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Abstract: Phenolic acids comprise a class of phytochemical compounds that can be extracted from
various plant sources and are well known for their antioxidant and anti-inflammatory properties.
A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic,
p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme,
oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number
of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective
effects of phenolic acids against the most severe human diseases. In this review paper, the authors
first report on the main structural features of phenolic acids, their most important natural sources and
their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of
the most recent clinical studies on phenolic acids that investigate their health effects against a range
of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity,
and viral infections—including coronaviruses-based ones).

Keywords: phenolic acids; antioxidants; health properties

1. Introduction

Free radicals are mainly reactive oxygen species (ROS) (including hydroxyl-, superoxide-
radicals and singlet oxygen) that are formed in tissue cells by various endogenous and
exogenous pathways. ROS normally exert an adverse impact on human health by inducing
the so called “oxidative stress conditions” [1]. The ability of free radicals to structurally
modify cellular components and cause oxidative damage to biomolecules (LDL-low density
lipoproteins, DNA, etc.) has revealed their involvement in a variety of health pathologies
(i.e., inflammation, aging, types of cancer and cardiovascular diseases) [2,3].

Nature has generously offered several types of natural dietary antioxidants, among
which phenolic compounds can operate as scavengers of free radicals in vivo and can
efficiently reduce the harmful health impacts of oxidative damage [4,5]. Phenolic acids
comprise a group of natural phenolic compounds that are present in a wide range of herbs
and other species of the plant kingdom [6]. More specifically, thyme, oregano, rosemary,
sage, and mint herbal preparations—all rich in various phenolics—have been reported to
exert strong antioxidant biochemical and anti-inflammatory properties [7,8]. A few authors
have reviewed the radical scavenging capacity of phenolic acids and their subsequent
beneficial effects against the development of cancer, cardiovascular diseases and other
health disorders (such as skin problems, inflammations, bacterial infections, etc.) [9]. The
main biochemical pathways and mechanisms of phenolic actions against the development
of certain types of cancer include: free radical scavenging, enzyme induction, DNA damage
repair, cell proliferation depression, and apoptosis [10].

In their recent publication, Kiokias et al. (2020) [11] focused on the in vitro antioxidant
activities of a few common naturally occurring phenolic acids (caffeic, carnosic, ferulic,
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gallic, p-coumaric, rosmarinic, vanillic) against the oxidation of oil-in-water emulsions.
Such interfacial lipid-based systems generally mimic the structure of biological mem-
branes and biomolecules that when attacked by free radicals are prone to harmful in vivo
oxidative reactions.

In this paper, the authors first report on the main structural features of phenolic
acids as well as on a few important natural sources and their extraction techniques. Sub-
sequently, the main focus of this analysis is to provide an overview of the most recent
clinical studies on phenolic acids that investigate their health effects against a few severe
pathologic disorders.

2. Structure, Herbal Sources and Extraction of the Most Common Naturally Occurring
Phenolic Acids
2.1. Structural Classidication of Natural Phenolic Acids

In terms of their chemical structure, phenolic acids are classified as:
Hydroxybenzoic acids with a C6-C1 structure: Among them a trihydroxy derivative

(gallic acid) has been associated with tea antioxidant activity, while vanilic acid is a methoxy-
hydroxy derivative serving as a well-known flavouring agent [12].

Hydroxycinnamic acids with a C6-C3 structure [13]. These are abundant in plant
sources, with p-coumaric (4-hydroxy derivative), caffeic (3,4-dihydroxy derivative) and
ferulic (3-methoxy, 4-hydroxy derivative) commonly present in various culinary herbs. In
addition, rosmarinic acid (an ester of caffeic acid with 3,4-dihydroxyphenyl lactic acid) is
mainly encountered in certain aromatic herbs [14].

Phenylacetic acids with a C6-C2 structure. Phenylacetic acids are scarce in fruits
and vegetables, while a dihydroxy derivative was detected in strawberry tree honey [15].
Carnosic acid belongs to the phenolic diterpenes that are usually classified as hybrid
phenolics [13].

This review focuses on the most common hydroxybenzoic and hydroxycinnamic
phenolic acids, along with carnosic acid, the chemical structures of which are given in
Figure 1.
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2.2. Herbal Sources and Extraction of Phenolic Acids

Caffeic acid (CA) is found at high levels in various herbs worldwide, including the
South American herb yerba mate (1.5 g/kg) [16], the Japanese herbal leaf tea, the tea stem
from Moringa oleifera L. [17], and thyme (1.7 mg/kg) [18].

Carnocic acid (CarA) can be found in a few species of the Lamiaceae family (such as
rosemary and common salvia species). It has been reported to be present at a concentration
of 1.5 to 2.5% in dried sage leaves [19,20].

Ferulic acid (FA) is present in black beans at an average concentration of 0.8 g/kg,
while flaxseed has been reported as the richest natural source of FA glucoside
(4.1 ± 0.2 g/kg), [21,22]. FA has been also identified as the major phenolic acid in
Angelica sinensis (Oliv.), a traditional medicinal and edible plant in China [23].

Gallic acid (GA) has been found to be the main phenolic acid in tea [24] but also
reported in high amounts in the parasitic plant Cynomorium coccineum, the aquatic plant
Myriophyllum spicatum, and the blue-green alga Microcystis aeruginosa [25]. In addition, GA
was recently identified as the main phenolic compound in leaf extracts from the medicinal
halophyte Thespesia populnea tea [26].

p-Coumaric acid (p-CA) has been identified in basil, garlic [27] and in amaranth leaves
and stem at a concentration range of 28–44 mg/kg [28]. p-CA has been reported as the
major active compound in Bambusae Caulis, a Chinese medicinal herb [29] as well as in
cultivars of husked oat (Avena sativa L.) in Finland [30].

Rosmarinic acid (RA) is the main phenolic component in several members of the Lami-
aceae family, including among others: Rosmarinus officinalis, Origanum spp., Perilla spp.,
and Salvia officinialis in concentrations varying between 0.05 and 26 g/kg dry weight [31].
Additionally, the results of Tsimogiannis et al. [32] indicate an amount of 19.5 g/kg in the
leaves of pink savoury (Satureja thymbra L.).

Vanillic Acid (VA) is commonly found in several fruits, olives, and cereal grains (e.g.,
whole wheat), as well as in wine. VA was also identified in fruit extracts of the açaí palm
plant (Euterpe oleracea) [33] and in the root of Angelica sinensis (an herb indigenous to China)
at concentrations between 1.1 and 1.3 g/kg [34].

2.3. Extraction of Phenolic Acids from Their Natural Sources

The extraction and identification of phenolic acids has been studied by various re-
searchers [35,36]. Phenolic acids are compounds with medium to high polarity and, there-
fore, can be extracted by water [37]. Nevertheless, aqueous solutions of ethanol or acetone
(50–70%) are the best solvents for the quantitative extraction of hydrocinnamic acids [38].
On the contrary, CarA exhibits low polarity and is quantitatively extracted with the use of
pure acetone or ethanol [39].

Hydroxycinnamic and hydroxybenzoic acids may be linked to polysaccharides of
the cell walls by ester bonds and to lignin components by ester or ether bonds [40]. Mild
alkaline hydrolysis can be implied to cleave the ester bonds, while acid hydrolysis to
cleave the ether bonds and release the phenolic acids [41]. However, phenolic acids may be
degraded under alkaline conditions, e.g., RA has been reported to transform to CA [42].
Additionally, mild temperature and time combinations are suggested to avoid degradation.
The most prone to degradation is CarA, which is oxidised to carnosol (which also exhibits
antioxidant activity) at temperatures higher than 50 ◦C and at longer extraction times [43].

In addition to conventional solid liquid extraction, ultrasound assisted extraction and
microwave assisted extraction proved even more effective for phenolic acid extraction,
while shortening extraction time [44,45].

The predominant role of high-performance liquid chromatography (HPLC) in the
definition of the phenolic profile of various plant sources has been recently examined by
Ciulu et al. (2018) [46], who also present the most recently developed mass spectrometry-
based detection systems. In addition, the various developed procedures for the quan-
tification of phenolic compounds have been described in the literature, along with the
spectrophotometric protocols for the evaluation of their antioxidant properties [47,48].
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3. Biochemical and Health Properties of the Examined Phenolic Acids

The leading cause of a few severe human health disorders is oxidative stress, a con-
sequence of overproduction and accumulation of free radicals [49]. Naturally occurring
polyphenols have been shown to possess a number of biological activities such as antibac-
terial, antiviral, anticancer, and anti-cholesterol properties [50]. This section reports on the
most recent in vitro (in human cell lines) and in vivo (clinical animal) trials on phenolic
acids. The analysis focuses on the specific health diseases, i.e., cardiovascular diseases,
cancer, hepatotoxicity, neurodegenerative disorders, and microbial or viral infections in-
cluding COVID-19, that all together account for the majority of deaths in the western world.
The main research findings about the clinical effects of phenolic acids per health disease
are discussed in the following paragraphs while a summary of the most recent studies is
presented in the overview Tables (Tables 1 and 2).

3.1. Effects against Cancer

Globally, cancer is the second leading cause of death. In the continuous search for
safer and more effective treatments than chemotherapy or radiotherapy, plant phenolic
acids have gained importance displaying a great prospective as cytotoxic anti-cancer agents
promoting apoptosis, reducing proliferation, and targeting various aspects of cancer [51].

3.1.1. Individual Phenolic Acids

The chemical structure of CA and mainly the presence of free phenolic hydroxyls
is believed to strongly account for its antioxidant capacities that, in turn, link to certain
anti-carcinogenic properties [52]. According to the literature, though, CA phenyl ester
(CAPE) is actually the natural CA derivative with the most dominant anticancer activ-
ities. Wang et al. [53] reported a significantly enhanced suppression of tumour growth
in mice treated with CAPE based nanoparticles, revealing thereby its potential use in
anticancer nanomedicine.

Zhang et al. [54] observed that FA significantly decreased tumour volume and in-
creased apoptosis in an MDA-MB-231 xenograft mouse model, thereby acting as an effective
therapeutic agent against breast cancer. More recently, Al-Mutairi et al. [55] investigated the
combination effect of lower doses of thymoquinone and FA on the proliferation, apoptosis,
and cell cycle of breast cancer cell line MDA-MB-231. The authors reported that either
25µM of thymoquinone or 250µM of FA, individually, had no effect but in combination
significantly reduced cell proliferation, thus exerting an anticancer therapeutic potential.
Solomonov et al. [56] demonstrated a significant anti-inflammatory effect of CarA combined
with astaxanthin and a lycopene-rich tomato extract in a nutrient supplementation.

Sung and Wang [57] treated human cells (EC9706 and KYSE450) with different GA
concentrations (10, 20, and 40 µg/mL). According to the results, GA decreased the growth
of xenograft tumour in vivo and promoted cell apoptosis in a concentration-dependent
manner. Sales et al. [58] conducted a study to evaluate the effect of GA isolated from
methanolic fruit extract of Terminalia bellirica to inhibit the survival of breast cancer cells
(MCF-7 & MDA-MB-231). The authors reported that GA at 80 µM exhibited decreased
the survival of cancer cells and induced apoptosis, revealing its potential as an anticancer
agent to be further explored for breast cancer drugs.

The anticancer and antitumoral properties of RA have been reviewed by Afonso et al. [59].
During 2020, two new clinical animal studies were conducted on RA. Luo et al. [60] re-
ported that RA inhibited the proliferation and negatively affected the migratory potential of
human oral cancer cells (cell line SCC-15) with a dose-dependent effect. Messeha et al. [61]
reported that RA caused significant cytotoxic and antiproliferative effects in two racially dif-
ferent triple-negative breast cancer (TNBC) cell lines in a dose- and time-dependent manner.

Anbalagan et al. [62] explored the antioxidant efficacy of VA in dimethylbenz[a]anthracene
(DMBA)-induced oral carcinogenesis. Supplementation with VA (200 mg/kg body weight) for
14 weeks significantly restored the disturbances in antioxidant status {superoxide dismutase,
catalase) to near normal range in DMBA treated hamsters.
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Furthermore, in vivo experiments confirmed that treatment with VA caused significant
inhibition of tumour growth in a xenografted tumour model [63]. The in vitro antioxidant
capacity of VA was demonstrated through the reduced DNA damage, induced by H2O2 in
human lymphocytes at concentrations of 0.17–67.2 µg/mL [64]. These studies reveal that
VA provides new perspectives of phenolic antitumour activity.

3.1.2. Natural Extracts Rich in Phenolic Acids

A body of research has been conducted in recent years about the anticancer properties
of herbal extracts rich in various phenolic acids. Jeong et al. [65] observed clear therapeutic
effects of polyphenolic mixtures (containing among others GA, p-CA and ellagic acid)
against lung cancer cells.

Hydroxycinnamic acid derivatives of mulberry fruits were reported to increase the
production of reactive oxygen species by acting as pro-oxidants and hence killing the cancer
cells [66]. In another study, p-CA rich methanolic extracts of Amaranthus spinosus and of
Amaranthus caudatus L. were shown to possess significant anti-inflammatory activity in
mouse models [67]. Fernadez et al. [68] have reported that bael (Aegle marmelos) flowers
and tulsi (Ocimum tenuiflorum) seeds (rich in GA, p-CA, CA and VA) present a strong
antioxidant character against DNA damage.

Koyuncu [69] conducted a study on human colon (DLD-1), endometrium (ECC-1) can-
cer cells and embryonic kidney (HEK-293) cells to examine the anti-cancer and antioxidant
properties of the methanolic extract obtained from Artemisia absinthium L. species. Accord-
ing to the results, the A. absinthium extract, rich in various phenolic acids, showed an antiox-
idant effect and a cytotoxic activity on DLD-1 and ECC-1 cancer cells. Waheed et al. [70]
noted that phenolic acids (CA and GA) are the most important ingredients of honey
with known anti-cancer activity and their main suggested mechanisms are antioxidant,
apoptotic, tumour necrosis, anti-inflammatory and estrogenic effects.

3.2. Effects against Cardiovascular Diseases

In spite of the medical advances, cardiovascular diseases (CVDs) remain a significant
concern, causing the highest number of mortality cases globally and imposing a great bur-
den upon the economies and public health of nations. Research involving both animal and
human cells has proven that mixtures of phenolic acids possess cardioprotective properties
such as anti-hypertensive, anti-hyperlipidemia and anti-hypertrophy activity [71].

3.2.1. Individual Phenolic Acids

Silva and Lopez [72] reviewed the cardiovascular effect of CA and its derivatives.
The authors claimed that their antioxidant, anti-inflammatory and anti-angiogenic prop-
erties contribute to an important anti-atherosclerotic effect and protect tissues against
ischemia/reperfusion injuries and the cellular dysfunction caused by different physico-
chemical agents. Besides, Olas et al. [73] highlighted the antioxidant and antiplatelet poten-
tial of CA, the dietary supplementation of which may ameliorate CVDs through various
mechanisms, such as by decreasing oxidative stress and inhibiting blood platelet activation.

Salazar-López et al. [74] supplemented male Wistar rats with either lard at 310 g/kg
(HFD) or lard and FA at 2 g/kg (HFD + FA) for eight weeks. The rats fed with HFD + FA
had significantly lower plasma lipids and glucose levels compared with the HFD group.
Bumrungpert et al. [75] conducted a randomized, double-blind, placebo-controlled trial
with hyperlipidemia rats. The treatment group (n = 24) was given FA (1000 mg daily) and
the control group (n = 24) was provided with a placebo for six weeks. FA supplementation
demonstrated a statistically significant decrease in total cholesterol (8.1%; p = 0.001), LDL-C
(9.3%; p < 0.001), and triglyceride (12.1%; p = 0.049) and increased HDL-C (4.3%; p = 0.045)
compared with the placebo, while oxidized LDL-C was significantly decreased in the
FA group (7.1%; p = 0.002). The results of both studies revealed FA’s potential to reduce
cardiovascular disease risk factors.
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Akbari [76] noted that GA exerts a protective action against CVDs by increasing
antioxidant enzyme capacity and inhibition of lipid peroxidation and decreasing serum
levels of cardiac marker enzymes.

A study by Ibitoye and Ajiboye [77] investigated the influence of CA, FA and GA on
high-fructose diet-induced metabolic syndrome in rats. The authors reported that oral
administration of the phenolic acids significantly reversed the increase in the levels of lipid
parameters and indices of atherosclerosis, cardiac and cardiovascular diseases.

Sherratt et al. [78] noted that RA and its esters inhibit membrane cholesterol domain
formation through an antioxidant mechanism based on alkyl chain length.

3.2.2. Natural Extracts Rich in Phenolic Acids

Murino Rafacho et al. [79] reported that daily dietary supplementation (11–110 mg)
of rosemary leaves (particularly rich in RA) attenuated cardiac remodelling on male Wis-
tar rats by improving energy metabolism and decreasing oxidative stress. The findings
support further investigations of the use of rosemary as an adjuvant therapy against
myocardial infarction.

In a study by Faponle et al. [80], 48 adult male rats were supplemented with a leaf
extract of Amaranthus spinosus (particularly rich in p-CA) at a single dose of 250 mg/kg
continuously for 28 days. Although no significant alterations were observed in the choles-
terol and triglyceride levels of the heart, there was a significant decrease in the atherogenic
indices of plasma, revealing a potential protective role against CVD related disorders. Very
recently, Fatma et al. [81] reported a clear protective effect of Thymus algeriensis against
hydrogen peroxide induced cardiotoxicity in rats.

Panda et al. [82] investigated the cardioprotective activity of the Macrotyloma uniflorum
seed extract (MUSE) and its phenolic acids (p-CA and FA) in isoproterenol (ISO)-induced
myocardial infarction in rats. Treatment of rats with MUSE (250 and 500 mg/kg) for 30 days
resulted in a significant attenuation of serum marker enzymes, total cholesterol, triglyc-
erides, uric acid and restoration of heart rate, systolic, diastolic and mean arterial pressure.

Cianciosi et al. [83] reviewed the phenolic compounds in honey and their associated
health benefits. The authors reported that the abundance of phenolic acids in honey (CA,
FA, VA, etc.) may account for its protective effect in the cardiovascular system where it
mainly prevents the oxidation of low-density lipoproteins.

3.3. Effects against Hepatotoxicity and Liver Disorders

The liver plays a crucial role in the regulation of various physiological processes and
in the excretion of endogenous waste metabolites and xenobiotics. The plant kingdom is
full of liver protective chemicals such as phenols, carotenoids, flavonoids, and phenolic
acids [84].

3.3.1. Individual Phenolic Acids

Ajiboye et al. [85] conducted a study to evaluate the influence of CA on 1,3-dichloro-2-
propanol-induced hepatotoxicity in rats that received distilled water or CA (10 or 20 mg/kg
body weight) for seven days. The authors reported that CA protects against 1,3-dichloro-2-
propanol-induced hepatotoxicity by enhancing the cytoprotective enzymes and lowering
inflammation. In addition, Mu et al. [86] observed that CA protects transplanted livers
from injury, which is likely attributed to its protection of oxidative damage by interfering
in PDIA3-dependent activation of NADPH oxidase.

Very recently, Hao et al. [87] explored the potential protective effect of CAPE on the
cadmium-induced liver damage of 40 male mice that were treated daily with 10 µmol
CAPE/kg body weight, gavage for four weeks. The authors concluded that CAPE admin-
istration significantly reduced cadmium level and improved liver tissue histopathology
reporting for the first time a CAPE’s protection against CdCl2-induced hepatotoxicity.

Chen et al. [88] conducted a dietary supplementation of fish (Megalobrama amblycephala)
with FA at 50–100 mg/kg body weight doses. The authors reported that FA significantly
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decreased the contents of pro-inflammatory cytokines such as TNF-α and IL-1β, thereby
proving that this phenolic acid alleviates lipopolysaccharide-induced acute liver injury
in fish.

Owumi et al. [89] studied the effects of GA against hepatoxicity in rats exposed
to aflatoxin B1AFB1 (75 µg/kg body weight) and treated with GA (20 or 40 mg/kg) for
28 successive days. The authors concluded that GA ameliorated AFB1-induced hepatorenal
dysfunction by decreasing oxidative stress and inflammation in rats.

Hussein et al. [90] evaluated the effects of GA and FA against an experimentally
induced liver fibrosis by thioacetamide (TAA). Supplementation of rats with both FA
and GA at 20 mg/kg/day, for six weeks exhibited hepatoprotective and antioxidant
effects against TAA-induced liver fibrosis (mediated through inhibition of TGF-β1/Smad3
signalling and differentially regulating the hepatic expression level of miR-21, miR-30 and
miR-200).

Lee et al. [91] reported that CarA modulates increased hepatic lipogenesis and adipocyte
differentiation in ovariectomized mice fed with normal or high-fat diets.

Oguz et al. [92] exposed 32 rats to hepatic ischaemia/reperfusion (I/R) injury and
subsequent treatment with an RA dose of 50 mg/kg via oral gavage. According to the
results, RA significantly reduced liver function test parameters and decreased oxidative
stress and abnormal histopathological findings in the liver.

3.3.2. Natural Extracts Rich in Phenolic Acids

A few authors have very recently examined the effect of phenolic rich extracts against
carbon tetrachloride (CC14)-induced liver injury in mice. Meng et al. [93] have concluded a
clear inhibitory activity of S. officinalis rich in GA (8 mg/g). Meharie et al. [94] also reported
a similar beneficial effect of Clutia abyssinica (Euphorbiaceae) against mice hepatotoxicity.

In an in vitro study, Hewage et al. [95] evaluated the cytotoxicity and hepatoprotective
effect of different solvent fractions (aqua, butanol, chloroform, ethyl acetate and hexane)
of S. quelpaertensis Nakai leaf. Between the five fractions (0–1000 µg/mL) only the ethyl
acetate fraction, rich in phenolic acids (such as p-CA) showed a hepatoprotective effect
against HepG2 cells.

Furthermore, Mbarki et al. [96] reported a clear protective effect of Trigonella foenum
graecum (Fenugreek seeds), an extract rich in various phenolic acids, against CC14-induced
damage in liver and kidney of male rats.

3.4. Effects against Neurological Disorders
3.4.1. Individual Phenolic Acids

Alzheimer’s disease (AD) is an ultimately fatal brain disorder, which along with other
chronic neurodegenerative conditions has imposed an increasingly large burden on social
care systems [97]. Various medicinal plants rich in phenolic compounds were reported to
exert a beneficial effect in the treatment of AD.

Habtemariam et al. [98] related the anti-AD therapeutic potential of CA with the
presence of diorthohydroxyl (catecholic) aromatic moiety and also reviewed the neuro-
protective effect of the two most common CA conjugated natural bioactive derivatives
(chlorogenic acid and CAPE). Additionally, it was reported that CA improved behavioural
impairments, and attenuated loss of dopaminergic neurons in mice, thereby exerting a
clear neuroprotective effect [99]. Ferreira et al. [100] assessed the neurotrophic and neu-
roprotective effects of CAPE against cisplatin-induced neurotoxicity in PC12 cells. The
authors reported that CAPE (10 µM) attenuated the inhibition of neuritogenesis and the
downregulation of markers of neuroplasticity induced by cisplatin (5 µM). A recent medi-
cal study [101] reported clear inhibitory effects of CAPE against acetylcholinesterase, an
enzyme linked with the development of AD.

Bahri et al. [102] noted that CarA can have a protective effect against chronic neu-
rodegenerative conditions, like Parkinson’s disease, via a mechanism that links to the
transcriptional activation of antioxidant Nrf2/ARE pathway.
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Rehman et al. [103] observed a clear anti-inflammatory effect of FA against LPS-
induced neuroinflammation in the mouse brain. Mori et al. [104] supplemented orally
transgenic mice with epigallocatechin-3-gallate (EGCG) and/or FA (30 mg/kg each) daily
for three months. The authors reported that the combined EGCG-FA treatment reversed
cognitive impairment in most tests of learning and memory, presenting thereby an AD
therapeutic effect.

Much attention has been given very recently to the potential beneficial effect of GA on
mental health. Shabani et al. [105] reviewed several clinical studies and concluded that GA
is effective against nervous system disorders, including AD, Parkinson’s disease, ischemia,
depression and anxiety. In addition, Liu et al. [106] observed a clear neuroprotective effect of
GA following the systemic administration of 100 mg/kg body weight to neuroinflammatory
rat, compared to vehicle-treated rats. Khoshnam et al. [107] reported that GA (1.0 µM)
protected against neurotoxicity in hippocampal neurons isolated and co-cultured with
glial cells.

Rizk et al. [108] reported that oral administration of rats with ellagic acid (10 mg/kg/day)
and RA (75 mg/kg/day) for 14 days mitigated the neural changes induced by doxorubicin,
a chemotherapeutic agent. Very recently, Salau et al. [109] reported a clear neuroprotec-
tive activity of VA against Fe2+-induced oxidative toxicity in brain tissues (neuronal cell
lines—HT22). Similarly, VA was found to exert clear neuroprotective effects and restore
the spatial memory in rats, following VA supplementation for 14 consecutive days [110].

Table 1. Selection of in vivo and in vitro studies on the health/biochemical properties of various phenolic acids.

Health Disease Phenolic Treatment & Conditions Conclusion of Study/Health Effect References

ANTICANCER
PROTECTION

Effect of Thymoquinone (TQ-25 µM) and FA
(250 µM) on proliferation and apoptosis of a

breast cancer cell line MDA-MB 231.

FA in combination with TQ significantly
reduced cell proliferation/anticancer effect [55]

Human EC cells (EC9706 and KYSE450) were
treated with different concentrations

(10–40 µg/mL) of GA

GA reduced the growth of xenograft tumour
and promoted apoptosis in a concentration

dependent manner.
[57]

Rats subject to DMBA induced oral
carcinogenesis were supplemented with VA

(200 mg/kg bw p.o) for 14 weeks

VA significantly restored the disturbances in
antioxidants status {superoxide dismutase,
catalase) to near normal range in DMBA

treated hamsters/anti-cancer effects

[62]

CARDIO-PROTECTION

Male Wistar rats supplemented with either lard
at 310 g/kg (HFD) or lard and FA at 2 g/kg

(HFD + FA) for 8 weeks.

The rats fed with HFD + FA had significantly
lower plasma lipids and glucose levels

compared with the HFD group.
[74]

Daily dietary supplementation of male Wistar
rats with Rosemary leaves (11–110 mg) rich

in RA

Rosemary attenuated cardiac function
improving metabolism & decreasing

oxidative stress.
[79]

LIVER PROTECTION

Activity of CA on
1,3-dichloro-2-propanol-induced hepatotoxicity
in rats that received CA (10 or 20 mg/kg bw) for

7 days.

CA protected against hepatotoxicity by
enhancing the cytoprotective enzymes and

lowering inflammation.
[85]

Dietary supplementation of fish (Megalobrama
amblycephala) with FA at 50–100 mg/kg bw

FA decreased pro-inflammatory cytokines
alleviating acute liver injury. [88]

Rats exposed to aflatoxin B1AFB1 (75 µg/kg bw)
were treated with GA (20 or 40 mg/kg bw) for

28 days.

GA ameliorated AFB1-induced hepatorenal
dysfunction by decreasing oxidative stress

and inflammation in rats hepatotoxicity.
[89]

32 rats exposed to hepatic
ischaemia/reperfusion injury were subsequently

treated with RA dose of 50 mg/kg via
oral gavage.

RA significantly reduced oxidative stress
and abnormal histopathological findings

in liver.
[92]
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Table 1. Cont.

Health Disease Phenolic Treatment & Conditions Conclusion of Study/Health Effect References

NEURO-PROTECTION

Systemic administration of
neuroinflammatory rat with GA

(100 mg/kg)

Clear neuroprotective effect of GA in
treated rats compared to placebo [106]

Transgenic mice supplemented orally with
epigallocatechin-3-gallate (EGCG) and/or
FA (30 mg/kg each) daily for 3 months data

The combined EGCG-FA treatment
reversed cognitive impairment,

presenting AD therapeutic effect.
[104]

Dietary supplementation of rats with
500 mg/kg body weight) of methanolic

extracts of Salvia splendens (rich in RA and
CA) for 4 weeks

The treatment significantly attenuated
AlCl3-induced behavioral impairment

(AD like).
[111]

VA was tested against Fe2+-induced
oxidative toxicity in brain tissues (neuronal

cell lines—HT22).

VA exerted a clear
neuroprotective activity. [109]

CA: caffeic acid, FA: ferulic acid, GA: gallic acid, RA: rosmarinic acid, VA: vanillic acid, bw: body weight, AD: Alzheimer’s disease.

3.4.2. Natural Extracts Rich in Phenolic Acids

El-Sawi et al. [111] examined the neuro-therapeutic properties of Salvia splendens plant
cultivated in Egypt (particularly rich in RA and CA). The authors reported that dietary
supplementation of rats with a dose of 500 mg/kg body weight of methanolic extracts
of Salvia species for 4 weeks significantly attenuated their AlCl3-induced behavioural
impairment (similar to that of AD).

During AD, the level of acetylcholine (AChE) in the brain is decreased whereas the
level of oxidative reactive species increases and accumulation of β-amyloid protein starts.
A black sesame pigment (extract of black sesame seeds rich in VA) upon simulation by
gastrointestinal digestion was reported to have AChE activity [112]. In addition, an anti-
amyloid aggregation activity of black sesame pigment was noted by Panzella et al. [113], a
finding that may offer new perspectives towards its use as a food supplement for the preven-
tion of AD. Liang et al. [114] highlighted the neuroprotective effect of Fagopyrum dibotrys, a
natural extract rich in phenolic acids, against AD.

3.5. Protective Effects against Microbial and Viral Infections (Incl. COVID-19)

In addition to their antioxidant activities, plant-derived phenolic acids have been
reported to exert antimicrobial and anti-inflammatory properties [115]. Over the past
few years, herbal extracts and various essential oils rich in phenolics have also shown
effective antifungal activities. More specifically, nanohydrogels embedded with natural
plant extracts and oils have become the primary choice of pharmaceutical scientists [116].
In addition, a few authors have focused on various botanical sources with antimicrobial
properties by exploring their classification, chemical composition and functional properties.
Semeniuc et al. [117] examined a range of botanical essential oils (parsley, lovage, basil,
thyme) using various chemometric methods and concluded that thyme essential oil ex-
hibited the stronger antibacterial activity. An overview of the most recent studies on the
potential activity of phenolic acids against microbial relevant infections is given in Table 2.

3.5.1. Antimicrobial Activity of Phenolic Acids-Mechanism of Action

Liu et al. [118] noted that the chemical structure of phenolic acids enables their poten-
tial incorporation into biomaterial scaffolds, thus providing naturally derived functionali-
ties that could improve healing outcomes. The chemical structure, position and number of
substitutions in benzene rings seem to determine the anti-microbial activity of phenolic
acids [119]. An increase in alkyl chain lengths enhances activity while hydroxybenzoic
and hydroxycinnamic acids show different modes of action depending on the number of
hydroxy and methoxy functional groups [120].

Wu et al. [121] reviewed the activity of various naturally derived phenolic acids with
diverse skeletons and mechanisms, and concluded that CA and GA and their derivatives,
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especially, could provide us with an excellent source of novel antiviral drugs. Paulo
and Santos [122] examined how incorporation of caffeic-ethyl cellulose microparticles in
skin care products can offer antimicrobial and anti-aging protection. Moreover, Lang-
land et al. [123] has reported an antiviral activity of CA towards herpes simplex (HSV),
VSV-Ebola pseudotyped and vaccinia viruses. The authors reported that the antiviral
activity increased and occurred early in the virus replication cycle with the addition of
chelated inorganic ions or a metal such as iron to CA. Zhang et al. [124] observed that
the cocktail of either CA (1.5 mg/mL) or chlorogenic acid (3 mg/mL) with the antibi-
otic fosfomycin (50 mg/L) was able to significantly inhibit the growth of the pathogen
Listeria monocytogenes.

De Camargo et al. [125] reported that phenolic acid-rich extracts from peanut sources
(24–49 µg phenolics/mL) exhibited a high antibacterial effect against the growth of Gram-
positive (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, etc.) and Gram-
negative bacteria (Pseudomonas aeruginosa, Salmonella Enteritidis, Escherichia coli, etc.).

Baidoo et al. [126] investigated the wound healing, antimicrobial and anti-oxidant
activities of methanol extracts of the leaf and stem of E. africana tested in the dermal
excision wound model in rats. The methanol extract of bark stem, having GA as the main
phenolic compound, demonstrated antibacterial activity against Staphylococcus aureus and
Streptococcus pyogenes with a minimum inhibitory concentration of 1.56 mg/mL and thereby
a great potential for the treatment of open wounds.

3.5.2. Potential Protective Effects of Phenolic Acids against Coronavirus-Based Infections

Coronaviruses are the causative agents of many infectious diseases in humans and
animals. These included severe acute respiratory syndrome (SARS), avian infectious bron-
chitis (IBV) in poultry, Middle East respiratory syndrome (MERS), and coronavirus disease
2019 (COVID-19) in humans [127]. The majority of publications on the herbal remedies of
coronavirus, MERS, or SARS focused primarily on the use of polar compounds, including
phenolic acids (namely CA) and flavonoids (namely quercetin and myricetin) [128].

Upon viral infection, heat shock protein A5 (HSPA5) is upregulated, then translocated
to the cell membrane where it can recognize the SARS-CoV-2 spike. Elfiky et al. [129], using
molecular docking and molecular dynamics, tested a few natural product compounds
against the HSPA5 substrate-binding domain β (SBDβ). The results show a high to moder-
ate binding affinity for a range of phenolic acids. More specifically, CA, CAPE, and p-CA
may bind to cell-surface HSPA5, competing for its recognition by viral spike protein and
contradicting its attachment. These compounds can be successful as anti-COVID-19 agents
for people with a high risk of cell stress, like elders, cancer patients, and front-line medical
staff. Similarly, Kumar et al. [130] used the strengths of molecular dynamics simulations
and concluded that since the natural phenolic compounds are easily available/affordable,
they may even offer a timely therapeutic/preventive value for the management of the
SARS-CoV-2 pandemic.

Khalil and Tazeddinova [131] concluded that CA and GA could be considered in the
treatment of COVID-19 and its related symptoms. Moreover, GA and CA were found to
exert sustainable anti-viral activity against human coronavirus NL63 (HCoV-NL63), one of
the main circulating coronaviruses worldwide that causes respiratory tract diseases like
runny nose, cough, bronchiolitis and pneumonia [132].
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Table 2. Overview of the most recent studies on the potential activity of phenolic acids against
microbial and viral relevant infections, including SARS-CoV-2.

Phenolic Acid Treatment Activity against
Microorganism/Infections References

CA enhanced with chelated
inorganic ions (or a metal

such as iron)

Antiviral activity towards
herpes simplex (HSV),

VSV-Ebola pseudotypes and
vaccinia viruses occurred

early in the virus replication
cycle.

[123]

CA (1.5 mg/mL) and
chlorogenic acid (3 mg/mL)

Phenolic cocktail significantly
inhibit the growth of the food

born pathogen Listeria
monocytogenes.

[99]

Methanol extracts of the leaf
and stem of E. africana (rich in

GA)

Antioxidant and antibacterial
activity against Staphylococcus

(S. aureus and S. pyogenes)
with a minimum inhibitory

concentration of
1.56 mg/mL—great potential
for treatment of open wounds

[126]

CA and GA

CA and GA were found to
exert good anti-viral activity
against human coronavirus

NL63 (HCoV-NL63)

[132]

CA and p-CA

Phenolic acids were found to
bind to cell-surface HSPA5

competing for recognition by
SARS-CoV-2 spike protein

[129]

Screening of 27 CA
derivatives against 5 proteins

of SARS-CoV-2

5 CA derivatives exerted
anti-viral efficacy against
COVID-19 via molecular
docking and molecular
dynamics simulation.

[133]

CA: caffeic acid, GA: gallic acid, p-CA: coumaric acid.

Adem et al. [133] screened 27 CA derivatives against five proteins of SARS-CoV-2 aim-
ing to evaluate the anti-viral efficacy of these natural bioactive entities against COVID-19
via molecular docking and molecular dynamics simulation. The obtained results have un-
covered khainaoside C, 6-O-Caffeoylarbutin, khainaoside B, khainaoside C and vitexfolin
A as potent modulators of COVID-19, possessing more binding energies than nelfinavir
against COVID-19. Very recently, rosmarinic acid was claimed to have a demonstrated
potential to increase the activity or expression of ACE-2 and could therefore aggravate
SARS-CoV-2 effects [134].

4. Conclusions and Prospects

Based on this analysis of the in vitro and in vivo biochemical activities of phenolic
acids, the authors have drawn the following conclusions:

A number of recent in vivo animal clinical trials and in vitro human cell studies offered
sufficient evidence to support that the examined phenolic acids possess health protective
effects against several pathogenic conditions, including cancer, cardiovascular, liver, and
neurodegenerative diseases, as well as microbial infections. Based on their strong antiviral
activities, phenolic acids could also be considered in the development of medical treatments
against the spread of COVID-19 and its related symptoms.

Concerning the mechanism of actions we can note that: (a) the phenolic acid activity
against types of cancer and cardiovascular diseases may respectively link to their estab-
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lished antioxidant effect against DNA damage and LDL oxidative deterioration; (b) the
antimicrobial activity of phenolic acids is well determined by their structure and presence of
functional groups (with CA and GA exerting the strongest reported activities)—although
phenolic acids have shown clear neuro-protective effects, their exact mode of activity
against neurotoxicity needs some further elucidation before further clinical developments;
and (c) a number of botanical extracts rich in various phenolic acids have been increasingly
shown to exert strong antioxidant and biochemical properties, a fact that may be associated
with the synergistic effects of their individual phenolic compounds.

About future prospects in this scientific field, the authors would like to note that:
(i) although the pharmacokinetic and non-toxic profile of phenolic acids make them suitable
for clinical studies, in vivo human trials are needed to further explore their potential for
extensive pharmaceutical applications; and (ii) since a number of recent model studies
came out with promising results about the therapeutic potential of phenolic acid-based
drugs for treatment or prevention of COVID-19, further in vitro and in vivo studies should
be performed to clarify and evaluate the specific antiviral effects of these phytochemicals.
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Abbreviations

AChE acetylcholine
AD Alzheimer’s disease
CA caffeic acid
CAPE caffeic acid phenethyl ester
CarA carnocic acid
CC14 carbon tetrachloride
COVID-19 coronavirus disease 2019
CVDs cardiovascular diseases
DMBA dimethylbenz[a]anthracene
DNA deoxyribonucleic acid
EGCG epigallocatechin-3-gallate
FA ferulic acid
GA gallic acid
HDL high density lipoproteins
HPLC high performance liquid chromatography
HSPA5 heat shock protein A5
LDL low density lipoproteins
p-CA-p coumaric acid
RA rosmarinic acid
ROS reactive active oxygen species
SARS severe acute respiratory syndrome
TAA thioacetamide
VA vanillic Acid
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