (19, 20). (B) Whole-genome sequences were obtained for 148 monoclonal P. falciparum infections sampled across
these years. (C) Overall, the parasite population shows high relatedness, as measured by pairwise IBD. Median relatedness between samples from the same
year increased across the sample period, correlating with the documented decrease in parasite population size. (D) After 2012, parasite pairs collected within
the same year showed significantly higher median IBD (0.31) compared to parasite pairs collected within the same year before 2012 (0.19; two-sided Mann–
Whitney U test, P < 0.0001) Only high-coverage samples (>30% of the genome at 5 × coverage) were included in the IBD analysis. (E) IBD relationships are also
affected by the time between samples, with lower IBD observed between samples with higher temporal separation.

after restricting the analysis to variant calls made with ≥ 5×
coverage, we noted that a strong reference bias existed in low-
coverage samples (SI Appendix, Fig. S10). We analyzed samples
individually only if they had at least 30% of the genome at ≥ 5×
coverage (n = 69).

Pairwise relatedness estimates between samples (as measured by
identity-by-descent [IBD]) show a pattern of increased relatedness
across the time period (Fig. 3C ). Later years show a greater pro-
portion of clonal pairs (IBD≥ 0.99), which could be attributed to
the greater sampling depth. More strikingly, however, no parasite
pair sampled from the same year after 2012 had an estimated
IBD relationship of less than 0.19. Conversely, this same value
was the median IBD between all parasite pairs sampled from the
same year before 2012 (Fig. 3D). This pattern is consistent with
forward simulations, which demonstrate a measurable increase in
mean fractional IBD within years of a P. falciparum population
bottleneck (18). While not the only driver, this loss of haplotypic
diversity is also reflected in the lower relatedness observed between
individuals sampled in different years (Fig. 3E ). Data artifacts
such as undetected polyclonal infections likely had a small effect
at most as restricting the analysis to genomes with higher coverage
did not alter the observed temporal trend (SI Appendix, Fig. S11).

A Small Subset of P. falciparum Variants Experienced Large
Frequency Changes as Malaria Prevalence Declined. Across our
studied time period, this P. falciparum population displayed mea-
surable changes in drug resistance and susceptibility (21). Because

of this observed phenotypic evolution, we hypothesized that,
in addition to neutral demographic processes, selection has also
impacted the genome. We first determined that the population’s
increased relatedness did not result from a hard selective sweep
on a single genomic background or clonal lineage. Twenty-one
parasites had a clonal relationship with at least one other sample,
but no clonal cluster contained more than five members or
extended beyond 2 y. This contrasts with observations in the
Greater Mekong Subregion where highly related clonal lineages
rapidly rose to high frequencies after acquiring artemisinin and
partner drug resistance (22). We therefore focused on identifying
potential selective sweeps that were limited to subregions of
the genome. In particular, we leveraged our temporal sampling
scheme to investigate potential selection on standing variation
present on multiple genetic backgrounds. While such soft sweeps
are challenging to detect using genomic data from a single time
point, our longitudinal sampling allows a direct assessment of
allele frequency changes across the period of interest (23). To
calculate allele frequencies in each year, we took a pooled sample
approach since the elimination of low-coverage individual samples
preferentially impacted early time points (pre-2009).

As expected, most variants showed no appreciable frequency
change from 1998 to 2015 (Fig. 4A). Of the 39,007 variants
that fit a binomial model, 31,334 had changes that were either
under 10% or statistically indistinguishable from 0. Conversely,
974 variants (2.5%) present in or near 447 genes showed a
frequency change of 60% or greater. Overall, single-nucleotide
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A B C

Fig. 4. Allele frequency changes from 1998 to 2015. (A) Of the 39,007 variants that fit a binomial model (gray), 9,215 were determined to have a nonzero slope
(black). Inset breaks down the variants with a nonzero slope by mutational type. The red diamond marks the frequency change observed for a known selected
allele (PfCRT C350R) (21). (B) Allele frequency changes were highest among six AP2 genes with well-documented roles in sexual commitment or gametocyte
development (ap2-g, ap2-g2, ap2-g3, ap2-g5, PF3D7 1222400, and PF3D7 0613800). Each gene is represented by the nonsynonymous variant or coding indel
within it that experienced the greatest allele frequency change across the sampled time period. Only genes containing a detected nonsynonymous SNP or
coding indel were included in the analysis. Variants that did not fit a binomial model were coded with an allele frequency change of 0. AP2 gene names are
marked in SI Appendix, Fig. S15. *P < 0.05, **P < 0.01, ***P < 0.001, one-sided Mann–Whitney U test. (C) One nonsynonymous variant in ap2-g (blue) and a
36-bp deletion (relative to the 3D7 reference) in ap2-g2 (red) experienced large frequency shifts.

polymorphisms (SNPs) in coding regions showed smaller allele
frequency changes than SNPs in intergenic or intronic regions
(Kolmogorov–Smirnov test, P < 0.00001) and similarly, non-
synonymous SNPs showed smaller frequency changes than syn-
onymous SNPs (Kolmogorov–Smirnov test,P = 0.00068). These
observations indicate that purifying selection was effective despite
the decreased population size. Allele frequency shifts were not all
independent. After 2011, several regions of the genome showed
large spikes in mean pairwise IBD (SI Appendix, Fig. S12). This
pattern is consistent with the action of strong positive selection,
although we cannot discount that these patterns may have been
affected by the change in population size. Establishing proper
null expectations based on a drift-only model would require pop-
ulation information we currently lack regarding subpopulation
connectivity and local outbreak dynamics.

Transcription Factors Involved in Sexual Commitment and Ga-
metocyte Development Contain Variants with Large Frequency
Changes. Our outlier approach successfully captured a previously
documented instance of positive selection on a variant implicated
in drug resistance (PfCRT C350R) (21). In our dataset, this
variant experienced an allele frequency shift of 63%, which places
it in the top 11% of all changing variants. While this shows that
we are detecting true selection signals, a proportion of outlier loci
will have risen in frequency due to drift rather than selection. We
therefore focused on gene set enrichment rather than the identity
of single variants. We hypothesized that a change in conversion
phenotype could be driven by genetic changes in transcription fac-
tors as studies in multiple systems have highlighted transcriptional
changes as a major mode of local adaptation. The P. falciparum
genome contains only 27 known transcription factors, all mem-
bers of the Apicomplexan-specific ApiAP2 gene family. Across
species and individuals, there are marked differences in both the
transcription profiles of these AP2 genes and the timing of the life
history events they govern (24–27). A recent study of Southeast
Asian Plasmodium vivax parasites found evidence that selection on
these AP2 transcription factors accompanied a demographic ex-
pansion (28), and within P. falciparum specifically, transcriptional
changes marked the initial observation of sexual conversion rates
differing based on parasite prevalence (3). Overall, among coding
variants that had a frequency change ≥ 60% (580 coding variants

total) transcription factors were enriched, with eight transcription
factors (30%) containing a nonsynonymous SNP or coding indel
that showed a frequency change ≥ 60% (Fisher’s exact test,
P = 0.04).

We represented each gene by its nonsynonymous SNP or
coding indel that showed the largest frequency change and
found that larger frequency shifts occurred within transcription
factors putatively involved in sexual commitment and gametocyte
development (29). Not all transcription factors are well
characterized, so we compared the results from three large P.
falciparum gametocyte expression studies (30–32). Only three
genes were identified as gametocyte associated across all studies
(ap2-g, PF3D7 1222400, and PF3D7 0613800), and all three
of these genes contained variants with large frequency shifts
(SI Appendix, Fig. S15, and Fig. 4B). Of particular note is ap2-g ,
the master regulator of sexual commitment (33), which contains
four nonsynonymous mutations that experienced frequency shifts
>0.7 (Fig. 4C and Dataset S2). Additional large frequency
shifts are seen in PF3D7 1222400. While not as extensively
studied, PF3D7 1222400 is expressed immediately following
ap2-g in sexually committed parasites. It is known to evolve
loss-of-function mutations in culture, suggesting that it is
nonessential in asexual parasites and may play an early role in
gametocytogenesis (34). ap2-g and PF3D7 1222400 are within
9 kb of each other on chromosome 12, and both are centrally
positioned within a peak of high IBD among post-2011 parasites
(SI Appendix, Fig. S12). This could suggest either genetic draft or
selection on a haplotype carrying multiple beneficial mutations.
We included three additional genes (ap2-g2, ap2-g5, and ap2-g3)
in this high-confidence set based on functional studies. Both AP2-
G2 and AP2-G5 are required for gametocyte maturation and act as
transcriptional repressors in asexual parasites (35, 36), potentially
impacting ap2-g expression (36, 37). ap2-g2 is within a high-
IBD peak found on chromosome 14 (SI Appendix, Fig. S12) and
contains a 36-bp indel that increased in frequency by over 90%,
almost fixing in the population by 2015 (Fig. 4C ). ap2-g5 contains
three nonsynonymous variants that changed frequency by more
than 50%. The final gene, ap2-g3, has been shown to be essential
for gametocytogenesis (38), but did not contain any variants with
unusually large frequency shifts. Together, however, this set of
six genes contains larger allele frequency shifts than other AP2s
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with some evidence of gametocyte involvement (29) (one-sided
Mann–Whitney U test, P = 0.027), non–gametocyte-associated
AP2s (one-sided Mann–Whitney U test, P = 0.0031), and non-
AP2 genes (one-sided Mann–Whitney U test, P = 0.000019;
Fig. 4B). As gene length correlates with largest allele frequency
shift (Spearman’s rho = 0.47, P < 0.00001), we additionally
compared each of these AP2s to other genes of comparable length
and found that ap2-g , ap2-g2, ap2-g5, PF3D7 1222400, and
PF3D7 0613800 were in the 91st, 97th, 82nd, 99th, and 85th
percentiles, respectively (SI Appendix, Fig. S13).

An alternative hypothesis is that these commitment-related
transcription factors experienced relaxed constraint rather than di-
rectional selection as population size decreased. In total, we iden-
tified 25 nonsynonymous or indel variants within ap2-g, ap2-g2,
ap2-g5, PF3D7 1222400, and PF3D7 0613800 (Dataset S2). Of
these, 22 (88%) are present in a large set of global variants sampled
from Africa and Asia, with 19 (76%) having a frequency of at
least 2% in one other country. The global distribution of these
variants suggests that they were segregating in French Guiana prior
to the start of our study and that they are unlikely to be strongly
deleterious as purifying selection would be more efficacious in
these other larger populations.

A second alternative hypothesis is that these patterns arose as
culture artifacts. In this study, however, almost all attempted cul-
tures were successful, making any potential culture bias small. Fur-
ther, while previous studies of laboratory-cultured P. falciparum
have found selection for loss-of-function AP2 mutations (34),
such mutation events are unlikely to converge on the identical
variant with high frequency. Still, we confirmed that our observed
pattern reflected population-level allele frequencies by performing
PCR and Sanger sequencing of the identified AP2-G2 indel
(Fig. 4C ) on an overlapping but nonidentical set of 59 French
Guiana samples that were extracted directly from patient blood. As
with our whole-genome data, the frequency of the AP2-G2 indel
increased from 1999 to 2016 in this sample set, reaching apparent
fixation by the later sampling periods (SI Appendix, Fig. S14).

Discussion

Through mathematical modeling and empirical analysis of whole-
genome sequencing data, we explored links between public health
interventions and parasite life history that are independent of
canonical intervention-induced evolution like drug resistance.
Our model suggests that increased treatment coverage can select
for parasites with higher rates of sexual conversion by reducing
the fraction of polyclonal infections and shortening infection
length of treated infections. Thus, as human interventions cause
parasite prevalence to decline, higher sexual investment might
be beneficial to the parasite. From a public health perspective, a
higher sexual conversion rate could lead to higher transmission
potential from human to mosquitoes, resulting in a lower than
anticipated impact of interventions. Genomic data from French
Guiana support this concept by showing large allele frequency
shifts in sexual development regulators across a time period of
malaria reduction.

The modeling work presented here conceptualizes potential
mechanisms at play that are currently difficult to measure di-
rectly in humans. Substantial knowledge gaps in the host–parasite
mechanisms behind human infections render within-host models
difficult to assess and parameterize (39, 40), and we chose the
model of McKenzie and Bossert as it takes a simple approach,
limiting the number of parameters and assumptions. However,
the results presented here depend heavily on the assumed effect
of immune responses, including the effect and level of cross-

reactivity of the immune response between genotypes. This frame-
work could be extended to include other forms of within-host
competition, such as including multiclone infections with more
than two genotypes and multiple infections occurring at different
infection time points rather than simultaneously.

Both the within-host mechanisms and the epidemiological
dynamics are more complex than modeled. For example, host–
pathogen interactions involve more complex immune dynamics,
fluctuations around resource limitations and red-blood-cell avail-
ability, high variability in infection length, and parasite response
to host environmental factors (39, 41). In regions with highly
seasonal transmission, varying transmission and exposure-driven
immunity will also play a role (42). Under strong seasonality,
selection for higher conversion rates might be enhanced during
high transmission peaks when most infections are relatively young,
and the competitive advantage of the strain with lower conversion
might be diminished in older (chronic) infections due to few
transmission events in the dry season. In addition, while we focus
on immune-driven within-host competition and infection length,
studies have highlighted additional connections between inter-
vention strategies and transmission such as the relative propor-
tion of symptomatic versus asymptomatic infections (43). Forces
unrelated to demography or host environment—like differential
susceptibility to drugs including artemisinin across the parasite life
cycle—may also impact sexual development (44, 45). Finally, both
mathematical models and empirical work have shown that sexual
commitment rates can be plastic and rapidly respond to stress
factors such as drug administration, resource limitation, immune
response, or competition against other genotypes (7, 46–49). The
interplay between plastic and hard-wired sexual development rates
will be interesting to explore moving forward.

Plasmodium’s reproductive fitness is not determined solely by
conversion rate just as conversion rate affects more than re-
productive fitness. Sex ratio and gametocyte density also con-
tribute to reproductive success and are themselves linked (50).
In polyclonal infections, these traits have additional evolutionary
implications as they affect the likelihood of outcrossing versus
clonal propagation (46, 51, 52). Especially in areas with small
P. falciparum populations like South America, this balance be-
tween clonal persistence and outcrossing can have demographic
and evolutionary consequences. Just as we saw for conversion
rate, the fitness optima for these other reproductive traits may
shift as population size declines and the probability of being
in a polyclonal infection decreases. Indeed, we find suggestions
of this in the data. In addition to its general role in gameto-
cyte maturation, ap2-g2 expression affects the ratio of male to
female gametocytes (37). Three additional AP2 genes are also
known to show sex-biased expression in P. falciparum (ap2-o,
PF3D7 1107800, and PF3D7 1305200) (53), and two of these
(ap2-o and PF3D7 1107800) contained alleles with frequency
shifts of 0.76 and 0.69, respectively (SI Appendix, Fig. S15 and
Dataset S2). Continued theoretical and empirical explorations are
warranted on these topics.

On the empirical side, our understanding of the specific factors
at play in the French Guiana population is currently incomplete.
While we know that transmission declined after 1998, we lack
reliable estimates of complexity of infection (COI) decline due
to uneven sequencing coverage. The exact phenotypes conferred
by these French Guiana AP2 variants also remain unknown as
we were unable to successfully generate parasite lines with allelic
replacement. Further work is therefore warranted in this and
other regions with declining infection rates to explore how specific
sexual development phenotypes impact both clinical disease and
transmission. This awareness should stimulate discussion on the
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types of metrics that could be included in surveillance studies to
further understand the impact of parasite evolution in regions of
low or declining prevalence.

More broadly, the empirical results from this study highlight
the insight gained from longitudinal sampling of parasite pop-
ulations (22, 54, 55). Rather than infer selection from cross-
sectional data, a longitudinal analysis permits direct observation of
evolution in action. This approach enables tracking of individual
alleles rather than large haplotype blocks, and its power is less
affected by the strength of selection and initial age of the selected
variants. Here, we chose to focus on alleles that showed large
frequency changes. This narrowed our scope to alleles that may
have experienced strong selection—most commonly at early time
points—and placed a ceiling on the potential starting allele fre-
quency of these candidate loci. Thousands of other loci, however,
displayed moderate frequency shifts. Distinguishing between se-
lection and drift, determining the temporal onset of selection, and
understanding the phenotypic impact of these additional variants
will further augment our understanding of parasite evolution.
While our study here was retrospective, this approach could be
taken in real time and will prove powerful as genomic surveillance
efforts expand and longitudinal datasets become more common.

Materials and Methods

Within-Host Model. The within-host model was adapted from McKenzie and
Bossert (12) to include the effect of treatment on the asexual parasites. A full
description of the model can be found in SI Appendix. Briefly, the model is a
set of delay differential equations that describe the asexual parasite density,
the gametocyte density, and the innate and adaptive immune responses. As-
sumptions include a constant parasite replicate rate [ln(16)/2], a common innate
immune response across genotypes, and a genotype-specific but cross-reactive
adaptive immune response, assuming that the response specific to one genotype
is effective against the other genotype by a factor of 0.75. Genotypes differ by
their conversion rate from asexual parasites into gametocytes, zu , which was set at
0.05 and 0.2 for low- and high-transmission–investing genotypes (Slow and Shigh),
respectively. These conversion rates fall within the range [0.01 − 0.7]explored in
McKenzie and Bossert (12). The model’s parameters were fitted by McKenzie and
Bossert to the malaria therapy dataset (12), which is a collated dataset of patient
records for which malaria was used as a therapy to treat patients with tertiary
neurosyphilis (56). Treatment is implemented as an additional killing rate of the
asexual parasites, ε, clears all asexual parasites almost instantly, and is activated
the day the asexual parasite density reaches 103.5 parasites per microliter. This
is assumed to represent the pyrogenic threshold parasitemia, which falls within
the range observed in the malaria therapy dataset (15, 16). Further exploration
on the values of the conversion rates, cross-reactivity of immune response, and
timing of treatment is found in SI Appendix. All other parameters have been taken
as in McKenzie and Bossert (12) and represent the average infection dynamics
observed in human infection.

Transmission Model. The transmission model was adapted from Chang et al.
(57). A full description of the model and parameters can be found in SI Appendix
and in SI Appendix, Fig. S1. Simulations start with 5,000 infected human hosts.
Two parasite genotypes are considered, with Shigh the genotype with high sexual
commitment (proportion of asexuals converting to gametocytes z = 0.2) and
Slow the genotype with low sexual commitment (z = 0.05). Infections can be
monoclonal, i.e., only one of the two genotypes is present, or polyclonal, both
genotypes are present in the same host. Superinfection occurs if more than
one infectious mosquito infects the same host. A fraction of initial polyclonal
infections and a mean number of infected mosquitoes per day are defined for
each scenario. At simulation onset, 1% of monoclonal infections are infected by
Shigh. Days since infection onset are evenly distributed among infected hosts
at simulation start. At each iteration, infections become 1 d older until cleared
naturally or by treatment, and the probability of transmitting to a mosquito is
assessed. A random number of hosts, whose asexual parasite density reached
the treatment threshold, are sampled to receive treatment. The number of treated

hosts in each time step is defined by a Poisson distribution, with mean the defined
proportion of treated infections. Each setting was simulated five times to include
a stochastic range in the output.

Transmission from Human to Mosquito. The relationship between the
gametocyte density defined by the within-host model and the probability of
an infection to be transmitted to a biting mosquito was taken from ref. 58
and is described as θ(a) = 1.08 · exp[−exp(−0.86 · log10(G(a))− 1.48)],
where G is the gametocyte density as a function of the age of infection, a.
The number of transmissions from human to mosquitoes follows a Poisson
distribution, with the mean given by θh(t) · Vh (the probability of the host
being infectious times the number of biting mosquitoes) and a normalizing
factor Ecleared.infections/(

∑
i θi(t) · Vi), which is the expected number of naturally

cleared infections at each time step divided by the total transmission potential
over all infectious hosts at that time step. The normalizing factor ensures that in
the absence of treatment the number of infections remains constant throughout
the simulations. To allow for a varying mean infectious mosquitoes per newly
infected host, the normalizing factor is increased by a factor (1 + w), with w
being the expected fraction of superinfections.

Transmission from Mosquito to Human. The infected mosquitoes are ran-
domly assigned to bite hosts, following a negative binomial distribution of
mosquitoes per host. Ten sporozoites per infected mosquito are inoculated to
a new host. The ten sporozoites are drawn from a binomial distribution, with
the probability of success to draw a sporozoite from one of the genotypes pro-
portional to its relative gametocyte concentration at time of blood meal. Thus,
a polyclonal infection results either from a mosquito inoculating sporozoites
from both genotypes or from multiple mosquitoes simultaneously inoculating
different genotypes to the same host. For simplicity, superinfections from bites at
different time points are not included.

P. falciparum Sample Collection. P. falciparum samples (n = 201) were col-
lected in French Guiana between 1998 and 2015 from symptomatic patients
infected by P. falciparum from only those who sought diagnosis and care. The
samples were collected as part of the malaria routine surveillance system imple-
mented in French Guiana. Healthcare facilities were in charge of collecting sam-
ples from anonymized P. falciparum-positive cases. Identification of individuals
cannot be established. Seventy-six isolates were culture adapted in human red
blood cells in enriched RPMI medium containing 10% human serum and were
propagated at 37 ◦C in 10% O2, 5% CO2, and 85% N2. The enriched medium was
composed of RPMI-1640 (ref. 4130, Sigma Aldrich) with 25 mM Hepes, 5 mM
L-glutamine, 22 mM glucose, 25 mM NaHCO35%, 20 mM gentamycin, 0.37 mM
hypoxanthine, and 1.6 mM orotic acid. We extracted DNA from whole blood
collected in an Ethylenediaminetetraacetic Acid (EDTA) tube using the QIAmp
DNA mini kit (Qiagen) and following the manufacturer’s protocol.

Genomic Sequencing and Variant Calling. We created Illumina sequencing
libraries using a Nextera XT low-input library kit. We sequenced the libraries on
an Illumina HiSeq 2500 instrument using a 200-cycle run mode, generating
100-bp paired-end reads, and indexing 92 libraries per lane. Raw sequence
data are available in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive as BioProject PRJNA336113 (59). Reads were aligned
with BWA-mem to the PlasmoDB P. falciparum 3D7 v. 28 reference. Variants within
the “core” genome [as defined by Miles et al. (60)] were called with GATK v.3
Haplotype Caller using a set of genotyped pedigreed crosses for variant and
base quality score recalibration. We estimated COI using the likelihood-based
method COIL (61) and removed samples with a COI>1. We additionally removed
any samples that were called monoclonal by the COIL approach but that had
unusually high proportions of heterozygous variant calls. The remaining set of
148 putatively monoclonal samples was used for downstream analysis. Due
to the low genomic coverage for early time points and the different sampling
methods (direct sequencing from blood vs. culturing), we were not able to reliably
estimate COI changes through time.

Analyses were limited to calls with five or more reads, but even after im-
plementing this filter, we observed a strong reference bias in low-coverage
samples (SI Appendix, Fig. S10). We therefore analyzed samples individually only
if they had at least 30% of the genome covered at 5× (n = 69). For the
longitudinal allele frequency analysis, we downsampled the sequences from
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each individual monoclonal sample to ∼1× mean genome coverage and then
merged all downsampled BAM files from the same year. We called variants
on pooled BAMs with GATK v.3 Haplotype Caller and used the variant call
read ratios to calculate allele frequency estimates for each time point. Global
allele frequencies were obtained from the MalariaGEN Pf3k release 5.0 data
(https://www.malariagen.net/projects/pf3k).

Genomic Analysis. We calculated pairwise identity-by-descent using hmmIBD
(62) for the 69 monoclonal samples with at least 30% of the genome covered
at 5×. Allele frequency trajectories were estimated for all biallelic variants by
performing a logistic regression with the estimated reference allele frequency at
each available time point. A 95% confidence interval for the slope of this regres-
sion was calculated using the confint function in R. Variants with fewer than 8-y–
based allele frequency estimates showed an upward bias in the frequency change
estimates and so were excluded from further analysis (SI Appendix, Fig. S16).

Data Availability. The scripts for the within-host and transmission models are
available at https://github.com/flaviaCa/Amazomics and short-read sequencing
data have been deposited in the NCBI Sequence Read Archive as BioProject
PRJNA336113 (59).
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