
 International Journal of 

Molecular Sciences

Review

The Molecular Mechanisms of Iron Metabolism and
Its Role in Cardiac Dysfunction and Cardioprotection

Tanya Ravingerová 1,* , Lucia Kindernay 1, Monika Barteková 1 , Miroslav Ferko 1,
Adriana Adameová 1,2, Vladislava Zohdi 3, Iveta Bernátová 4 , Kristina Ferenczyová 1 and
Antigone Lazou 5,*

1 Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dúbravská
Cesta, 84104 Bratislava, Slovak Republic; lucia.griecsova@gmail.com (L.K.);
monika.bartekova@savba.sk (M.B.); miroslav.ferko@savba.sk (M.F.); aadameova@gmail.com (A.A.);
kristina.ferenczyova@gmail.com (K.F.)

2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava,
10 Odbojárov st., 83232 Bratislava, Slovak Republic

3 Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 2 Sasinkova st.,
81108 Bratislava, Slovak Republic; vzohdi@gmail.com

4 Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of
Sciences, 1 Sienkiewiczova st., 81371 Bratislava, Slovak Republic; iveta.bernatova@savba.sk

5 Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

* Correspondence: travingerova@gmail.com (T.R.); lazou@bio.auth.gr (A.L.); Tel.: +421-903-419-37 (T.R.);
+302-310-998-381 (A.L.)

Received: 2 October 2020; Accepted: 22 October 2020; Published: 24 October 2020
����������
�������

Abstract: Iron is an essential mineral participating in different functions of the organism under
physiological conditions. Numerous biological processes, such as oxygen and lipid metabolism,
protein production, cellular respiration, and DNA synthesis, require the presence of iron, and
mitochondria play an important role in the processes of iron metabolism. In addition to its
physiological role, iron may be also involved in the adaptive processes of myocardial “conditioning”.
On the other hand, disorders of iron metabolism are involved in the pathological mechanisms of
the most common human diseases and include a wide range of them, such as type 2 diabetes,
obesity, and non-alcoholic fatty liver disease, and accelerate the development of atherosclerosis.
Furthermore, iron also exerts potentially deleterious effects that may be manifested under conditions of
ischemia/reperfusion (I/R) injury, myocardial infarction, heart failure, coronary artery angioplasty, or
heart transplantation, due to its involvement in reactive oxygen species (ROS) production. Moreover,
iron has been recently described to participate in the mechanisms of iron-dependent cell death
defined as “ferroptosis”. Ferroptosis is a form of regulated cell death that is distinct from apoptosis,
necroptosis, and other types of cell death. Ferroptosis has been shown to be associated with I/R injury
and several other cardiac diseases as a significant form of cell death in cardiomyocytes. In this review,
we will discuss the role of iron in cardiovascular diseases, especially in myocardial I/R injury, and
protective mechanisms stimulated by different forms of “conditioning” with a special emphasis on
the novel targets for cardioprotection.
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1. Introduction

Iron is an essential element in all living organisms. Iron is intimately involved in a wide range of
biological processes, including oxygen transport via hemoglobin in the red blood cells, DNA synthesis,
cellular respiration, and electron transfer, as well as overall metabolism [1,2].

The human body contains about 2–5 g of total iron, the majority of which is intracellular. Of that
amount of iron, approximately 60–80% is bound to heme in hemoglobin and myoglobin and to various
nonheme enzymes and proteins. Further, 20–40% of iron is bound to specialized iron-storage proteins
such as ferritin (FT) or hemosiderin. The extracellular iron constitutes only about 0.1% of the total
body iron and is mainly bound to the iron transport protein in the serum named transferrin (Tf).

In humans, dysregulation of iron metabolism can result in both low and high iron levels. Iron
deficiency is frequently present in heart failure patients with reduced ejection fraction associated
with low exercise capacity and reduced quality of life. Oral iron products have been shown to be
non-efficient in these patients with the option of intravenous administration. The current knowledge
of the pathophysiology of iron deficiency in heart failure, its clinical impact, and possible treatment
options are extensively discussed in the review paper by von Haehling et al. (2019) [3]. In line, it has
been shown that iron deficiency impairs contractility of human cardiomyocytes through decreased
mitochondrial function and lower energy production, leading to impairment of heart function [4]. In
addition, systemic iron deficiency is associated with a higher incidence of coronary artery disease
and myocardial infarction (MI) in the population [5], as well as with a higher mortality rate in these
patients [6].

Low iron levels also lead to absolute iron deficiency and/or anemia while chronic inflammation or
cancer can result in functional iron deficiency and anemia of chronic diseases [7–10].

On the other hand, iron overload resulting from genetic disorders or from oral or parenteral iron
treatment are also considerable health problems due to the risk of serious organ damage, including
cancer [11,12]. Cardiomyopathy is the second leading cause of mortality in patients with hereditary
hemochromatosis [12]. In addition, disorders of iron metabolism participate also in the mechanisms of
other diseases, such as type 2 diabetes, obesity, and non-alcoholic fatty liver disease [13]. Regarding
the cardiovascular system, iron overload can cause impaired vascular function and aggravate the
development of atherosclerosis, arrhythmias, and heart failure, as well as overall morbidity of
patients [6,12,14].

Concentrations and homeostasis of iron in the organism are regulated by several mechanisms
responsible for the control of intracellular iron metabolism, transfer, uptake, and export, as well as
intracellular storage (extensively reviewed in [15,16]). Uncontrolled increase of iron concentration (of
genetic and nongenetic “transfusional” origin) is associated with a failure of these mechanisms to
maintain a balance in iron concentration resulting in iron overload that represents a potential danger
to the function of basic cellular mechanisms [17,18]. Redox properties of iron facilitate the production
of reactive oxygen species (ROS) including the most toxic hydroxyl radical [19,20]. Moreover, both
ferrous (Fe2+) and ferric (Fe3+) iron mediate lipid peroxidation, resulting in the formation of alkoxyl
(RO) and peroxyl (RO2) radicals [21].

It has been also demonstrated that increased mitochondrial iron-related reactive oxygen species
(ROS) production contributes to myocardial injury in animal models of ischemia/reperfusion (I/R) [22]
and in human cardiac tissue samples obtained from patients with ischemic cardiomyopathy [23].
Although it was hypothesized already in 1981 that iron may represent a further risk factor of
cardiovascular diseases [24], this issue is still not completely resolved.

2. Systemic Iron Homeostasis

The iron of the body is constantly recycled, mainly through normal phagocytosis of aged
erythrocytes by macrophages. The iron contained in the hemoglobin of these erythrocytes is released
back to the plasma to be reuptaken either by bone marrow for the synthesis of new erythrocytes or by
other organs to synthesize iron-containing molecules. Under physiological conditions, in the absence
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of blood loss, only small amounts of iron (1–2 mg/day) are lost due to desquamation of epithelial cells,
and these losses are replenished by the uptake of dietary iron.

Dietary iron is absorbed by epithelial cells of the small intestine by two distinct mechanisms: The
heme form of iron is absorbed at the apical site of the epithelial cell via a specific heme transporter
called heme carrier protein 1 (HCP1) [25] while the nonheme insoluble Fe3+ is first reduced to
Fe2+ by cytochrome b reductase 1 (DCYTB) and then transported by divalent metal transporter
1 protein (DMT-1) across the membrane [26]. Once transported into the cell, heme-iron is liberated
by hemoxygenase-1 (HO-1), which degrades heme to Fe2+, biliverdin, and carbon monoxide (CO).
Ferrous iron can be stored in the ferritin cores or released to circulation via ferroportin (FPN) at the
basolateral membrane of enterocyte [15]. Up to now, FPN is the only known iron transporter that
causes iron efflux from various cells (enterocytes, macrophages, or peripheral cells) [27,28]. Further
distribution of iron to peripheral tissues is mediated by Tf, which can transport one or two ferric ions.
Tf binds to Tf receptors (TfR) on the cell membrane followed by internalization of the Tf-TfR complex
and iron release into the cell [15]. In physiological conditions, Tf saturation by iron is about 30% and,
thus, Tf serves as a buffer of potentially toxic nontransferrin-bound iron (NTBI).

When Tf saturation is increased, elevated levels of NTBI corresponding mainly to circulating
potentially toxic iron species become a leading cause of damage both at the cellular and the intracellular
level, due to iron overload and its high propensity to trigger ROS production [29,30]. Iron overload,
either at the systemic or at the cellular levels, is also associated with harmful effects on cardiac function
as has been demonstrated in animal studies using mice with cardiomyocyte-specific deletion of the
FPN gene as well as in humans with hemochromatosis or β-thalassemia [30,31]. Furthermore, patients
with Freidreich ataxia, a disease characterized by mitochondrial iron overload in the heart and brain,
develop dilated cardiomyopathy and arrhythmias [32].

Iron homeostasis in the body is tightly regulated. Main iron flows among the digestive tract
(duodenum), plasma, erythrocytes, macrophages, liver (hepatocytes), and spleen and other cell types
are regulated by hormone hepcidin encoded by the hepcidin antimicrobial peptide (HAMP) gene,
which is the main regulator of iron homeostasis. Hepcidin, a 25-amino acid protein, is released
mainly in the hepatocytes, but its release was detected also in other tissues, such as the heart. The
role of hepatic hepcidin is well known. It regulates FPN-mediated iron efflux by promotion of FPN
internalization and degradation in conditions of high levels of iron. Hepcidin release is increased by
iron overload, red blood cell transfusion, by iron treatment, and genetic factors as well as by infection
and/or inflammation. On the other hand, hepcidin release is decreased mainly by hypoxia, elevated
erythropoiesis, or iron deficiency but also by sex hormones [33–35]. At the molecular level, hepcidin
release is negatively regulated via bone morphogenetic protein/small mothers against decapentaplegic
(BMP-SMAD) pathway, activated in a paracrine manner by BMP2 and BMP6, produced by liver
sinusoidal endothelial cells, and liver sinusoidal endothelial cells were suggested as iron sensors [36,37].
Moreover, it was recently suggested that hepcidin serum levels may be increased by leptin, a hormone
which is dysregulated in metabolic disorders [38].

In addition to regulation by intracellular iron level, iron metabolism is also regulated by several
iron-independent mechanisms. Oxidative stress increases nuclear factor erythroid 2-related factor
2 (Nrf2) synthesis to activate Nrf2-mediated antioxidant defense system [39]. Concurrently, several
genes involved in iron metabolism are regulated by Nrf2: Ferritin heavy chain (FTH), ferritin light
chain (FTL), Tf, FPN, and HO-1 [40]. Nrf2-mediated mechanism regulates also hepcidin synthesis via
modulation of BMP6 [41]. Another factor affecting iron metabolism is inflammation associated with
IL-6-mediated increase in hepatic hepcidin synthesis resulting in the degradation of FPN [42].
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3. Cellular Iron Homeostasis in the Heart

3.1. Uptake and Cellular Regulation of Iron

Iron can enter cardiomyocytes in several ways. The uptake of Tf-bound iron is mediated through
binding to TfR1 and subsequent internalization by endocytosis. The acidic environment of the lysosome
liberates iron from the Tf-TfR1 complex and iron is transported into the cytosol, whereas the Tf-TfR1
complex is recycled to the cell surface [34]. Another important pathway for the influx of iron into
the cells is through DMT-1 protein, which mediates the import of non-Tf-bound iron. In addition,
non-Tf-mediated iron uptake in cardiomyocytes can also occur through the L-type and the T-type
calcium channels present in cardiac plasma membrane and through zinc transporters [43,44].

Upon entry into the cell, iron becomes a part of the poorly characterized labile iron pool (LIP)
in the cytosol. Iron in the LIP acts as an intermediate and can be utilized for storage in FT (where
it is redox inert) or go through biosynthetic pathways to generate heme and iron-sulfur clusters in
the mitochondrion or iron-requiring proteins in the cytosol [26]. The excess iron is removed from the
cell by the Fe2+ exporter, ferroportin 1 (FPN1) [16,31]. Under normal conditions, the level of labile
iron is kept very low to prevent ROS formation. However, pathological states of iron overload can
dramatically increase the labile iron pool.

Intracellular FT is the ubiquitous protein that serves as a type of buffer that protects against iron
deficiency and excess. FT can store as much as 4500 atoms of iron (mode value of ∼1500 atoms) in a
soluble and nontoxic form and can transport it to areas where it is required [45]. FT is important for
iron metabolism since it binds and sequesters iron in conditions of iron overload and releases it in
the case of iron deficiency. Under iron deficiency conditions, FT is degraded and releases stored iron,
which can be used for the most crucial processes, whereas in iron overload conditions it stores iron in a
safe form to prevent the induction of oxidative stress. Iron sequestering property of FT is considered
as a source of antioxidant effects [46]. Human FT structure consists of 24 subunits of two proteins
chains: FTH protein and FTL protein. FTH-to-FTL ratio varies in various cell types and depends on
tissue state [47]. FTH participates in the maintenance of LIP and protects the cell against oxidative
stress due to high levels of Fe2+ available for the Fenton reaction. On the other hand, FTL, in the form
of apoferritin, is present also in blood; serum FTL concentrations correlate with various pathological
states [48].

Cellular iron homeostasis is regulated by a post-transcriptional mechanism through interaction of
iron regulatory proteins (IRP) 1 and 2 with iron-responsive elements (IRE) on mRNA of the respective
genes, which modulate the synthesis of key iron metabolism proteins involved in iron uptake, storage,
and release [49]. While IRP1 possess dual function, as IRE-binding protein and cytosolic aconitase
(c-aconitase, CA), IRP2 is stable in hypoxic and iron-deficient cells but degraded by the proteasome in
normoxic cells [50]. Under conditions of low cellular iron concentration, IRPs stabilize the mRNA of
TfR1 and DMT-1 to promote iron influx; at the same time, they inhibit mRNA translation of FPN1 and
FT to inhibit iron efflux and storage, respectively [51,52].

In cardiac myocytes, FPN1 is also regulated by hepcidin, both by that produced by the liver and
produced locally in the heart. Hepcidin causes degradation of FPN1 resulting in a smaller iron efflux
from the cardiomyocyte. Cardiac hepcidin has important autocrine effects and participates in the
autonomous regulation of iron in cardiomyocytes that are distinct from systemic iron regulation. In
contrast to systemic hepcidin, cardiac-hepcidin protein is upregulated rather than downregulated
by hypoxia to preserve cellular iron [53]. This mechanism involves post-transcriptional regulation
of hepcidin peptide by the hypoxia-inducible factor (HIF) system through upregulation of furin, a
HIF1α target gene [54]. The fact that cardiomyocytes are equipped with redundant iron-importing
mechanisms, while only one iron-exporting protein, FPN, is available, explains the high susceptibility
of the heart to iron overload. Iron homeostasis is under substantial subcellular regulation within
cardiomyocytes, whereas iron utilization and transport in the mitochondrial compartment, which
represents the metabolic engine of the heart, is controlled by a distinct set of proteins, such as
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mitochondria-specific ferritin (FTMT), frataxin, and mitochondrial ATP-binding cassette subfamily B
(ABCB) transporters, as discussed later [55,56].

Mechanisms of Tf-dependent and non-Tf-dependent mechanisms of iron import into the
cardiomyocytes, iron storage, and export from the cells, as well its transport to the mitochondria and
further removal, are schematically represented in Figure 1.
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by endocytosis. Upon liberation of iron, the Tf-TfR1 complex is recycled to the cell membrane. Non-
Tf-mediated iron uptake occurs through L/T-type calcium channels, zinc transporters, and DMT-1. In 
the cytosol, iron is bound by the storage molecule FT and a small amount remains as labile iron. Iron 
is exported from the cell via FPN, which is regulated by the hormone hepcidin. Iron is transported 
into the mitochondria through MFRN and MCU and can be utilized for the synthesis of heme and 
iron-sulfur clusters or for storage FTMT. The ABCB8 transporter serves as an iron exporter. IRP1/2 
proteins control iron homeostasis in cardiac myocytes. IRPs bind to IRE sites in the mRNA of DMT-1 
and TfR1, leading to their stabilization, and of FT and FPN, leading to their inhibition. Abbreviations: 
ABCB8, adenosine triphosphate (ATP)-binding cassette subfamily B member 8; DMT-1, divalent 
metal transporter 1; FPN, ferroportin; FT, ferritin; FTMT, mitochondrial ferritin; IRE, iron-responsive 
element IRP, iron regulatory protein; ISC, iron-sulphur cluster; LIP, labile iron pool; MFRN, 
mitoferrin; MCU, mitochondrial calcium uniporter; NTBI, nontransferrin-bound iron; Tf, transferrin; 
TfR1, transferrin receptor 1. 
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that they also play an important role in iron metabolism [55–57] and in the modulation of cardiac 
damage during ischemia and reperfusion [58]. In fact, the mitochondrion is the sole site of heme 
synthesis and a major generator of iron sulfur clusters (ISCs), both of which are present in 
mitochondria and cytosol. Heme- and ISC-containing proteins are integral parts of Mitochondrial 
Oxidative Phosphorylation System (OXPHOS) and adenosine triphosphate (ATP) production 
catalyzing electron transport via reversible oxidation states of iron and providing a constant supply 
of energy necessary for normal heart function [1,59]. Data suggest that nearly one-third of 
cardiomyocyte iron is distributed in mitochondria, whereas cardiomyocyte mitochondria have 50–
150% more iron compared to other cells [60]. Consequently, mitochondrial iron homeostasis must be 
tightly controlled as iron deficiency could severely disrupt mitochondrial energetics, whereas iron 
overload could result in mitochondria damage through ROS production. ROS react with iron in 
mitochondria and produce extremely deleterious hydroxyl radicals [19], followed by the 
depolarization of the mitochondrial membrane potential [61] and opening of the mitochondrial 
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Figure 1. Schematic representation of iron homeostasis in cardiac myocytes. Tf-bound iron is
imported into the cell through binding to transferrin receptor 1 (TfR1) and subsequent internalization
by endocytosis. Upon liberation of iron, the Tf-TfR1 complex is recycled to the cell membrane.
Non-Tf-mediated iron uptake occurs through L/T-type calcium channels, zinc transporters, and DMT-1.
In the cytosol, iron is bound by the storage molecule FT and a small amount remains as labile iron. Iron
is exported from the cell via FPN, which is regulated by the hormone hepcidin. Iron is transported
into the mitochondria through MFRN and MCU and can be utilized for the synthesis of heme and
iron-sulfur clusters or for storage FTMT. The ABCB8 transporter serves as an iron exporter. IRP1/2
proteins control iron homeostasis in cardiac myocytes. IRPs bind to IRE sites in the mRNA of DMT-1
and TfR1, leading to their stabilization, and of FT and FPN, leading to their inhibition. Abbreviations:
ABCB8, adenosine triphosphate (ATP)-binding cassette subfamily B member 8; DMT-1, divalent metal
transporter 1; FPN, ferroportin; FT, ferritin; FTMT, mitochondrial ferritin; IRE, iron-responsive element
IRP, iron regulatory protein; ISC, iron-sulphur cluster; LIP, labile iron pool; MFRN, mitoferrin; MCU,
mitochondrial calcium uniporter; NTBI, nontransferrin-bound iron; Tf, transferrin; TfR1, transferrin
receptor 1.

3.2. The Role of Iron in Heart Mitochondria and Cardiomyocyte Dysfunction

Mitochondria are known for their key role in energy production. However, it is less recognized that
they also play an important role in iron metabolism [55–57] and in the modulation of cardiac damage
during ischemia and reperfusion [58]. In fact, the mitochondrion is the sole site of heme synthesis and
a major generator of iron sulfur clusters (ISCs), both of which are present in mitochondria and cytosol.
Heme- and ISC-containing proteins are integral parts of Mitochondrial Oxidative Phosphorylation
System (OXPHOS) and adenosine triphosphate (ATP) production catalyzing electron transport via
reversible oxidation states of iron and providing a constant supply of energy necessary for normal
heart function [1,59]. Data suggest that nearly one-third of cardiomyocyte iron is distributed in
mitochondria, whereas cardiomyocyte mitochondria have 50–150% more iron compared to other
cells [60]. Consequently, mitochondrial iron homeostasis must be tightly controlled as iron deficiency
could severely disrupt mitochondrial energetics, whereas iron overload could result in mitochondria
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damage through ROS production. ROS react with iron in mitochondria and produce extremely
deleterious hydroxyl radicals [19], followed by the depolarization of the mitochondrial membrane
potential [61] and opening of the mitochondrial permeability transition pore, resulting in mitochondrial
swelling [62].

The mitochondrion can use iron that has been imported into the cell using Tf-TfR complex or iron
released from FT as a result of its degradation in proteasomes or lysosomes. The exact mechanism
through which iron is transported across the outer mitochondrial membrane is under debate; however,
evidence suggests that iron import into mitochondria is regulated via mitoferrin 2 (MFRN) and
mitochondrial calcium uniporter (MCU) [30,62]. On the other hand, iron export is maintained via
ABCB proteins such as ATP-binding cassette subfamily B member 8 (ABCB8) [63]. Cardiomyocytes also
express a mitochondria-specific ferritin, FTMT, that has a high level of sequence identity with H-ferritin
and is an important regulator of mitochondrial homeostasis since its loss results in mitochondrial
oxidative damage [64].

Mitochondrial iron dysregulation has been linked with different cardiac pathological conditions,
from cardiac ischemia (iron overload) to advanced heart failure (iron deficiency) [23,30,65]. These
detrimental effects are partly mediated by the increased oxidative stress.

As iron is an important component of complexes of the respiratory chain, iron deficiency
impairs mitochondrial complexes I–III, leading to reduction of ATP production [4]. In iron-deficient
cardiomyocytes, expression of glycolytic enzymes is increased with a concomitant decrease in expression
of Krebs cycle enzymes. However, the shift to glycolysis observed under these conditions is not sufficient
to compensate for the loss in ATP production, resulting in a net decrease in ATP concentration and
impaired function of ATP-dependent ion transport pumps. Furthermore, dysfunctional mitochondria
are less likely to undergo mitophagy, accentuating the detrimental effect [4,59]. Enzymes that scavenge
ROS also require iron for their production, and iron-depleted cardiomyocytes are more sensitive to
ROS damage than cardiomyocytes with regular iron content [65].

Iron overload, either at the systemic or at the cellular levels, is also associated with harmful effects
on cardiac function, as has been demonstrated in animal studies using mice with cardiomyocyte-specific
deletion of the ferroportin gene as well as in humans with hemochromatosis or β-thalassemia [30,31].
Furthermore, patients with Freidreich ataxia, a disease characterized by mitochondrial iron overload in
the heart and brain, develop dilated cardiomyopathy and arrhythmias [32]. The relative contribution
of circulating “free” iron vs. intracellular LIP to the detrimental effect of iron is unclear.

Iron accumulation induces oxidative stress acting as a catalyst in Haber–Weiss and Fenton
reactions, generating hydroxide ions (OH−) and hydroxyl radicals (HO.), which are very reactive and
toxic free radicals [20]. These free radical by-products can also engage in secondary oxidation reactions
in the cytosol and/or in the mitochondria and, in turn, damage DNA, proteins, and lipids. ROS can
disturb cardiac intracellular Ca2+ homeostasis and affect multiple ion transporters responsible for
myocardial electrical activity, leading to diastolic and systolic dysfunction and arrhythmogenesis [52].
Increased mitochondrial ROS generation results in depolarization of the mitochondrial membrane
potential, opening of the mitochondrial permeability transition pore, leading to cell rupture and
eventually to cardiac dysfunction and cardiomyopathy [66]. Although the exact mechanisms of cardiac
mitochondrial injury induced by iron overload have not yet been fully elucidated, data suggest that
treatment with the iron chelator, deferiprone, and the T-type calcium channel blocker, efonidipine,
improves cardiac mitochondrial function [67].

4. Iron and Myocardial I/R Injury

Increased iron has been implicated in the pathology of I/R injury in a variety of organs including
the heart. It has been postulated that during and following sustained ischemia, FT degradation prevails
over FT synthesis with a subsequent release of iron [68]. Early studies have shown that relatively
high concentrations of iron are mobilized into the coronary flow after prolonged ischemia, and this
mobilization and redistribution of myocardial iron caused by ischemia may contribute to the oxidative
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damage and loss of cardiac function associated with the “reperfusion injury” [69]. Moreover, it has been
demonstrated that even mild, non-overloading doses of iron (0.3–12 mg/mL, i.p.) can be detrimental to
the heart under conditions of global I/R [70]. The highest dose of applied iron (12 mg/mL) caused a 17%
reduction in post-ischemic recovery of left ventricular developed pressure, more than 50% decrease in
cardiac work and cardiac output, associated with a two-fold increase in lipid hydroperoxides in the
effluent. In addition to functional depression, iron-treated hearts also displayed myocardial injury
manifested by two-fold higher post-I/R release of lactate dehydrogenase (LDH). During ischemia and
early reperfusion, the acidotic and highly reduced intracellular environment favors release of ferric
or ferrous iron from metalloproteins and facilitates iron-mediated Fenton chemistry with conversion
of the less potent oxidants, superoxide and hydrogen peroxide, to the highly reactive strong oxidant,
hydroxyl radical. In this context, administration of iron chelators, such as deferoxamine, beginning at
the time of reperfusion, reduces the burst of oxygen free radical generation during the early minutes of
reperfusion and the severity of reperfusion injury [71,72].

Increased TfR1 expression, due to activation of HIF signaling and subsequent increase of Tf
uptake and iron accumulation, has been implicated as the mechanism responsible for the changes in
cellular iron [73]. Furthermore, excessive free iron and the resultant oxidative stress and myocardial
cell death observed in mice after MI was attributed to the downregulation of FTH protein, resulting
in a reduced ability of cardiomyocytes to bind free intracellular iron [74]. More recently, increased
mitochondrial iron was observed after cardiac I/R injury in mice and in cardiac tissue samples from
patients with ischemic cardiomyopathy [23]. In addition, in the same study, genetic modification
through overexpression of mitochondrial iron export protein ABCB8 was shown to be effective in a
mouse model, due to an improved iron export, leading to protection against I/R injury as manifested
by lower expression of cardiac stress markers and reduced cellular damage [23].

Depletion of iron by using iron chelators has been used as a cardioprotective approach to suppress
ROS production. However, the benefits of using iron chelation in I/R injury are still debated. In
some animal models, iron chelation therapy improves contractile function, increases cell viability,
attenuates cardiac remodeling, and also reduces the size of infarction after I/R injury [75–77]. However,
these results were not reproduced in larger animals [78–80]. A potential reason for the discrepant
results may be tissue penetrance of the chelator used. Deferoxamine (DFO), which was used in the
aforementioned studies, predominantly exerts its effect through iron binding in the extracellular space
and endosome [81], whereas it cannot modulate mitochondrial iron [23].

Based on the preclinical studies, in which chelation of iron decreased the extent of I/R injury
and/or myocardial infarct size in animal models, modulation of iron levels was investigated as a
potential background for clinical treatment of I/R injury and reduction of myocardial infarct size (IS)
in patients. Chan et al. (2012) [82] investigated whether DFO administered before reperfusion by
primary percutaneous coronary intervention ameliorates oxidative stress and myocardial IS. The results
of that trial have shown that adjunctive DFO treatment after the onset of ischemia and continued
periprocedurally ameliorated oxidative stress without limiting IS. In support of this, pharmacological
modulation of mitochondrial iron with the mitochondrial-permeable iron chelator, 2,2′-bipyridyl,
protected against myocardial I/R injury, which may provide a novel therapeutic target against ischemic
heart disease [23].

Several clinical studies have been performed to show the benefits of chelation therapy in patients
with coronary artery disease (CAD). Thus, in the study by Paraskevaidis et al. (2005) [83], DFO
was administered during coronary artery bypass grafting surgery, and this intervention protected
myocardium against reperfusion injury, reduced patients’ stays in intensive care units, and also
decreased lipid peroxidation [83]. In addition, positive effect of DFO treatment was manifested by
and improved endothelium-dependent vasodilation in patients with CAD [84]. Furthermore, other
chelators have been studied with the aim to improve post-MI myocardial function. In accordance,
chelation therapy using EDTA (ethylene diamine tetraacetic acid) has been reported to attenuate
adverse cardiovascular outcomes in patients with acute MI [85].
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Taken together, mitochondrial iron is an important contributor in cardiac ischemic damage and
may be a new therapeutic target in the management of ischemic heart disease [58]. Further studies
are required in order to establish therapies that target iron more efficiently in cardiovascular diseases,
especially in patients with acute MI.

5. Heme Oxygenase System in I/R Injury and Cytoprotection

5.1. Function of Heme Oxygenase

Heme oxygenase (HO) is an enzyme catalyzing the conversion of heme to CO, free iron, and
biliverdin, while this reaction is the rate-limiting step in heme degradation. Three HO isoforms have
been identified so far: HO-1, also known as heat shock protein 32, the inducible isoform present in the
whole body but mainly in the spleen, liver, and kidneys; HO-2, an isoform constitutively expressed
under physiological conditions, mainly in the testes, endothelial cells, and the brain; and HO-3, also
constitutive but less characterized isoform of the enzyme [86,87]. Since heme conversion catalyzed
by HO produces Fe2+, HO substantially contributes to iron metabolism in the body including the
cardiovascular system. Among HO isoforms, HO-1, with relatively low expression in most tissues
under physiological conditions, seems to be the most important isoform in the diseased states. HO-1 is
significantly upregulated under stress conditions and contributes to the cytoprotective mechanisms
via maintaining redox homeostasis during different forms of cellular stress such as ischemia, hypoxia,
inflammation, or radiation [87–89]. Increased expression of HO-1 is mediated by the redox-sensitive
transcription factor, Nrf2, through binding to and activating expression of antioxidant response
elements (ARE) on the promoter region [90].

Breakdown products of HO-1, CO, and biliverdin, which were once considered to be toxic
metabolic waste products, have been also shown to participate in cytoprotective signaling [87,91].
Maintaining low iron concentrations via increased FT levels plays an important role in cellular
antioxidant defense and cytoprotection under stress conditions [87]. In line with this, overexpression
of FTH was found protective via its anti-apoptotic effects in hepatic I/R injury [92].

5.2. HO-1 in Cardioprotection against Myocardial I/R Injury

Activation of HO-1 has been extensively documented to play a protective role in cardiac I/R injury
achieved by interventions targeting oxidative stress in different experimental models of myocardial I/R
injury. For example, activation of HO-1 is involved in post-I/R infarct size limitation and amelioration
of left ventricle (LV) dysfunction afforded by several natural antioxidants such as polyphenols, the
most studied of which is resveratrol. The cardioprotective effects of resveratrol against I/R injury were
suggested to be mediated through HO-1/VEGF (vascular endothelial growth factor) pathway in rat
nonpathological myocardium [93] and in diabetic [94] and hypercholesterolemic myocardium [95]
and were associated with activation of phosphorylated protein kinase B (p-Akt), p-endothelial nitric
oxide synthase (eNOS), and Mn superoxide dismutase (SOD). Resveratrol-mediated cardioprotective
activation of Nrf2/ARE/HO-1 was also shown to be associated with enhanced activity of SOD and
glutathione peroxidase (GPX) [96], stimulation of SIRT1, or inhibition of GSK3β [97]. Very recently,
resveratrol was documented to protect myocardium against chronic, intermittent, hypoxia-induced
injury via activating Nrf2/HO-1 signaling and blocking NLRP3 (the nod-like receptor family pyrin
domain containing 3) inflammasome activation [98].
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A variety of other substances have been shown to exert their cardioprotective effects against
myocardial I/R injury via HO-1 activation. L-carnitine, either injected intraperitoneally to rats
undergoing left anterior descending (LAD) coronary artery occlusion or administered to H9c2
cardiomyoblasts exposed to hypoxia/reoxygenation, reduced oxidative stress and apoptosis likely via
activation of Nrf2/HO-1 pathway [99]. Galanthamine, an alkaloid with anti-inflammatory properties,
has been shown to reduce myocardial I/R injury, endoplasmic reticulum stress-related apoptosis,
and myocardial fibrosis in rats via activating 5′ adenosine monophosphate-activated protein kinase
(AMPK)/Nrf2/HO-1 pathway [100]. Furthermore, atorvastatin, one of the most frequently used
lipid-lowering drugs, statins, was shown to attenuate I/R-induced oxidative stress and inflammation
in rat hearts via the Nrf2/HO-1 pathway, resulting in limitation of infarct size [101]. Recent studies
documented that activation of HO-1 is associated with cardioprotection afforded by α2-adrenoceptor
agonist dexmedetomidine [102], as well as by a natural compound, crocetin [103], or hydrogen-rich
water [104]. Finally, an important role of HO-1 in cardioprotection against I/R injury was confirmed in
HO-1 knock-out mouse hearts subjected to ex vivo I/R. In these hearts, the post-I/R infarct size and
incidence of ventricular fibrillation were significantly increased when compared with WT mice [105].

Of the three main heme metabolites produced by HO-1, CO has been documented to exert
cardioprotective effects in I/R. Pretreatment of donor rats by exposure to CO inhalation prevented I/R
injury following heart transplantation [106] and suppressed apoptosis [107]. Similarly, CO released
from CO-releasing molecules (CORM) attenuated I/R-induced apoptosis in cardiomyocytes via a
mitochondrial pathway [108] and induced preconditioning-like cardioprotective and anti-apoptotic
effects in mouse hearts subjected to in vivo I/R injury, mediated via nuclear factor NF-κB, signal
transducer and activator of transcription (STAT1/3), and Nrf2 signaling [109].

Taken together, HO, as the key enzyme involved in iron metabolism in the organism, has been
shown to be intimately involved in adaptation of the heart to different pathological stimuli including
myocardial I/R. Particularly, the inducible HO-1 isoform is upregulated in conditions of myocardial
ischemia as well as after stimulation by diverse cardioprotective interventions such as administration of
polyphenols, L-carnitine and others, mainly via activation of phosphatidylinositol-3-kinase (PI3K)/Akt,
eNOS, protein kinase C (PKC), Nrf2/ARE pathway. HO-1 activation leads to increased production
of three main heme metabolites, Fe2+, biliverdin, and CO, among which particularly CO has been
documented to exert cardioprotective effects in I/R. HO-1 activation is associated with decreased
oxidative stress and anti-apoptotic and anti-inflammatory effects, finally leading to enhanced ability of
the myocardium to resist against I/R injury (Figure 2).

Thus, HO-1 activation may represent a promising therapeutic strategy to prevent myocardial I/R
injury in patients suffering from ischemic heart disease or myocardial infarction as well as to enable
better preservation of hearts during transplantation.
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Figure 2. Role of HO-1 in I/R injury and cardioprotection. Cardiac I/R induces oxidative stress that
consequently activates intracellular adaptive mechanisms in cardiomyocytes such as PI3K/Akt, PKC,
JNK, or ERK1/2 signaling pathways. They further activate Nrf2 as the major positive regulator of
HO-1 in the cell. Nrf2/HO-1 pathway can be activated also by application of several cardioprotective
substances including polyphenols, L-carnitine, atorvastatin, crocetin, or hydrogen-rich water. HO-1
products (Fe2+, biliverdin, CO) then can scavenge free radicals, thus attenuating oxidative stress,
which, in result, leads to cardioprotection. Finally, CO can be increased by direct application of CO
donors, which, in turn, also leads to cardioprotection. Abbreviations: I/R, ischemia/reperfusion; PI3K,
phosphatidylinositol-3-kinase; JNK, c-Jun NH2-terminal protein kinase; ERK1/2, extracellular signal
regulated kinase 1/2; Nrf2, nuclear factor erytroid 2-related factor 2; HO-1, heme oxygenase-1; miR,
microRNA; CO, carbon monoxide; CORM, CO-releasing molecules; RO2

., peroxyl radical.

6. Role of Iron and Ferritin in Heart Preconditioning

In the last decades, research has demonstrated a robust efficiency of ischemic preconditioning
(IPC) as a short-term adaptive phenomenon protecting myocardium and/or other organs of all animal
species including humans against prolonged ischemia by way of adaptation to brief episodes of
ischemia [110,111]. However, molecular mechanisms of IPC are very complex and not yet fully
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elucidated. It is well known that keeping of iron in FT prevents iron-dependent formation of free
radicals [112]. Therefore, several studies have been designed to explore whether iron and FT could
play a role in cardioprotection afforded by different forms of conditioning.

As mentioned above, even moderate concentrations of iron could cause post-I/R deterioration
of heart function and increased ROS production [70]. On the other hand, preconditioning protected
severely stressed hearts (40 min ischemia/15 min reperfusion) by modulating tissue iron status and
distribution, as well as iron-catalyzed production of radicals. Further studies unraveled the role of
iron in the IPC mechanisms, and it has been proposed that iron may play a dual role in myocardial
injury [68]. While high levels of iron mobilized following sustained ischemia were detrimental,
increasing susceptibility of cardiac tissue to oxidative damage, iron also served as a signaling molecule
for the accumulation of FT. IPC produces small, nontoxic but stimulating amounts of “free” iron, which
enhance FT formation (through conversion of the iron-responsive proteins IRP-1 to the CA and do
not promote its degradation. This iron is not involved in cardiac injury, but rather prepares the heart
for the forthcoming action of high levels of “free” iron after prolonged ischemia. The concept of “Fe
preconditioning” was introduced by Galleano et al. (2011) [113] who demonstrated that subchronic,
low-level iron administration protected the liver against I/R injury (also by upregulation of FT content)
that was associated with the recovery of the NF-κB signaling which was lost during I/R.

Low levels of “free” iron generated in the cell during and following IPC stimulus initiated FT
translation resulting in its de novo synthesis [114]. FT accumulation reached 359% of its basal level and
it remained high during the subsequent period of prolonged ischemia, when an increase in L-ferritin
mRNA was observed, indicating that the transcriptional mechanism of FT synthesis was activated. The
increased amounts of intracellular FT sequester excessive catalytic iron and prevent oxidative damage.
During the reperfusion phase, the newly synthesized FT binds (scavenges) the labile iron released
during ischemia and thus protects the heart against the deleterious iron-catalyzed free radicals. At
this stage, the amount of FT decreased to 178% of its basal level and the ratio of its L and H subunits
also returned to the pre-ischemic value. The increase in FT content evoked by IPC and the essentiality
of an iron signal in the IPC-induced protective mechanism has been thus suggested as a potential
mechanism of cardiac protection. It was also confirmed by the discovery that selective iron chelators
(acetyl hydroxamate or Zn-desferrioxamine) abrogated the functional protection and suppressed FT
accumulation [114].

Identification of the source of the “iron signal” suggested that it could stem from at least three
sources: (1) Heme catabolism by heme oxygenases, (2) degradation of ISCs, and (3) degradation of
iron-containing proteins, mainly FT [115]. Degradation of FT could potentially serve as the main source
for the “iron signal” because breakdown of a single FT molecule could release more than 1200 iron ions
into the cytoplasm. Degradation of intracellular proteins is mediated by either lysosomal proteases
and/or the proteasome pathway. This hypothesis was confirmed by adding the proteasome inhibitor
MG132 to KH-buffer prior to the IPC procedure, which resulted in the loss of the IPC-induced protection
against I/R injury and in the inhibition of the cytosolic FT degradation and release of iron [115]. MG132
can inhibit proteasome-mediated IRP degradation and, as such, reduces the translation of FT mRNA.
It was also found that during a 30-min “delay” after IPC prior to prolonged ischemia, FT broke down
by lysosomal proteases, resulting in a decrease in cardiac hemodynamic recovery. In addition, when
I/R was separated from the IPC by this “delay”, FT mRNA levels remained stable during the whole
experiment including ischemia. Thus, apparently the time gap between the IPC and the I/R may be
crucial for the regulation and expression of FT.

The obtained cumulative information concerning the involvement of iron and FT in the mechanisms
of IPC and cardioprotection is summarized in Figure 3.
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Figure 3. Schematic representation of the mechanisms of cardioprotection conferred by IPC based
on iron and ferritin production. In the first step, IPC activates proteasome pathways, which degrade
molecules of FT and release small and nontoxic amounts of “free” iron. This iron serves as a signaling
molecule for the accumulation of FT. The expression of FT is post-transcriptionally regulated by
iron-regulatory proteins (IRPs), IRP1 and IRP2. When intracellular iron is low, IRP1 and IRP2 bind
with high affinity to the iron-responsive element (IRE) within the ferritin mRNA and thus inhibiting
its translation. Under IPC conditions when iron is abundant, IRP1 combines with this free iron and
dissociates IRP1 and 2 from the IRE (shown by red line), thus allowing ferritin mRNA translation (de
novo translation) and accumulation of FT. IRP1 is converted into active cytosolic aconitase, and IRP2
is targeted for proteasomal degradation. Under normal conditions, during and following sustained
ischemia, FT degradation prevails over FT synthesis, leading to the release of iron, subsequently
increasing the susceptibility of cardiac tissue to oxidative damage. On the other hand, after the
application of IPC, FT levels remained high during the subsequent period of prolonged ischemia,
and an increase in L-ferritin mRNA was observed, indicating that the transcriptional mechanism of
FT synthesis was activated. During the reperfusion phase, the newly synthesized FT scavenges the
labile iron released during ischemia and thus protects the heart. Abbreviations: ARE, antioxidant
response element, Fe–S clusters, iron–sulfur clusters; FT, ferritin; IPC, ischemic preconditioning, IRE,
iron responsive element; IRP1, iron regulatory protein 1; IRP2, iron regulatory protein 2; Red line
indicates dissociation of IRP1 and 2 from the IRE.
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6.1. Role of Iron and Ferritin in Other Cardioprotective Phenomena

The important role of iron and FT in protection against I/R injury has been demonstrated in other
forms of conditioning and in organs other than the heart. Thus, hypothermic preconditioning of human
coronary artery endothelial cells (HCAECs) by incubation at 25 ◦C induced an increase in cell iron and
a significant rise in FT levels. This was associated with protection of HCAECs against cold-induced,
iron-mediated oxidative stress and attenuated cell injury caused by storage at 0 ◦C [116]. Similarly,
protection against lethal I/R injury induced by intermittent hypobaric hypoxia (8 h/day for 4 weeks) in
rats was associated with a decrease of iron in tissues (heart, liver, spleen, kidney) and in plasma, as
well as with increased erythropoiesis and the downregulation of hepcidin expression [117].

Chronic metabolic preconditioning has been proposed as one of the reasons of enhanced resistance
to I/R injury in the diabetic hearts and a failure to further precondition them with IPC [118–122]. This
hypothesis has been confirmed in the study by Vinokur et al. (2013) [123], which suggested that the lost
efficiency of IPC in the diabetic heart might be related to the modulation of iron homeostasis. Indeed,
basal FT levels, which are two-fold higher in the diabetic heart compared to nondiabetic controls,
decrease rapidly and dramatically (four-fold) during prolonged ischemia and reperfusion (with prior
IPC) in the diabetics but not in the controls. This study, thus, indicated why subjecting the diabetic
heart to IPC need not confer protection against I/R injury. Similar to that, anti-infarct protection by
postconditioning with sevoflurane (sevo-postC) was not effective in the diabetic hearts, in contrast to
its effect in nondiabetic hearts [124]. However, sevo-postC-mediated cardioprotection in controls did
not involve the de novo FT synthesis and accumulation.

The recent study by Mieszkowski et al. (2019) [125] was the first study on human subjects aimed
to investigate the effects of remote ischemic preconditioning (RIPC) on peripheral blood mononuclear
cells (PBMC). They investigated the effect of acute (1-day) and 10-day RIPC (upper limb RIPC: four
cycles, 5 min ischemia/5 min reperfusion) on the Wingate Anaerobic Test ((WAnT) measures relative
peak power and relative mean power (W/kg)) on the FTH, FTL, and TfR1 mRNA expression in PBMC,
and anaerobic performance. Ten days OF RIPC, unlike one day of RIPC, significantly increased upper
limbs’ relative mean power and also caused significant increase of FTH and FTL mRNA and decrease
in TfR1 mRNA. On the other hand, acute RIPC resulted in a significant decrease in FTH, FTL, and TfR1
mRNA levels.

6.2. Ferritin and Protection by NO Donors

It has been previously shown that part of the molecular mechanisms of IPC is associated with nitric
oxide (NO) and its synthases, such as eNOS and inducible NOS (iNOS). The study by Grievink et al.
(2016) [126] demonstrated that NO generated by exogenous NO-donors sodium nitroprusside (SNP),
S-nitroso-N-acetyl-dl-penicillamine (SNAP), and 3-morpholinosydnonimine (SIN-1), as a form of
pharmacological preconditioning) could play a role in “iron-based” mechanism of cardioprotection.
Pretreatment with 10µM SNAP significantly reduced IS and increased CA activity and FT accumulation,
while pretreatment with 2 µM SIN-1 increased IS and was associated with lower FT protein levels.
Pretreatment with SNP did not cause any changes. These findings indicate that exogenous NO (similar
to IPC), depending on its concentration and bio-active redox form, can regulate iron metabolism
(through FT accumulation) and may be involved in the “iron-based” mechanism of cardioprotection.

In conclusion, ischemic preconditioning initiates the de novo synthesis of FT in the heart; the extra
FT is proposed to serve as a ‘sink’ for redox-active iron, thus protecting the heart from iron-mediated
oxidative damage associated with I/R injury. These data substantiate a novel iron-based mechanism
of ischemic preconditioning and could pave the way for the development of new modalities of
heart protection.
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7. Iron and Ferroptosis: A Less-Known Form of Cell Death and Its Mechanisms

Ferroptosis, known as simultaneously occurring and mutually amplifying accumulation of
redox-active iron, glutathione depletion, and lipid peroxidation [127], was identified in 2012 [128] and
since that time it has been documented in several cardiac pathologies, including doxorubicin-induced
cardiomyopathy [77] and acute I/R injury under conditions without metabolic disorders [77,129] as well
as with diabetes [130,131], post-myocardial infarction heart failure in the early and middle stages [132],
and in septic heart injury [133]. At a cellular level, ferroptosis has been found in various models of
cardiomyocytes, such as H9c2 cells subjected to hypoxia/reoxygenation with normal and high glucose
levels [130,131] and rat ventricular myocytes [132].

Ferroptosis is morphologically, biochemically, and genetically distinct from other modes of
regulated cell death. It can be induced by experimental small molecules (e.g., erastin, Ras-selective
lethal small molecule 3, and sulfoximine), and some drugs (e.g., sulfasalazine, sorafenib, and
artesunate) [134,135]. The most frequently described pathway of ferroptosis induction by erastin
involves the inhibition of cystine uptake by the cystine/glutamate antiporter, leading to suppressed
antioxidant defenses due to glutathione reduction [128,136]. Glutathione, being converted from a
reduced form (GSH) to the oxidized one (GSSG), is used by the phospholipid peroxidase glutathione
peroxidase 4 (GPX4) to convert polyunsaturated fatty acids’ hydroperoxides formed in membrane
phospholipids by lipoxygenase (LOX) enzymes to their corresponding, less harmful, lipid alcohols [137].
The direct inhibition or indirect inactivation of GPX4 by various endogenous molecules (e.g., selenium,
dopamine, vitamin E, CoQ10,) and chemicals (e.g., ferrostatin-1, dexrazoxane) [134,135] results
in oxidative stress. In the case of the accumulation of iron, which is required for the normal
activity of LOX enzymes [138], this GPX4 inhibition promotes overwhelming lipid peroxidation,
terminating in lethal ferroptosis cell damage. Phosphatidylethanolamines have been identified to
be key phospholipids driving ferroptosis due to peroxidation [139]. The location in which lipid
peroxidation takes place during ferroptosis remains an unresolved question. However, it has been
suggested that the mitochondria [77,140], endoplasmic reticulum [139], and lysosomes [141] are mainly
affected, while the involvement of plasma membrane is controversial in this respect [77,142]. In
addition to the main aforementioned regulatory mechanisms, other molecules can also affect lipid
peroxidation and potentially ferroptosis execution. In fact, selenium is required for the biosynthesis of
GPX4 [143] and NADPH (Nicotinamide adenine dinucleotide phosphate) acts as a reductant needed to
eliminate lipid hydroperoxides and, thus, it is considered as a biomarker of ferroptosis sensitivity [144].
Likewise, since coenzyme Q10 has been shown to be depleted by a ferroptosis inducer [145], this
membrane antioxidant can also modulate cellular sensitivity to this cell death.

7.1. Ferroptosis and Post-I/R Myocardial Injury

Although early reperfusion affords protection to ischemic myocardium, in patients with acute MI
with ST-segment-elevation (STEMI) undergoing percutaneous coronary intervention (PCI), myocardial
hemorrhage is a common complication after reperfusion intervention, limiting its success [146,147]. It
is associated with residual myocardial iron in post-infarcted area [148] and is capable to potentiate
increased ROS production and ferroptosis [149]. Using cardiac magnetic resonance (CMR) imaging,
Robbers et al. (2013) [150] indicated that hemorrhage representing an irreversible microvascular
destruction might be preceded by microvascular obstruction, and this relation was further confirmed by
Carrick et al. (2016) [147] in STEMI patients. Moreover, associations between myocardial hemorrhage
revealed by CMR and the severity of MI in the acute phase, as well as with the development of adverse
left ventricle (LV) remodeling in the long term (defined as an increase in LV end-diastolic volume and
reduced LV ejection fraction), were found These studies [146–148] clearly demonstrated the deleterious
role of residual myocardial iron in some post-infarcted patients after primary PCI on the one hand, and,
on the other hand, pointed to a potential of cardiomyocytes‘ salvage through the targeting ferroptosis
and regulation of ROS production using protective effects of the mechanistic target of rapamycin
(mTOR) [149].
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7.2. Ferroptosis as a Potential Novel Target for Cardioprotection

As mentioned above, ferroptosis has been found to underlie lethal injury of the heart due to both
acute and chronic I/R and in various types of cardiomyopathies [77,102,129–132]. In contrast, targeting
ferroptosis has been suggested as a feasible approach for managing these cardiac pathologies. Genetic
manipulations in ferroptosis signaling, such as overexpression of Slc7a11, a key component of the
cystine-glutamate antiporter [151], knockdown of Nrf2, which regulates HO-1 expression [77] and
depletion of GPX4 [132], have been shown to increase resistance against ferroptosis and alleviate damage
of the heart and cardiac myocytes. Consistently with these results, pharmacological interventions, such
as iron chelation, have also shown effective protection against iron-dependent processes of cell death.
It has been demonstrated that iron chelator dexrazoxane (DZX), as a mitochondria-permeable metal
chelator, decreased free radicals’ generation and improved post-I/R hemodynamics in the ex vivo rat
hearts [152]. In addition, DZX protected mice against DOX-induced ferroptosis and reduced lethal
heart injury (size of infarction) and myocardial dysfunction following I/R [77]. Among commercially
available chelators, deferoxamine (DFO) is the most widely used nontoxic iron chelators to treat patients
with different diseases associated with iron overload. Furthermore, DFO has been shown to reduce ROS
generation in rat cardiomyocytes [153]. Protective effects have been also demonstrated in other excess
iron-induced cell death and ferroptosis models [149] using ferroptosis inhibitor ferrostatin-1 acting
through scavenging of alkoxyl radicals produced by ferrous iron from lipid hydroperoxides [154]. In
line, ferrostatin-1 exhibited beneficial effects in mice with cardiomyopathy due to FTH-deficiency [151].

Other interventions with anti-ferroptotic effects include activation of mTOR [149] and inhibition
of HO-1, causing heme degradation with resultant release of free iron (inhibitor zinc protoporphyrin
IX) [77,151,154], as well as other lipid peroxidation inhibitors (liproxstatin-1) [129]. In summary, these
findings concerning ferroptosis confirm a paradigm of an important role of nonapoptotic cell death
in the heart [130,155–157] and indicate that pharmacological interventions targeting one of these
necrotic-like cell death modes or multi-target approaches can affect cardiovascular mortality at a greater
extent than it is in the case of caspase modulation. This is also supported by the evidence showing that
ferroptosis can accompany necroptosis and pyroptosis in the heart [130,157].

8. Conclusions

Iron is an essential mineral that plays pivotal roles in both normal physiological processes and
in pathological mechanisms underlying a variety of diseases. The issue concerning the relationship
between iron and cardiovascular disease has been discussed for the last four decades, starting with a
study of Sullivan published in 1981, and is still not definitely resolved. Although studies constantly
bring novel findings concerning the mechanisms of iron-related deleterious effects on the heart linked
with ROS production and increased susceptibility to myocardial injury, especially under conditions of
ischemia and reperfusion, the association of iron, as a potential risk factor, and cardiovascular diseases
remains elusive.

Besides being a catalyst for cell death mechanisms through the enhanced ROS production including
ferroptosis, iron also acts as a signal triggering a variety of protective cellular cascades. In particular,
the role of iron in the mitochondria is especially important, and its management may contribute to a
more effective treatment of myocardial I/R injury. Further studies are needed to elucidate mechanisms
of cellular iron homeostasis that may lead to development of novel and more efficient iron-targeting
therapies of cardiovascular diseases, in addition to iron chelation.
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Abbreviations

ABCB8 ATP-binding cassette subfamily B member 8 protein
ARE Antioxidant response elements
BMP-SMAD Bone morphogenetic protein/small mothers against decapentaplegic pathway
CA Cytosolic aconitase
CO Carbon monoxide
DFO Deferoxamine
DMT-1 Divalent metal transporter 1
Fe2+, Fe3+ Ferrous iron, ferric iron
FT Ferritin
FTH Ferritin heavy chain
FTL Ferritin light chain
FPN Ferroportin
FTMT Mitochondria-specific ferritin
GPX Glutathione peroxidase
GPX4 Phospholipid peroxidase glutathione peroxidase 4
GSH Reduced form of glutathione
GSSG Oxidized form of glutathione
HCAECs Hypothermic preconditioning of human coronary artery endothelial cells
HIF Hypoxia-inducible factor
HO. Hydroxyl radicals
HO-1 Heme oxygenase-1
IPC Ischemic preconditioning
I/R Ischemia/reperfusion
IRE Iron-Responsive elements
IRP1, IRP2 Iron regulatory proteins 1 and 2
IS Infarct size
ISCs Iron sulfur clusters
LIP Labile iron pool
LOX Lipoxygenase
MCU Mitochondrial calcium uniporter
MFRN Mitoferrin
NO Nitric oxide
Nrf2 Nuclear factor erythroid 2-related factor 2
NTBI Nontransferrin-bound iron
OH− Hydroxide ions
PBMC Peripheral blood mononuclear cells
RIPC Remote ischemic preconditioning
RO Alkoxyl radicals
RO2 Peroxyl radicals
ROS Reactive oxygen species
Sevo-postC Postconditioning with sevoflurane
SOD Superoxide dismutase
Tf Transferrin
TfR Tf receptors
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52. Paterek, A.; Mackiewicz, U.; Mączewski, M. Iron and the heart: A paradigm shift from systemic to
cardiomyocyte abnormalities. J. Cell. Physiol. 2019, 234, 21613–21629. [CrossRef] [PubMed]

53. Lakhal-Littleton, S.; Wolna, M.; Chung, Y.J.; Christian, H.C.; Heather, L.C.; Brescia, M.; Ball, V.; Diaz, R.;
Santos, A.; Biggs, D.; et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. eLife
2016, 5, 1–25. [CrossRef] [PubMed]

54. Lakhal-Littleton, S.; Robbins, P.A. The interplay between iron and oxygen homeostasis with a particular
focus on the heart. J. Appl. Physiol. 2017, 123, 967–973. [CrossRef] [PubMed]

55. Horowitz, M.P.; Greenamyre, J.T. Mitochondrial iron metabolism and its role in neurodegeneration. J.
Alzheimer’s Dis. 2010, 20, S551–S568. [CrossRef]

56. Richardson, D.R.; Lane, D.J.R.; Becker, E.M.; Huang, M.L.H.; Whitnall, M.; Rahmanto, Y.S.; Sheftel, A.D.;
Ponka, P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion
and cytosol. Proc. Natl. Acad. Sci. USA 2010, 107, 10775–10782. [CrossRef] [PubMed]

57. Vela, D. Keeping heart homeostasis in check through the balance of iron metabolism. Acta Physiol. 2020, 228,
1–18. [CrossRef] [PubMed]

58. Lesnefsky, E.J.; Chen, Q.; Tandler, B.; Hoppel, C.L. Mitochondrial Dysfunction and Myocardial
Ischemia-Reperfusion: Implications for Novel Therapies. Annu. Rev. Pharmacol. Toxicol. 2017, 57,
535–565. [CrossRef]

59. Paul, B.T.; Manz, D.H.; Torti, F.M.; Torti, S.V. Mitochondria and Iron: Current questions. Expert Rev. Hematol.
2017, 10, 65–79. [CrossRef]

60. Wofford, J.D.; Chakrabarti, M.; Lindahl, P.A. Mössbauer Spectra of Mouse Hearts Reveal Age-dependent
Changes in Mitochondrial and Ferritin Iron Levels. J. Biol. Chem. 2017, 292, 5546–5554. [CrossRef]

61. Chan, S.; Lian, Q.; Chen, M.P.; Jiang, D.; Ho, J.T.K.; Cheung, Y.F.; Chan, G.C.F. Deferiprone inhibits iron
overload-induced tissue factor bearing endothelial microparticle generation by inhibition oxidative stress
induced mitochondrial injury, and apoptosis. Toxicol. Appl. Pharmacol. 2018, 338, 148–158. [CrossRef]

62. Sripetchwandee, J.; Kenknight, S.B.; Sanit, J.; Chattipakorn, S.; Chattipakorn, N. Blockade of mitochondrial
calcium uniporter prevents cardiac mitochondrial dysfunction caused by iron overload. Acta Physiol. 2014,
210, 330–341. [CrossRef] [PubMed]

63. Ichikawa, Y.; Bayeva, M.; Ghanefar, M.; Potini, V.; Sun, L.; Mutharasan, R.K.; Wu, R.; Khechaduri, A.;
Naik, T.J.; Ardehali, H. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a
decrease in mitochondrial iron export. Proc. Natl. Acad. Sci. USA 2012, 109, 4152–4157. [CrossRef] [PubMed]

64. Wu, W.; Chang, S.; Wu, Q.; Xu, Z.; Wang, P.; Li, Y.; Yu, P.; Gao, G.; Shi, Z.; Duan, X.; et al. Mitochondrial
ferritin protects the murine myocardium from acute exhaustive exercise injury. Cell Death Dis. 2016, 7, e2475.
[CrossRef] [PubMed]

65. Melenovsky, V.; Petrak, J.; Mracek, T.; Benes, J.; Borlaug, B.A.; Nuskova, H.; Pluhacek, T.; Spatenka, J.;
Kovalcikova, J.; Drahota, Z.; et al. Myocardial iron content and mitochondrial function in human heart
failure: A direct tissue analysis. Eur. J. Heart Fail. 2017, 19, 522–530. [CrossRef]

66. Kumfu, S.; Chattipakorn, S.; Fucharoen, S.; Chattipakorn, N. Mitochondrial calcium uniporter blocker
prevents cardiac mitochondrial dysfunction induced by iron overload in thalassemic mice. BioMetals 2012,
25, 1167–1175. [CrossRef]

67. Khamseekaew, J.; Kumfu, S.; Wongjaikam, S.; Kerdphoo, S.; Jaiwongkam, T.; Srichairatanakool, S.;
Fucharoen, S.; Chattipakorn, S.C.; Chattipakorn, N. Effects of iron overload, an iron chelator and a T-Type
calcium channel blocker on cardiac mitochondrial biogenesis and mitochondrial dynamics in thalassemic
mice. Eur. J. Pharmacol. 2017, 799, 118–127. [CrossRef]

68. Berenshtein, E.; Vaisman, B.; Goldberg-Langerman, C.; Kitrossky, N.; Konijn, A.M.; Chevion, M. Roles of
ferritin and iron in ischemic preconditioning of the heart. Mol. Cell. Biochem. 2002, 234–235, 283–292.
[CrossRef]

http://dx.doi.org/10.1126/science.3685996
http://dx.doi.org/10.1093/eurheartj/ehw333
http://www.ncbi.nlm.nih.gov/pubmed/27545647
http://dx.doi.org/10.1002/jcp.28820
http://www.ncbi.nlm.nih.gov/pubmed/31106422
http://dx.doi.org/10.7554/eLife.19804
http://www.ncbi.nlm.nih.gov/pubmed/27897970
http://dx.doi.org/10.1152/japplphysiol.00237.2017
http://www.ncbi.nlm.nih.gov/pubmed/28775066
http://dx.doi.org/10.3233/JAD-2010-100354
http://dx.doi.org/10.1073/pnas.0912925107
http://www.ncbi.nlm.nih.gov/pubmed/20495089
http://dx.doi.org/10.1111/apha.13324
http://www.ncbi.nlm.nih.gov/pubmed/31162883
http://dx.doi.org/10.1146/annurev-pharmtox-010715-103335
http://dx.doi.org/10.1080/17474086.2016.1268047
http://dx.doi.org/10.1074/jbc.M117.777201
http://dx.doi.org/10.1016/j.taap.2017.11.005
http://dx.doi.org/10.1111/apha.12162
http://www.ncbi.nlm.nih.gov/pubmed/24034353
http://dx.doi.org/10.1073/pnas.1119338109
http://www.ncbi.nlm.nih.gov/pubmed/22375032
http://dx.doi.org/10.1038/cddis.2016.372
http://www.ncbi.nlm.nih.gov/pubmed/27853170
http://dx.doi.org/10.1002/ejhf.640
http://dx.doi.org/10.1007/s10534-012-9579-x
http://dx.doi.org/10.1016/j.ejphar.2017.02.015
http://dx.doi.org/10.1023/A:1015923202082


Int. J. Mol. Sci. 2020, 21, 7889 20 of 24

69. Chevion, M.; Jiang, Y.; Har-El, R.; Berenshtein, E.; Uretzky, G.; Kitrossky, N. Copper and iron are mobilized
following myocardial ischemia: Possible predictive criteria for tissue injury. Proc. Natl. Acad. Sci. USA 1993,
90, 1102–1106. [CrossRef]

70. Kramer, J.H.; Lightfoot, F.G.; Weglicki, W.B. Cardiac tissue iron: Effects on post-ischemic function and free
radical production, and its possible role during preconditioning. Cell. Mol. Biol. (Noisy-le-Grand) 2000, 46,
1313–1327.

71. Williams, R.E.; Zweier, J.L.; Flaherty, J.T. Treatment with deferoxamine during ischemia improves functional
and metabolic recovery and reduces reperfusion-induced oxygen radica lgeneration in rabbit hearts.
Circulation 1991, 83, 1006–1014. [CrossRef] [PubMed]

72. Drossos, G.; Lazou, A.; Panagopoulos, P.; Westaby, S. Deferoxamine cardioplegia reduces superoxide radical
production in human myocardium. Ann. Thorac. Surg. 1995, 59, 169–172. [CrossRef]

73. Tang, W.H.; Wu, S.; Wong, T.M.; Chung, S.K.; Chung, S.S.M. Polyol pathway mediates iron-induced oxidative
injury in ischemic-reperfused rat heart. Free Radic. Biol. Med. 2008, 45, 602–610. [CrossRef] [PubMed]

74. Omiya, S.; Hikoso, S.; Imanishi, Y.; Saito, A.; Yamaguchi, O.; Takeda, T.; Mizote, I.; Oka, T.; Taneike, M.;
Nakano, Y.; et al. Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell
death in cardiomyocytes. J. Mol. Cell. Cardiol. 2009, 46, 59–66. [CrossRef] [PubMed]

75. Ramesh Reddy, B.; Kloner, R.A.; Przyklenk, K. Early treatment with deferoxamine limits myocardial
ischemic/reperfusion injury. Free Radic. Biol. Med. 1989, 7, 45–52. [CrossRef]

76. Deboer, D.A.; Clark, R.E. Iron chelation in myocardial preservation after ischemia-reperfusion injury: The
importance of pretreatment and toxicity. Ann. Thorac. Surg. 1992, 53, 412–418. [CrossRef]

77. Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; et al. Ferroptosis as a
target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019, 116, 2672–2680. [CrossRef]

78. Watanabe, B.I.; Limm, W.; Suehiro, A.; Suehiro, G.; Premaratne, S.; McNamara, J.J. Failure of deferoxamine
to reduce myocardial infarct size in a primate model of ischemia-reperfusion injury. J. Surg. Res. 1993, 55,
537–542. [CrossRef]

79. Lesnefsky, E.J.; Hedlund, B.E.; Hallaway, P.E.; Horwitz, L.D. High-Dose Iron-Chelator Therapy During
Reperfusion with Deferoxamine-Hydroxyethyl Starch Conjugate Fails to Reduce Canine Infarct Size. J.
Cardiovasc. Pharmacol. 1990, 16, 523–528. [CrossRef]

80. Chatziathanasiou, G.N.; Nikas, D.N.; Katsouras, C.S.; Kazakos, N.D.; Bouba, V.; Vougiouklakis, T.; Naka, K.K.;
Michalis, L.K. Combined intravenous treatment with ascorbic acid and desferrioxamine to reduce myocardial
reperfusion injury in an experimental model resembling the clinical setting of primary PCI. Hellenic J. Cardiol.
2012, 53, 195–204.

81. Doulias, P.-T.; Christoforidis, S.; Brunk, U.T.; Galaris, D. Endosomal and lysosomal effects of desferrioxamine:
Protection of HeLa cells from hydrogen peroxide-induced DNA damage and induction of cell-cycle arrest.
Free Radic. Biol. Med. 2003, 35, 719–728. [CrossRef]

82. Chan, W.; Taylor, A.J.; Ellims, A.H.; Lefkovits, L.; Wong, C.; Kingwell, B.A.; Natoli, A.; Croft, K.D.;
Mori, T.; Kaye, D.M.; et al. Effect of Iron Chelation on Myocardial Infarct Size and Oxidative Stress in
ST-Elevation–Myocardial Infarction. Circ. Cardiovasc. Interv. 2012, 5, 270–278. [CrossRef] [PubMed]

83. Paraskevaidis, I.A.; Iliodromitis, E.K.; Vlahakos, D.; Tsiapras, D.P.; Nikolaidis, A.; Marathias, A.; Michalis, A.;
Kremastinos, D.T. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid
peroxidation and protects the myocardium against reperfusion injury: Immediate and long-term significance.
Eur. Heart J. 2005, 26, 263–270. [CrossRef] [PubMed]

84. Duffy, S.J.; Biegelsen, E.S.; Holbrook, M.; Russell, J.D.; Gokce, N.; Keaney, J.F.; Vita, J.A. Iron Chelation
Improves Endothelial Function in Patients With Coronary Artery Disease. Circulation 2001, 103, 2799–2804.
[CrossRef]

85. Lamas, G.A.; Goertz, C.; Boineau, R.; Mark, D.B.; Rozema, T.; Nahin, R.L.; Lindblad, L.; Lewis, E.F.; Drisko, J.;
Lee, K.L.; et al. Effect of Disodium EDTA Chelation Regimen on Cardiovascular Events in Patients With
Previous Myocardial Infarction. JAMA 2013, 309, 1241. [CrossRef]

86. Muñoz-Sánchez, J.; Chánez-Cárdenas, M.E. A review on hemeoxygenase-2: Focus on cellular protection and
oxygen response. Oxid. Med. Cell. Longev. 2014, 2014, 25–28. [CrossRef]

87. Tsuchihashi, S.; Fondevila, C.; Kupiec-Weglinski, J.W. Heme oxygenase system in ischemia and reperfusion
injury. Ann. Transplant. 2004, 9, 84–87.

http://dx.doi.org/10.1073/pnas.90.3.1102
http://dx.doi.org/10.1161/01.CIR.83.3.1006
http://www.ncbi.nlm.nih.gov/pubmed/1847847
http://dx.doi.org/10.1016/0003-4975(94)00726-N
http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.003
http://www.ncbi.nlm.nih.gov/pubmed/18549825
http://dx.doi.org/10.1016/j.yjmcc.2008.09.714
http://www.ncbi.nlm.nih.gov/pubmed/18992754
http://dx.doi.org/10.1016/0891-5849(89)90099-3
http://dx.doi.org/10.1016/0003-4975(92)90260-B
http://dx.doi.org/10.1073/pnas.1821022116
http://dx.doi.org/10.1006/jsre.1993.1180
http://dx.doi.org/10.1097/00005344-199010000-00002
http://dx.doi.org/10.1016/S0891-5849(03)00396-4
http://dx.doi.org/10.1161/CIRCINTERVENTIONS.111.966226
http://www.ncbi.nlm.nih.gov/pubmed/22496085
http://dx.doi.org/10.1093/eurheartj/ehi028
http://www.ncbi.nlm.nih.gov/pubmed/15618054
http://dx.doi.org/10.1161/01.CIR.103.23.2799
http://dx.doi.org/10.1001/jama.2013.2107
http://dx.doi.org/10.1155/2014/604981


Int. J. Mol. Sci. 2020, 21, 7889 21 of 24

88. Otterbein, L.E.; Foresti, R.; Motterlini, R. Heme Oxygenase-1 and Carbon Monoxide in the Heart: The
Balancing Act between Danger Signaling and Pro-Survival. Circ. Res. 2016, 118, 1940–1959. [CrossRef]

89. Cheng, Y.; Rong, J. Therapeutic Potential of Heme Oxygenase-1/carbon Monoxide System Against
Ischemia-Reperfusion Injury. Curr. Pharm. Des. 2017, 23, 3884–3898. [CrossRef]

90. Alam, J.; Stewart, D.; Touchard, C.; Boinapally, S.; Choi, A.M.K.; Cook, J.L. Nrf2, a Cap‘n’Collar Transcription
Factor, Regulates Induction of the Heme Oxygenase-1 Gene. J. Biol. Chem. 1999, 274, 26071–26078. [CrossRef]

91. Kumada, Y.; Takahashi, T.; Shimizu, H.; Nakamura, R.; Omori, E.; Inoue, K.; Morimatsu, H. Therapeutic effect
of carbon monoxide-releasing molecule-3 on acute lung injury after hemorrhagic shock and resuscitation.
Exp. Ther. Med. 2019, 17, 3429–3440. [CrossRef] [PubMed]

92. Berberat, P.O.; Katori, M.; Kaczmarek, E.; Anselmo, D.; Lassman, C.; Ke, B.; Shen, X.; Busuttil, R.W.;
Yamashita, K.; Csizmadia, E.; et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers
from ischemia reperfusion injury. FASEB J. 2003, 17, 1724–1726. [CrossRef] [PubMed]

93. Kaga, S.; Zhan, L.; Matsumoto, M.; Maulik, N. Resveratrol enhances neovascularization in the infarcted rat
myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth
factor. J. Mol. Cell. Cardiol. 2005, 39, 813–822. [CrossRef] [PubMed]

94. Thirunavukkarasu, M.; Penumathsa, S.V.; Koneru, S.; Juhasz, B.; Zhan, L.; Otani, H.; Bagchi, D.; Das, D.K.;
Maulik, N. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: Role of nitric oxide,
thioredoxin, and heme oxygenase. Free Radic. Biol. Med. 2007, 43, 720–729. [CrossRef]

95. Penumathsa, S.V.; Koneru, S.; Samuel, S.M.; Maulik, G.; Bagchi, D.; Yet, S.-F.; Menon, V.P.; Maulik, N.
Strategic targets to induce neovascularization by resveratrol in hypercholesterolemic rat myocardium: Role
of caveolin-1, endothelial nitric oxide synthase, hemeoxygenase-1, and vascular endothelial growth factor.
Free Radic. Biol. Med. 2008, 45, 1027–1034. [CrossRef]

96. Cheng, L.; Jin, Z.; Zhao, R.; Ren, K.; Deng, C.; Yu, S. Resveratrol attenuates inflammation and oxidative stress
induced by myocardial ischemia-reperfusion injury: Role of Nrf2/ARE pathway. Int. J. Clin. Exp. Med. 2015,
8, 10420–10428.

97. Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal
Application. Molecules 2019, 24, 1123. [CrossRef]

98. Sun, Z.-M.; Guan, P.; Luo, L.-F.; Qin, L.-Y.; Wang, N.; Zhao, Y.-S.; Ji, E.-S. Resveratrol protects against
CIH-induced myocardial injury by targeting Nrf2 and blocking NLRP3 inflammasome activation. Life Sci.
2020, 245, 117362. [CrossRef]

99. Zhao, T.; Chen, S.; Wang, B.; Cai, D. L-carnitine reduces myocardial oxidative stress and alleviates myocardial
ischemia-reperfusion injury by activating nuclear transcription-Related Factor 2 (Nrf2)/Heme oxygenase-1
(HO-1) signaling pathway. Med. Sci. Monit. 2020, 26, e923251-1. [CrossRef]

100. Hou, X.; Fu, M.; Cheng, B.; Kang, Y.; Xie, D. Galanthamine improves myocardial ischemia-reperfusion-induced
cardiac dysfunction, endoplasmic reticulum stress-related apoptosis, and myocardial fibrosis by suppressing
AMPK/Nrf2 pathway in rats. Ann. Transl. Med. 2019, 7, 634. [CrossRef]

101. Sun, G.; Li, Y.; Ji, Z. Atorvastatin attenuates inflammation and oxidative stress induced by ischemia/reperfusion
in rat heart via the Nrf2 transcription factor. Int. J. Clin. Exp. Med. 2015, 8, 14837–14845. [PubMed]

102. Yin, W.; Wang, C.; Peng, Y.; Yuan, W.; Zhang, Z.; Liu, H.; Xia, Z.; Ren, C.; Qian, J. Dexmedetomidine alleviates
H2O2-induced oxidative stress and cell necroptosis through activating of α2-adrenoceptor in H9C2 cells.
Mol. Biol. Rep. 2020, 47, 3629–3639. [CrossRef] [PubMed]

103. Yang, M.; Mao, G.; Ouyang, L.; Shi, C.; Hu, P.; Huang, S. Crocetin alleviates myocardial ischemia/reperfusion
injury by regulating inflammation and the unfolded protein response. Mol. Med. Rep. 2020, 21, 641–648.
[CrossRef] [PubMed]

104. Li, L.; Liu, T.; Liu, L.; Li, S.; Zhang, Z.; Zhang, R.; Zhou, Y.; Liu, F. Effect of hydrogen-rich water on the
Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury. J. Bioenerg. Biomembr.
2019, 51, 393–402. [CrossRef] [PubMed]

105. Juhasz, B.; Varga, B.; Czompa, A.; Bak, I.; Lekli, I.; Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Antal, M.;
Szendrei, L.; et al. Postischemic cardiac recovery in heme oxygenase-1 transgenic ischemic/reperfused mouse
myocardium. J. Cell. Mol. Med. 2011, 15, 1973–1982. [CrossRef] [PubMed]

106. Fujisaki, N.; Kohama, K.; Nishimura, T.; Yamashita, H.; Ishikawa, M.; Kanematsu, A.; Yamada, T.; Lee, S.;
Yumoto, T.; Tsukahara, K.; et al. Donor pretreatment with carbon monoxide prevents ischemia/reperfusion
injury following heart transplantation in rats. Med. Gas Res. 2016, 6, 122. [PubMed]

http://dx.doi.org/10.1161/CIRCRESAHA.116.306588
http://dx.doi.org/10.2174/1381612823666170413122439
http://dx.doi.org/10.1074/jbc.274.37.26071
http://dx.doi.org/10.3892/etm.2019.7390
http://www.ncbi.nlm.nih.gov/pubmed/30988722
http://dx.doi.org/10.1096/fj.03-0229fje
http://www.ncbi.nlm.nih.gov/pubmed/12958189
http://dx.doi.org/10.1016/j.yjmcc.2005.08.003
http://www.ncbi.nlm.nih.gov/pubmed/16198371
http://dx.doi.org/10.1016/j.freeradbiomed.2007.05.004
http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.012
http://dx.doi.org/10.3390/molecules24061123
http://dx.doi.org/10.1016/j.lfs.2020.117362
http://dx.doi.org/10.12659/MSM.923251
http://dx.doi.org/10.21037/atm.2019.10.108
http://www.ncbi.nlm.nih.gov/pubmed/26628965
http://dx.doi.org/10.1007/s11033-020-05456-w
http://www.ncbi.nlm.nih.gov/pubmed/32342432
http://dx.doi.org/10.3892/mmr.2019.10891
http://www.ncbi.nlm.nih.gov/pubmed/31974615
http://dx.doi.org/10.1007/s10863-019-09814-7
http://www.ncbi.nlm.nih.gov/pubmed/31768722
http://dx.doi.org/10.1111/j.1582-4934.2010.01153.x
http://www.ncbi.nlm.nih.gov/pubmed/20716121
http://www.ncbi.nlm.nih.gov/pubmed/27867479


Int. J. Mol. Sci. 2020, 21, 7889 22 of 24

107. Meng, C.; Ma, L.; Liu, J.; Cui, X.; Liu, R.; Xing, J.; Zhou, H. Inflation with carbon monoxide in rat donor lung
during cold ischemia phase ameliorates graft injury. Exp. Biol. Med. 2016, 241, 246–254. [CrossRef]

108. Zhao, S.; Lin, Q.; Li, H.; He, Y.; Fang, X.; Chen, F.; Chen, C.; Huang, Z. Carbon monoxide releasing molecule-2
attenuated ischemia/reperfusion-induced apoptosis in cardiomyocytes via a mitochondrial pathway. Mol.
Med. Rep. 2014, 9, 754–762. [CrossRef]

109. Stein, A.B.; Bolli, R.; Dawn, B.; Sanganalmath, S.K.; Zhu, Y.; Wang, O.-L.; Guo, Y.; Motterlini, R.; Xuan, Y.-T.
Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the
myocardium. J. Mol. Cell. Cardiol. 2012, 52, 228–236. [CrossRef]

110. Yellon, D.M.; Downey, J.M. Preconditioning the myocardium: From cellular physiology to clinical cardiology.
Physiol. Rev. 2003, 83, 1113–1151. [CrossRef]

111. Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in
ischemic myocardium. Circulation 1986, 74, 1124–1136.

112. Ponka, P. Cellular iron metabolism. Kidney Int. Suppl. 1999, 55, 2–11.
113. Galleano, M.; Tapia, G.; Puntarulo, S.; Varela, P.; Videla, L.A.; Fernández, V. Liver preconditioning induced

by iron in a rat model of ischemia/reperfusion. Life Sci. 2011, 89, 221–228.
114. Chevion, M.; Leibowitz, S.; Aye, N.N.; Novogrodsky, O.; Singer, A.; Avizemer, O.; Bulvik, B.; Konijn, A.M.;

Berenshtein, E. Heart protection by ischemic preconditioning: A novel pathway initiated by iron and
mediated by ferritin. J. Mol. Cell. Cardiol. 2008, 45, 839–845. [PubMed]

115. Bulvik, B.E.; Berenshtein, E.; Meyron-Holtz, E.G.; Konijn, A.M.; Chevion, M. Cardiac Protection by
Preconditioning Is Generated via an Iron-Signal Created by Proteasomal Degradation of Iron Proteins.
PLoS ONE 2012, 7, e48947.

116. Zieger, M.A.J.; Gupta, M.P. Hypothermic preconditioning of endothelial cells attenuates cold-induced injury
by a ferritin-dependent process. Free Radic. Biol. Med. 2009, 46, 680–691. [PubMed]

117. Li, Y.; Zhou, Y.; Zhang, D.; Wu, W.Y.; Kang, X.; Wu, Q.; Wang, P.; Liu, X.; Gao, G.; Zhou, Y.; et al. Hypobaric
hypoxia regulates iron metabolism in rats. J. Cell. Biochem. 2019, 120, 14076–14087.
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