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Distinct effects of heterogeneity 
and noise on gamma oscillation 
in a model of neuronal network 
with different reversal potential
Tianyi Zheng1, Kiyoshi Kotani2* & Yasuhiko Jimbo1

Gamma oscillation is crucial in brain functions such as attentional selection, and is inextricably linked 
to both heterogeneity and noise (or so-called stochastic fluctuation) in neuronal networks. However, 
under coexistence of these factors, it has not been clarified how the synaptic reversal potential 
modulates the entraining of gamma oscillation. Here we show distinct effects of heterogeneity 
and noise in a population of modified theta neurons randomly coupled via GABAergic synapses. By 
introducing the Fokker-Planck equation and circular cumulants, we derive a set of two-cumulant 
macroscopic equations. In bifurcation analyses, we find a stabilizing effect of heterogeneity and a 
nontrivial effect of noise that results in promoting, diminishing, and shifting the oscillatory region, 
and is largely dependent on the reversal potential of GABAergic synapses. These findings are verified 
by numerical simulations of a finite-size neuronal network. Our results reveal that slight changes in 
reversal potential and magnitude of stochastic fluctuations can lead to immediate control of gamma 
oscillation, which would results in complex spatio-temporal dynamics for attentional selection and 
recognition.

Synchronization is widely observed in many natural and artificial systems1,2. In the field of neuroscience, gamma 
oscillation (30–200 Hz, including the higher gamma range), binding with gamma-band synchronization, is 
observed in the cerebral cortex and hippocampus, related to different cognitive functions3–7. It is known that 
a GABAergic (gamma-aminobutyric acid) neuronal population plays important roles in generating gamma 
oscillation8–11 and abnormality of GABAergic neurons alters gamma oscillation in diseases such as epilepsy12,13, 
autism14 and schizophrenia15. One important feature of gamma oscillation is sparse firings of individual neurons, 
in which the oscillatory state is close to an asynchronous state and a large proportion of neurons do not fire 
even at the peak of the gamma cycle16,17. It is generally believed that both neuronal heterogeneity and noise play 
important roles in achieving such moderate synchronization under synaptic interactions11. Although hetero-
geneity and noise are naively considered to destroy the synchronized state, the two factors are not incorporated 
at the same time because of mathematical difficulties. Thus, most theoretical and numerical studies consider 
separately either heterogeneity7,18–21 or noise22–25. Therefore, little is known about how each factor affects gamma 
oscillation, especially under physiologically plausible changes in synaptic interactions.

In this study, we focused on the interneuron gamma (ING) state that is known as one possible mecha-
nism of gamma oscillations observed in experiment26. ING is generated by a population of interneurons cou-
pled via GABAergic synapses, and excitatory neurons do not actively contribute to the generation of gamma 
oscillation11,27. we consider a population of voltage-dependent theta neurons23 coupled via GABAergic syn-
apses in which both heterogeneity and noise are incorporated together. Note that although GABA is a primary 
inhibitory neurotransmitter, but in our study, whether the synapse increase or decrease membrane potential 
of connected neurons is controlled by reversal potential. The GABAergic synaptic reversal potential, which is 
known to take values typically from −50 to −90 mV28,29, can change significantly during development30, past 
activities29, dynamics of membrane transport proteins28, and control synchrony of neuronal oscillations31. We 
adopt a modified theta (MT) model to describe individual neurons, in which appropriate synaptic interactions 
can be analyzed mathematically23. By utilizing reduction theory based on the circular cumulant32, we derive a set 
of low-dimensional equations for macroscopic dynamics. Then we investigate the distinct roles of heterogeneity 
and noise with different values of reversal potential.
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Model
We start with a neuronal population described by the MT model with heterogeneity and noise. The MT model 
is a physiologically precise version of the theta model23. The phase of the i-th MT neuron satisfies the following 
differential equation:

where C = 1(µF/cm2) is the membrane capacitance, gL = 0.1(µS/cm2) is the leak conductance, VT = −55(mV) 
is the firing threshold, VR = −62(mV) is the resting potential, and Vsyn is the reversal potential of GABAergic 
synaptic currents. The entire term in square bracket serves as coupling function. By changing the value of Vsyn , 
the sign of the term in square bracket will also change. If the whole term in square bracket is positive, then the 
effect of synapse is to increase the membrane potential of the i-th neuron, otherwise decrease the membrane 
potential. We note that the phase θi is transformed from a version of quadratic integrate-and-fire neuron model 
(QIF) and the membrane potential of i-th neuron can be evaluated by Vi =

VT+VR
2 + VT−VR

2 tan θi
2  (see “Methods” 

for details). ξi(t) represents noise with �ξi(t)� = 0 and �ξi(t), ξi(t′)� = δijδ(t − t ′) , and σ is the magnitude of noise. 
I(µA/cm2) represents the input current. To employ two-cumulant truncation, following previous studies32–34, 
we adopt a Cauchy-Lorentz distribution r(I) = 1

π
�

(I−η)2+�2 , as the distribution of input currents, where η and 
� are the center and width of the distribution, respectively. � is the scale of heterogeneity, with larger � for larger 
heterogeneity in the neuronal population. The i-th neuron fires when θi exceeds π and modulates the membrane 
potential of the connected neuron by GABAergic synapses. gisyn represents the dynamics of GABAergic synaptic 
conductance. With mean-field approximation of the random and sparse connectivity, the dynamics of conduct-
ance obeys the following equation:

where τd = 5(ms) is the decay time constant, ḡpeak = 0.0214 (mS/cm2) is peak conductance, N is the number 
of neurons in the neuronal population. In the numerical simulation of finite neurons, we set N = 3000 , which 
is considered to be an appropriate size for a typical layer within a single column35. Psyn is the probability of ran-
dom synaptic connections between neurons. A(t) is the firing rate of the neuronal population. Note that Eq. (2) 
is derived by mean-field approximation of the initial starting point (see “Methods” for details). Equations (1) 
and (2) constitute the microscopic model for numerical simulation as well as the starting point for deriving the 
macroscopic model.

For the derivation of a macroscopic model, firstly, we derive the Fokker-Planck equation (FPE) to describe the 
state of an infinite size neuronal network, and expand the probability density function (PDF) of FPE in a Fourier 
series. Next, we introduce the circular cumulant referred to in the novel dimension reduction method proposed 
and obtain the first two cumulants with the smallness assumption32. Since the σ term in Eq. (1) is multiplicative, 
which is additive in the reference paper, some modifications are required. (For a step-by-step derivation, see 
“Methods”.) Then, the two-cumulant macroscopic model is derived as, 

w h e r e  f = 1
2C [−gL + c1(η + i�)+ c2gsyn + igsyn]  ,  f ∗ = 1

2C [−gL + c1(η + i�)+ c2gsyn − igsyn]  , 
h = 1

C [c1(η + i�)+ c2gsyn] , c1 = 2/(VT − VR) , c2 = (2Vsyn − VT − VR)/(VT − VR) , c3 = c21/(4C
2) , i is an 

imaginary unit, and ∗ denotes a complex conjugate. Z and κ are the first and second order cumulants, respectively. 
Note that Eq. (3a) is in a form of the addition of four terms, that the first three terms are noise-free terms and the 
last term represents the effect of noise. If we set κ = 0 , the first three terms are exactly same as the dimension 
reduction result of the Ott-Antonsen Ansatz36. The firing rate A(t) of the macroscopic model can also be derived,

Equations (2), (3) and (4) constitute the entire macroscopic model with two cumulants Z and κ . To begin 
with the analysis of this macroscopic model, we first describe the main analysis and validation idea of this paper. 
Our focus is whether the firing rate A(t) is stable or not. Although it is hard to analyze the probability density 
function in the Fokker-Planck equation Eq. (9) itself, we can analyze the equilibrium point and its stability of 
the two-cumulant macroscopic model derived in our study [Eqs. (2), (3) and (4)]. When the linearized equation 
around the equilibrium point has only negative eigenvalues in the real part, the firing rate A(t) is also stable in 
time. It undergoes a Hopf bifurcation when a pair of eigenvalues cross the imaginary axis due to certain parameter 
changes. This bifurcation finally results in the oscillation of the firing rate A(t). Since we consider five param-
eters in all in the macroscopic model ( η , Vsyn , Psyn , � , σ ), in order to scrutinize the effect of � and σ , we plot 
2-dimension bifurcation diagrams using two of the three variables ( η , Vsyn , Psyn ) and study the changing curves 
due to the changing of � and σ . In the validation part, we compare the bifurcation diagrams of the macroscopic 
model with the results of numerical simulations of finite neurons ( N = 3000 ) based on the microscopic model 
[Eqs. (1) and (2)]. All bifurcation diagrams of two-cumulant macroscopic model are plotted with XPPAUT​37. All 

(1)

C
dθi

dt
= −gL cos θi +

2

VT − VR
(1+ cos θi)(Ii + σξi(t))+ gisyn

[

2Vsyn − VT − VR

VT − VR
(1+ cos θi)− sin θi

]

,

(2)
dgisyn

dt
= −

1

τd
gisyn + ḡpeak · Psyn · N · A(t),

(3a)Ż =if (Z2 + κ)+ ihZ + if ∗ − c3σ
2[(Z + 1)3 + 3κ(Z + 1)],

(3b)κ̇ =4ifZκ + 2ihκ − c3σ
2[(Z + 1)4 + 12κ(Z + 1)2 + 9κ2],

(4)A(t) =
gL

Cπ

{

1− |Z(t)|2

2|1+ Z(t)|2
+ Re

[

κ(t)

(1+ Z(t))3

]}
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numerical simulations of the microscopic model are integrated by the Euler method, with a time step �t = 0.01 
(ms), using MATLAB (2019b, http://​www.​mathw​orks.​com/​produ​cts/​matlab/).

Results
In the primary research, we investigated the Hopf bifurcation with respect to the single variable η (Supplementary 
Material Fig. S1). Since η determines the center of distribution of input current I, increasing η could increase the 
average input current to neurons, thus activate the system. With different parameter settings, the system could 
achieve one of two states in the long run: stationary state or oscillatory state. We also showed the transition 
between two states by gradually increasing η with time in Supplementary Material Fig. S2, which reflects that the 
behavior of neuronal network turned from stationary state to oscillatory state in a certain value of the parameter.

Distinct roles of heterogeneity and noise in ( η , Vsyn ) plane.  First, we analyze different roles of het-
erogeneity and noise in the ( η , Vsyn ) plane, as shown in Fig. 1A and 1F. The plane is divided into two regions by 
each curve: the region of the stationary state and that of the limit-cycle oscillation corresponding to the state 
with high gamma oscillation power. The curve itself serves as the boundary of two different states. Figure 1A 
shows the role of heterogeneity. When we keep the magnitude of noise σ = 0.1 fixed, with increasing heteroge-
neity � , the curve moves rightward, leading to the enlargement of the stationary region. With any specific Vsyn , 
larger heterogeneity � always tends to enlarge the stationary region of η . This enlargement effect is weakened 
with the increase of Vsyn , given that in the rightward movement of the curves in the lower half-plane is more 
obvious than in the upper half-plane. The range of � and σ are set in 0.03–0.06 and 0–0.25 separately. In terms 
of � , the changing of bifurcation diagrams is monotonic, so we only choose several values to show the tendency. 
In terms of σ , the range of σ is limited by two-cumulant truncation, because if σ is too large, cumulant higher 
than order two cannot be ignored.

Next, we employ numerical simulation of finite neurons by [Eqs. (1) and (2)] to reveal the dynamics of sin-
gle neurons and neuronal population. Positions marked with a plus sign and a multiplication sign are both on 
the right side of the red curve ( � = 0.04 ), which is the oscillatory side, and on the left side of the green curve 
( � = 0.05 ), which is the stationary side. Figure 1B contains raster plots showing the behavior of all 3000 neurons, 
obtained by numerical simulation, under [ η = 1.59 , Vsyn = −56.5 , plus sign]. In order to eliminate the influence 
of the initial condition, the raster plots and time-courses are segments of simulation starting from 1000 (ms). In 
Fig. 1B, the raster plot with red dots corresponds to the behavior under � = 0.04 at the position marked with 
a plus sign, and the one with green dots is the behavior under � = 0.05 at the same position in the parameter 
plane. Note that the conditions of the raster plot in Fig. 1B match those in the same color in Fig. 1A. Such color 
matching is also applied to Fig. 1C–E and Fig. 1G–J. The raster plots show that when the parameter setting is on 
the oscillatory side of the bifurcation curve, neurons tend to fire synchronously. However, when the parameter 
setting is on the stationary side of the bifurcation curve, neurons fire asynchronously, which seems like random 
firing on the raster plot. Figure 1C is the time-courses of gsyn by numerical simulation of finite neurons, under 
[ η = 1.59 , Vsyn = −56.5 , plus sign]. Figure 1C, D, it is clearly shown that the time-courses of the same position 
with different � result in different states, very low amplitude oscillation (green curves) or gamma oscillation 
(red curves), which show excellent correspondence with the regional division in the bifurcation diagram in 
Fig. 1A. The raster plot Fig. 1D and the time-course Fig. 1E also agree with the regional division in Fig. 1A. The 
fluctuation close to stationary state (green curves) is due to the finite size effect because we assume the neuronal 
network has an infinite size in the derivation of the macroscopic two-cumulant model, while setting 3000 neurons 
in microscopic numerical simulation. The finite size effect could be regarded as extra noise of the mean field of 
order ∼ N−1/2 , where N is the size of finite ensemble38. In the stationary region close to the bifurcation curve, 
since there are always two conjugate eigenvalues close to imaginary axis, the extra drive by finite size effect yields 
small-amplitude resonance. In the oscillatory region, extra fluctuation by finite size effect makes the oscillation 
on each cycle slightly different with each other.

The effect of noise in the ( η , Vsyn ) plane is shown in Fig. 1F. We keep heterogeneity � = 0.04 fixed, with 
the increase in the magnitude of noise σ . Unlike the simple moving effect of heterogeneity shown in Fig. 1A, 
the change in curves due to σ is more complicated and largely dependent on Vsyn . For small Vsyn in the lower 
half-plane, a larger magnitude of noise σ tends to shrink the stationary region of η , while for large Vsyn , a larger 
magnitudes of noise σ tends to enlarge the stationary region of η . For even larger Vsyn , an increasing σ seems to 
have no effect on the stationary region. Figure 1G contains raster plots of [ η = 1.6 , Vsyn = −57.3 , square], which 
clearly shows synchronous or asynchronous activity under different magnitude of noise σ . Comparing Fig. 1B 
with 1G, we can observe that two directions to stabilize oscillation (increasing � or σ ) show similar raster plots, at 
least in the vicinity of bifurcation. Figure 1H is the time-courses of numerical simulation of finite neurons, under 
[ η = 1.6 , Vsyn = −57.3 , square] . The square is on the right side of the red curve ( σ = 0.1 ) and on the left side of 
the green curve, while the situation marked by the circle is exactly opposite. Figure 1G,H show that small noise 
gives rise to the gamma oscillation (red), and large noise gives rise to the stationary state (green). However, in 
Fig. 1I,J, small noise stabilizes the oscillation (red), while large noise arouses high amplitude oscillation (green). 
The raster plot and time-courses in Fig. 1I,J also agree with the result of the bifurcation diagram in Fig. 1F.

Besides, we investigated the effect of firing threshold ( VT ) in Supplementary Material Fig. S3. The bifurcation 
analysis shows that increasing firing threshold monotonically stabilizes the neuronal network. This result is in 
agreement with intuition since a higher firing threshold means harder to fire for single neurons. We also use 
numerical simulation of 3000 neurons to show that no matter the reversal potential higher or lower the firing 
threshold, the above result is correct.

In order to further validate the results of the bifurcation diagram obtained from the two-cumulant macro-
scopic model [Eqs. (2), (3) and (4)], we compare it with a heatmap showing the power of gamma oscillation 
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at each point on the plane obtained from numerical simulation of finite neurons based on a microscopic 
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Figure 1.   Distinct roles of heterogeneity and noise in ( η , Vsyn ) plane (A), (F) 2-D Bifurcation diagrams of the 
two-cumulant model [Eqs. (2), (3) and (4)] with different � or σ . The two regions marked “Stationary” and 
“Oscillatory” correspond to different dynamic modes: the region of the stationary state and that of the limit-
cycle oscillation, respectively. The plus sign, multiplication sign, square and circle denote four different positions 
on the parameter plane. (A) The four curves are all plotted under Psyn = 0.1, σ = 0.1 , but with different values 
of heterogeneity � . (F) The four curves are all plotted under Psyn = 0.1,� = 0.04 , but with different values of 
heterogeneity σ . (B), (D), (G), (I) Raster plot of four marked positions, obtained from numerical simulation 
[Eqs. (1) and (2)]. (C), (E), (H), (J) Time-courses of gsyn at four marked positions, obtained from numerical 
simulation [Eqs. (1) and (2)]. All bifurcation diagrams of macroscopic model are plotted with XPPAUT​37. All 
numerical simulations of the microscopic model are generated by MATLAB (2019b, http://​www.​mathw​orks.​
com/​produ​cts/​matlab/).
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model [Eqs. (1) and (2)]. To obtain the total frequency power, we perform a fast Fourier transform to the 
time-course of [gsyn] and integrate the power spectral density over the frequency domain of gamma oscilla-
tion (30–200 Hz). To normalize the power difference between stationary points and oscillatory points and 
avoid negative value, we adjust the integration of power spectral density Pγ by introducing a transformation 
P′γ = ln(104Pγ + 1) . The value used to plot heatmaps in Figs. 2 and 3 is the integration of P′γ over the frequency 
band of gamma oscillation (30–200 Hz). The power spectrum is showed in Supplementary Material Fig. S4. 
Fig. 2A–D represent the effect of increasing heterogeneity � , with values: 0.03, 0.04, 0.05 and 0.06, respectively. 
Figures 2E–H represent the effect of increasing magnitude of noise σ with values: 0, 0.1, 0.2, 0.25, respectively. 
The parameter settings in Figs. 2A–D are same as in Figs. 1A, 2E–H are same as in Fig. 1F. Although there are 
some randomly scattered dots near the boundary of the two regions due to the effect of noise in the numerical 
simulation, these heatmaps and curves achieve an excellent agreement, indicating the correctness of the bifur-
cation diagrams shown in Fig. 1A,F. Besides, we found that the center frequency of oscillation monotonically 
increases with Vsyn in a wide frequency range, which includes both lower gamma and higher gamma range. 
(Supplementary Material Fig. S4).

Distinct roles of heterogeneity and noise in ( Psyn , Vsyn ) plane.  We next investigate the role of heter-
ogeneity and noise in the ( Psyn , Vsyn ) plane, and consider the rate of random synaptic connection Psyn . Figure 3A 
represents the effect of heterogeneity � . When we keep the magnitude of noise σ = 0.1 fixed, with the increase 
of heterogeneity � , the regions inside the curves shrink, which enlarges the stationary state region, similar to 
Fig. 1A. With any given Vsyn , the oscillatory region of Psyn monotonically shrinks. Figure 3B shows the role of 
noise in ( Psyn , Vsyn ) plane. When we keep the heterogeneity � = 0.02 fixed, shown as Fig. 3B, with increasing 
magnitude of noise σ , the curves twist and regions rotate. By further analyzing the nontrivial rotation, it is shown 
that the oscillatory regions of Psyn are dependent on Vsyn . When increasing Vsyn , the oscillatory regions of Psyn 
move rightward, while keeping the area of oscillatory region.

The validation of bifurcation analyses in the ( Psyn , Vsyn ) plane is shown in Figs. 3C–E and F–H, which are 
plotted by the same method as Fig. 2. Figure 3C–E represent the effect of increasing heterogeneity � with values: 
0.015, 0.02, 0.025. Figure 3F–H represent the effect of increasing magnitude of noise σ with values: 0, 0.01, 0.02. 
Note that Fig. 3C,G are the same figures under [ � = 0.02 , σ = 0.1 ], serving as the home position. Considering 
heterogeneity � alone, the agreement of heatmaps and curves in Fig. 3A,C–E is excellent, showing the gradually 
shrinking oscillatory region with increasing � . In terms of magnitude of noise σ , shown as Fig. 3B and F–H, one 
observes a clear rotation phenomenon of the oscillatory region in the heatmaps just as predicted by the bifurca-
tion curves. This means that in some regions, gamma oscillation emerges with increasing noise, while in some 
other regions it stabilizes. Although there is some considerable difference between bifurcation diagrams and 
heatmaps due to finite size effect of numerical simulation, especially in Fig. 3H, the qualitative rotation effect 
can be clearly observed.

Besides ( η , Vsyn ) plane and ( Psyn , Vsyn ) plane, we also investigated ( η , Psyn ) in Supplementary Material Fig. S5, 
by bifurcation analysis of the two-cumulant macroscopic model [Eqs. (2), (3) and (4)] and numerical simulation 
of microscopic model [Eqs. (1) and (2)]. The result showed an agreement between macroscopic and microscopic 
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Figure 2.   Validation of the bifurcation analyses in ( η , Vsyn ) plane. The red curve in each figure is the boundary 
of the stationary state region and limit-cycle oscillation state region, obtained from the two-cumulant 
macroscopic model [Eqs. (2), (3) and (4)]. The heatmap background in each figure represents the power of 
gamma oscillation [P′γ ]  obtained from the numerical simulation of the microscopic model [Eqs. (1) and (2)]. 
Note that (B) and (F) are the same figures with [ � = 0.04 , σ = 0.1 ] serving as the home position. (A)–(D) 
represent the increase in � . (E)–(H) represent the increase in σ . All numerical simulations of the microscopic 
model are generated by MATLAB (2019b, http://​www.​mathw​orks.​com/​produ​cts/​matlab/).
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models. Moreover, we confirmed that, similar to other bifurcation analysis (Figs. 1 and 3), the effect of Vsyn is 
complex, which cannot be simply classified as stabilizing or facilitating oscillations.

Discussion
In this work, we formulated a set of macroscopic low-dimensional differential equations from an ensemble of 
spiking neuron models that enable us to analyze the entraining of gamma oscillation. The strength of our model 
is that it possesses voltage-dependent dynamics and analytically bridges micro-macro dynamics for gamma oscil-
lations considering both noise and heterogeneity. Moreover, unlike numerical simulation of a large number of 
neurons by microscopic model, since our two-cumulant model is analytical, it explicitly shows the effect of each 
parameter and don’t suffer from numerical issues such as computational cost. Though relatively complicated in 
the form, to some extent, our two-cumulant macroscopic model can mechanistically explain the reason behind 
phenomenon. In Supplementary Material Section 6, we analyzed how � suppresses the oscillation by changing 
the eigenvalue of the Jacobian matrix of the system and found that it is similar to the effect of heterogeneity 
in Kuramoto model1,2. Instead, the rotation in Fig. 3B is really nontrivial and is found using our macroscopic 
equations in this study.

In research into synchronization of general coupled oscillators, both heterogeneity of the oscillator ensemble 
and induced noise have shown significant effects on synchronization. According to some previous research, het-
erogeneity suppresses synchronization39, while noise promotes the onset of synchronization in some cases40,41. In 
this work on neuronal populations, similar to previous research, heterogeneity diminishes macroscopic oscilla-
tion (Figs. 1A and 3A). The role of noise is largely dependent on synaptic reversal potential Vsyn , which is closely 
related to the coupling function in general coupled oscillators. With a different setting of Vsyn , noise promotes, 
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Figure 3.   Distinct roles of heterogeneity and noise in ( Psyn , Vsyn ) plane (A) Role of heterogeneity in ( Psyn , Vsyn ) 
plane. Bifurcation diagram of the two-cumulant model [Eqs. (2), (3) and (4)]. The three curves are all plotted 
under [ η = 0.7, σ = 0.1 ], but with different values of heterogeneity � : 0.015 for blue, 0.02 for red, 0.025 for 
yellow. (B) The role of noise in the ( Psyn , Vsyn ) plane. The three curves are all plotted under [ η = 0.7,� = 0.02 ], 
but with different values of magnitude of noise σ : 0 for blue, 0.1 for red, 0.2 for yellow. (C)–(E) Validation of 
increasing � . (F)–(H) Validation of increasing σ . All bifurcation diagrams of macroscopic model are plotted 
with XPPAUT​37. All numerical simulations of the microscopic model are generated by MATLAB (2019b, http://​
www.​mathw​orks.​com/​produ​cts/​matlab/).
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suppresses or changes the region of synchronization (Figs. 1F and 3B). Therefore, our model demonstrates that 
even small changes in the coupling function can alter the effect of noise in collective dynamics.

As the MT model incorporates voltage dependent membrane dynamics and synaptic interactions in a physi-
ologically plausible manner, we obtain macroscopic Eq. (3) with somewhat harder computation than previous 
research. Ratas et al.33 analyzed macroscopic dynamics of quadratic integrate-and-fire neurons. When consider-
ing both heterogeneity and noise together, they simply put forward the argument that effects of heterogeneity 
and noise are topologically similar in a bifurcation diagram. However, in our work, we found that the effect of 
heterogeneity and noise on gamma oscillation is different. Heterogeneity of a neuronal network stabilizes the 
oscillation. The reversal potential only monotonically affects the extent of this stabilization, but no qualitative 
effect. Nevertheless, the effect of noise is qualitatively dependent on reversal potential. Comparing with the work 
from Ratas et al., there are several differences that need to be mentioned. The first is we adopt a more detailed 
single neuron model with reversal potential Vsyn , which has been reported to contribute to the synchronous 
discharges for epilepsy in an in vitro experiment13. Vsyn determines whether the synapse increase or decrease 
membrane potential in our model.The second is they only consider excitatory neurons, while we varied the value 
of reversal potential within the experimentally observed range for GABAergic neurons. It basically decreases, 
but can increase in some cases, the membrane potential of the connected neuron. Thirdly, their single neuronal 
model is close to the firing threshold, which is not our case.

Gamma oscillation in a neuronal population plays important roles in brain functions such as attentional 
selection3,42, signal discrimination43,44 and learning45. Therefore, controlling gamma oscillation is functionally 
required. Especially in the case of attentional selection, it is required for the higher visual cortex to shift the 
gamma synchronized target immediately to the attended area of the lower V1 population42. The reversal poten-
tial Vsyn , that is physiologically altered by intracellular calcium concentration through calcium-dependent Cl− 
transporters28,29, largely altered the dynamics of neuron.In our model, since the membrane potential is typically 
changing between the resting potential VR and the firing threshold VT , if Vsyn < VR , the synapse would always 
decrease the membrane potential. On the other hand, if Vsyn > VT , the synapse would always increase the mem-
brane potential. This qualitative effect of Vsyn on synapse also shapes the bifurcation curve. Our results further 
reveal that Vsyn leads to immediate control of the gamma oscillation and synchronization. We also note that 
stochastic fluctuation in the membrane potential is increased by acetylcholine46,47, thus σ is also considered to 
vary more rapidly than other properties of the neuronal network. From these points, our results bridge gamma 
oscillation and ion channel, and imply that the dynamics of gamma oscillation can be well controlled by slight 
changes (in mV or sub-mV order) of Vsyn and σ , which have a potential influence on attentional selection and 
other cognitive functions. Because gamma oscillation exhibits complex spatio-temporal dynamics3,4,6 and both 
reduced and excess oscillation are found in diseases such as autism14 and schizophrenia15, our analyses shed light 
on another influence of the reversal potential and stochastic fluctuations on brain functions through gamma 
oscillation.

Methods
Transformation from quadratic integrate‑and‑fire model to modified theta model.  The quad-
ratic integrate-and-fire (QIF) model is a typical model for class I neurons near the firing threshold48. The dynam-
ics of the membrane potential of the i-th neuron satisfy the following equation:

where VT = −55  is the firing threshold, and VR = −62(mV) is the resting potential. The sign of Vi − Vsyn 
determines whether the synapse increases or decreases the membrane potential: when negative, it increases the 
membrane potential, otherwise decreasing the membrane potential. The original form of gisyn(t) in Eqs. (1) and 
(5) obeys the following first-order equation:

where ḡpeak = 0.0214(mS/cm2) is obtained by dividing peak conductance of GABA on interneurons (6.2 nS)52 
by membrane surface area of neuron ( 2.9× 10−4 cm2)53. δ(·) is the Dirac delta function and t(k) is the time of 
firing of pre-synaptic neurons connected to i-th neuron. With mean-field approximation, the sum of the Dirac 
delta function can be replaced, which transforms to Eq. (2).

In order to avoid the membrane potential value Vi(t) jumping from +∞ to −∞ when firing, a phase variable 
θi(t) can be introduced in Eq. (5),

where −π < θ ≤ π . This variable transformation turns the QIF model into a modified theta model23. Compared 
with the infinite value of Vi(t) , the phase value θi(t) simply crosses the value of θi(t) = π at these firing moments. 
Eq. (5) can be transformed into Eq. (1).

Derivation of two‑cumulant model.  Here, we elaborate on details of the derivation from the micro-
scopic model [Eqs. (1) and (2)] of the two-cumulant macroscopic model [Eqs. (2), (3) and (4]. The dynamics of 
phase oscillator θ̇ in Eq. (1) can be separated into a deterministic part u and a stochastic part w: 

(5)C
dVi

dt
= gL

(Vi − VR)(Vi − VT )

VT − VR
− gisyn(Vi − Vsyn)+ Ii + σξi(t),

(6)
dgisyn

dt
= −

1

τd
gisyn + ḡpeak

∑

k=1

δ(t − t(k)),

(7)Vi =
VT + VR

2
+

VT − VR

2
tan

θi

2
,
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where ◦dW is the (Stratonovich) white noise differential49. In the thermodynamic limit of an infinite oscillator 
ensemble ( N → ∞ ), its state can be described by ρ(θ , I , t) which satisfies the Fokker-Planck equation (FPE). 
Note that the multiplicative form of the stochastic parameter (with the Stratonovich interpretation) in our model 
Eq. (8c) is different from the additive noise term in the reference paper32. The corresponding FPE in our case 
is obtained as50

It is helpful to separate the AC and DC parts of u at this stage as

 Expanding ρ(θ , I , t) in a Fourier series in θ , we have

where α0 = 1 and c.c. stands for complex conjugate. Applying Eq. (11) to Eq. (9) and comparing the exponent 
of e on both sides of the equation, we obtained an infinite series of the complex amplitude of a Fourier mode,

where c3 = c21/(4C
2) , j ≥ 1 and α−1 = 0 . We note that the amplitude αj =

∫ π

−π
ρ(θ , I , t)eijθdθ is the Kura-

moto–Daido order parameters51 at a given I. Next, we integrate αj(I , t) over the distribution r(I) as

Then, on the assumption that αj(I , t) is analytic in the upper half-plane of the complex variable I36, the integral 
can be computed by the residue on the upper half-plane as

As a result, we substitute Żj for α̇j in Eq. (12) and obtain an infinite series of ordinary differential equations for 
the order parameter Zj(t),

where Zj series start from j = 1 , and set Z0 = 1 , Z−1 = 0.
In order to obtain a set of low-dimensional reduced equations of the system Eq. (15), we follow a novel 

method32 based on circular cumulants. Order parameters Zj = �eijθ � can be regarded as the jth moment of the 
random variable eiθ , which are determined by a moment-generating function

Thus, the related order parameters and its time derivatives can be written as,

(8a)dθ = udt + w ◦ dW ,

(8b)u(θ , I , t) =
1

C
{−gL cos θ + c1I(1+ cos θ)+ gsyn[c2(1+ cos θ)− sin θ]},

(8c)w(θ , I , t) =
1

C
c1σ(1+ cos θ),

(9)
∂ρ

∂t
= −

∂

∂θ

{[

u+
w

2

∂w

∂θ

]

ρ

}

+
1

2

∂2

∂θ2
(w2ρ).

(10a)u(θ , I , t) = f (I , t)eiθ + h(I , t)+ f (I , t)∗e−iθ ,

(10b)f (I , t) =
1

2C
[−gL + c1I + c2gsyn + igsyn],

(10c)h(I , t) =
1

C
[c1I + c2gsyn].

(11)ρ(θ , I , t) =
r(I)

2π







α0 +





∞
�
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
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



,

(12)
α̇j = ijf αj+1 + ijhαj + ijf ∗αj−1 −

1

2
c3σ

2
[

6j2αj + (4j2 + 2j)αj+1 + (4j2 − 2j)αj−1 + (j2 + j)αj+2 + (j2 − j)αj−2

]

,

(13)Zj(t) =

∫ ∞

−∞

r(I)αj(I , t)dI .

(14)Zj(t) = αj(η + i�, t).

(15)
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1

2
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2
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]

,

(16)F(k, t) = �exp(keiθ )� ≡
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kj
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Substituting F(k, t) for Zj(t) in Eq. (15) using Eq. (17), and comparing the exponent of k on both sides of the 
equation, the partial differential equation for F(k, t) follows

The circular cumulants introduced in32 are determined by a cumulant-generating function defined as

From Eqs. (16) and (19), one can derive the relationship between order parameters Zj(t) and circular cumu-
lants χj(t) . For the first two cumulants,

Applying ∂t to ψ in Eq. (19), we obtain the relationship of ∂F
∂t  and ∂ψ

∂t  as following

Exerting Eq. (18) into Eq. (21), the partial differential equation for ψ(k, t) can be derived as

where A, B, C, D contain the second, third, fourth, fifth partial derivatives of F(k, t) to t:

The complete form of ψ is shown in Eq. (26). On the assumption that the smallness of the third cumulant is 
O(σ 4) , which vanishes in an approximation32, we only take the first two cumulants into consideration. By apply-
ing ψ(k, t) = χ1(t)k + χ2(t)k

2 to Eq. (22), we finally obtain the first two cumulants in the macroscopic model 
Eq. (3), where χ1 = Z denotes the first cumulant and χ2 = κ denotes the second cumulant. In order to achieve 
an explicit form of firing rate A(t) in Eq. (2), which is determined as

one requires an explicit form of ρ(θ , I , t) first, coming from Eq. (11). With the approximation of only two cumu-
lants, the moment-generating function F(k, t) in Eq. (16) can be simplified as F = exp[kZ + κ(k2/2)] . Follow-
ing the assumption32 that F ≈ [1+ κ(k2/2)] exp[kZ] under smallness of κ , the moments Zj can be derived by 
performing ∂t to F as Zj = Zj + [j(j − 1)/2]κZj−2 . Apply Zj to Eq. (11), and the summation of Fourier series is

The firing rate A(t) can be written in an explicit form by applying Eq. (25) to Eq. (24), shown as Eq. (4).

Complete form of cumulant‑generating function ψ.  The complete form of ψ of Eq. (22) is

(18)
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