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Pulmonary vascular resistance (PVR) plays a major role in congenital heart management

and critical decision. The impact of pulmonary vascular disease in the early and

late morbidity and mortality after cardiac surgery and interventional catheterization in

congenital heart defect (CHD) highlights the importance of critical evaluation for PVR.

Currently, PVR is evaluated with invasive cardiac catheterization for hemodynamic data

collection, processing, and analysis. Despite the limitation of hemodynamic evaluation

in the setting of CHD, accurate data analysis, and interpretation have significant impact

on clinical outcome and procedure success. This article reviews the basic calculation

of PVR in the setting of congenital heart disease with diagrammatic illustration for easy

understanding of the hemodynamic.
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INTRODUCTION

The pulmonary vascular resistance (PVR) is a good surrogate for pulmonary vascular disease
at a certain level in patient with congenital heart disease. The surgical planning, risk of the
procedure, and clinical decision are aligned with the presence or absence of significant pulmonary
vascular disease (1). Although several clinical and noninvasive procedures give valuable data of
hemodynamic condition of the patient with congenital heart defect (CHD), such as using Doppler
echocardiography, which is a commonly implemented method for non-invasive measurement of
pulmonary arterial pressure; however, Doppler echocardiography on the whole has a weakness
in quantitative measurement because of limited acoustic window especially for evaluation of
pulmonary circulation and the operator dependency for data acquisition (2, 3). In the current
era, phase-contrast magnetic resonance imaging (MRI) is counted as an added non-invasive
method for assessment of hemodynamics of pulmonary or systemic circulation (4, 5). These
techniques offer the prospect for precise estimation of pulmonary circulation parameters, and
their measurements were more accurate and reproducible than Doppler echocardiography (6, 7).
Despite that nonetheless invasive right and left heart cardiac catheterization remains to be the
gold-standard procedure of calculation PVR in the CHD field (8). The PVR calculation is based
on the hydraulic version of Ohm’s law (9). In this review, we will explain the hemodynamics of
the cardiac lesion with diagrams showing the relation of different components of hemodynamics.
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OPERABILITY OF CONGENITAL HEART
DISEASE

The current recommendation for operability in most of the
guidelines for congenital heart disease with biventricular repair
is PVR below 4–6 wood units per m², whereas 4–8 wood units
per m² in gray zone need more clinical evaluation and case-based
decision and >8 wood units per m² nonoperable case (8–11).

HEMODYNAMIC EQUATION IN USE FOR
VASCULAR RESISTANT EVALUATION

The major determinants of vascular resistance are transitional
and muscular arterioles, which contain smooth muscle cell in
their wall and allow for the vasoreactivity that serves to regulate
pulmonary blood flow (12–14).

The PVR calculation is driven from the hydraulic version of
Ohm’s law: I = V/R I = current, V = voltage, R= resistance.
PVR = MPAP − LAP or PCWP/Qp, Qp= pulmonary flow,
MPAP=mean pulmonary artery pressure, PCWP= pulmonary
capillary wedge pressure, LAP = mean left atrium pressure.
Despite that the Ohm’s law can be used for parallel or
serial resistance, the complexity of congenital heart disease,
which has a different flow and resistance, limits its uses
for every lesion. Another consideration in operability is the
amount of shunt and pulmonary flow, which uses modified
Fick method and oxygen consumption tables (15–17). Qp:
Qs = (arterial oxygen saturation—mixed venous oxygen
saturation)/pulmonary venous oxygen saturation—pulmonary
artery oxygen saturation Pulmonary flow (Qp) = oxygen
consumption/1 oxygen content difference of pulmonary venous
and arterial blood.

PVR IN NORMAL HEART

The normal pulmonary flow unequally distributed to the left and
right lungs, which qualify them for parallel resistance but are
always considered as one unit, which will continue until we have
a great, feasible tool to measure the flow of both lungs separately
(Figure 1A). The cardiac MRI can be this tool, but until most of
the issues related to expense, compatibility, and space occupation
are resolved, the assumption of one unit will stay (14). Unlike
the adult right heart catheterization, thermodilution used for
cardiac output measurement in children is limited and replaced
bymodified Fickmethod with assumed oxygen consumption (15,
16). The indication for right heart catheterization with normal
heart is most of the time related to pulmonary hypertension or
preliver transplant.

PVR WITH SIMPLE SHUNT

The simple cardiac shunt includes atrial and ventricular septal
defect, partial anomalous pulmonary venous return, and patent
ductus arteriosus, calculated with modified Fick method (15).
The calculation with usual equation applies the guidelines for
closure (Figure 1A).

PVR WITH EXCLUSIVE PULMONARY
FLOW FROM THE AORTA

When the congenital heart disease complex needs repair after a
certain age, most of the time diagnostic cardiac catheterization
with hemodynamic evaluation comes before the next stage.
The pulmonary blood flow can be solely from the systemic
blood in the following conditions: [1]. Pulmonary atresia with
patent ductus or post–systemic-to-pulmonary shunt or major
aortopulmonary collateral [2]. Truncus arteriosus [3]. Post–
Norwood procedure stage 1 with systemic to pulmonary shunt In
these cases, there is a complete mix of systemic and pulmonary
venous blood at a ventricular level, so the pulmonary arterial
oxygen saturation is equal to the systemic (arterial) oxygen
saturation for flow and shunt calculation (Figure 1B). The PVR
can be calculated in all by pressure measurement and flow
calculation except for the lung with multiple blood supplies as
major aortopulmonary collaterals where pulmonary pressure and
differential segmental perfusion are significantly heterogeneous
(17, 18). The hemodynamic results are determinate for the next
surgical step as a single ventricle vs. biventricular repair.

PVR WITH SINGLE-LUNG SUPPLY BY
SYSTEMIC SHUNT

In this setting of pathology, one lung taking the whole cardiac
output and calculated resistance will be for that lung, whereas the
second one supplied by systemic blood and exposed to systemic
pressure needs to be calculated as separate flow and resistance.
After surgical connection to the other lung, the flow will depend
on the resistance at that lung and future evolution of pulmonary
vascular changes (19) (Figure 1C). The PVR = mean PAP—
mean LA pressure/flow to the connected lung Whereas, the
disconnected lung has its own blood flow from arterial blood
and systemic pressure, calculation of resistance by modified Fick
method of oxygen consumption in this lung has a high rate
of false error as the pulmonary artery and pulmonary venous
oxygen saturation difference is minimal with overestimation of
flow and underestimation of resistance (20). In such condition,
cardiac MRI for the flow measurement of the disconnected
lung gives accurate flow measurement and accurate resistance
calculation (21).

PVR WITH CAVOPULMONARY
ANASTOMOSIS

The single-ventricle setting started with variable physiology
with each stage of palliation. The usual first-stage palliation
is maintaining adequate pulmonary flow by systemic-
to-pulmonary shunt or control flow by pulmonary artery
banding, whereas the second-stage palliation is bidirectional
cavopulmonary anastomosis with significant flow reduction
to the lung, as well as the volume load of the sub-systemic
ventricle (22). The pulmonary blood flow depends on the
venous return of the upper part of the body, which changes
with the growth of body and decreases with time, without
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FIGURE 1 | (A) In normal and simple shunt condition, the pulmonary flow is constant, and flow divided to the left (LL) and right (RL) lung, and then connected to the

left atrium (LA); both lungs to the left atrium create flow resistance for calculation. Systemic (SV) and pulmonic (PV) ventricles work as pump and force generator. (B) In

pulmonary flow from systemic, the pulmonary flow depends on the size of connection and systemic pressure and flow. The resistance can be calculated by direct

(Continued)
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FIGURE 1 | measurement of pulmonary artery pressure and left atrium or wedge mean pressure and calculated pulmonary flow. The two lungs can be considered as

one unit; no significant pulmonary artery stenosis and reduced flow to one lung. (C) Disconnected lung, the pulmonic ventricle (PV) ejects blood (pulmonary flow) to

one lung (right or left lung R/L). The other lung is disconnected lung (red circle) and can have systemic blood supply from systemic ventricle (SV) via shunt or patent

ductus arteriosus or major aortopulmonary collaterals and has parallel resistance with other systemic organs. (D) In the bidirectional cavopulmonary anastomosis, the

upper part of the body venous return is the main blood supply for the lung; the PVR is calculated as in series resistance. The lower part of the body has venous return

to the heart directly. (E) In total cavopulmonary anastomosis, the pulmonary artery is connected to systemic venous return and received total cardiac output flow.

systemic augmentation of blood flow to the lung; the pulmonary
blood flow is usually less than systemic flow (Qp:Qs < 1)
(23). In the current era, few studies showed that single-
ventricle patients not requiring an intervention can undertake
successful Fontan completion, depending on Cardiac MRI
and echocardiography examinations only, with analogous
short-term outcomes to those who underwent diagnostic
catheterization, avoiding an invasive test, and exposure to
radiation. Cardiac MRI can add information in a significant
number of patients, it can be superior to catheterization in
measuring aortopulmonary collaterals, but the catheterization
definitely added more value in occlusions of venovenous
collaterals that usually open after the second stage of a single
ventricle palliation.

The final stage of palliation is total cavopulmonary
anastomosis, and the pulmonary flow will be almost equal
to systemic (Figures 1D,E). The success of the bidirectional
anastomosis depends on low pulmonary resistance and mean
pulmonary arterial pressure of <16 mmHg to have equilibrium
between osmotic and hydrostatic pressure and low PVR of
<2.5 w.u.m² (24, 25). The calculation of PVR may underestimate
the value as the cardiac output below the normal for age with
absence of the subpulmonic ventricle (26).

PVR CALCULATIONS IN PARALLEL
CIRCULATIONS

As the calculation of the pulmonary resistance depends on the
calculation of the pulmonary blood flow, which in most cases of
the parallel circulation, such as transposition of great arteries,
will not give an accurate result due to high pulmonary artery
saturation, in such cases it is better to use other modalities such
as cardiac MRI.

Another point that affects the vascular resistance calculation
is in conditions when the small artery provides three smaller
arterioles, each parallel to the other. The total resistance (Rx)
for the three parallel arterioles comprising the segment would be
as follows:

1/Rx= 1/R1+ 1/R2+1/R3
R1 = resistance in arteriole 1, R2 = resistance in arteriole 2,

R3= resistance in arteriole 3
This proves the principles about the parallel arrangement of

blood vessels:
The overall resistance of a network of parallel vessels is less

than the resistance of the vessel having the lowest resistance.
Once there are numerous parallel vessels, changing the resistance
of a small number of these vessels will have a slight impact on the
total resistance for the segment.

CONCLUSION

The variable anatomic substrate of congenital heart disease and
hemodynamic variation during clinical and invasive evaluation
require a comprehensive understanding of all substrates of the
blood circuit and appropriate calculation methods.
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