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The presence of infiltrating CD8+ T lymphocytes in the tumor microenvironment of lung
adenocarcinoma (LUAD) is correlated with improved patient prognosis, but underlying
regulatory mechanisms remain unknown. To identify biomarkers to improve early
diagnosis and treatment of LUAD, we downloaded 13 immune cell line-associated
datasets from the GEO database. We identified CD8+ T cell-associated genes via
weighted correlation network analysis. We constructed molecular subtypes based on
CD8+ T cell-associated genes and constructed a multi-gene signature. We identified 252
CD8+ T cell-associated genes significantly enriched in immune function-related pathways
and two molecular subtypes of LUAD (immune cluster 1 [IC1] and IC2) using our CD8+ T
cell-associated gene signature. Patients with the IC2 subtype had a higher tumor mutation
burden and lower immune infiltration scores, whereas those with the IC1 subtype were
more sensitive to immune checkpoint inhibitors. Prioritizing the top candidate genes to
construct a 10-gene signature, we validated our model using independent GSE and
TCGA datasets to confirm its robustness and stable prognostic ability. Our risk model
demonstrated good predictive efficacy using the Imvigor210 immunotherapy dataset.
Thus, we established a novel and robust CD8+ T cell-associated gene signature, which
could help assess prognostic risk and immunotherapy response in LUAD patients.

Keywords: lung adenocarcinoma, CD8+ T lymphocytes, gene signature, prognosis, immunotherapy response
Abbreviations: LUAD, lung adenocarcinoma; TME, tumor microenvironment; TMB, tumor mutation burden; PD-1,
programmed death protein 1; CTLA4, cytotoxic T lymphocyte-associated protein 4; KEGG, Kyoto Encyclopedia of Genes
and Genomes; CDF, cumulative distribution function; ICs, immune clusters; IFNg, interferon-g; BEX, brain-expressed X-
linked; ZNF, zinc finger; ASPP, apoptosis-stimulating proteins of the p53; DVL, disheveled protein; ICB, immune checkpoint
blockade; TIDE, T cell dysfunction and exclusion.

org February 2022 | Volume 13 | Article 8068771

https://www.frontiersin.org/articles/10.3389/fimmu.2022.806877/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.806877/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.806877/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.806877/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.806877/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.806877/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:phhonco7@163.com
https://doi.org/10.3389/fimmu.2022.806877
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.806877
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.806877&domain=pdf&date_stamp=2022-02-22


Zhang et al. CD8+ T Cell-Associated Gene Signature
1 INTRODUCTION

Lung cancer, the leading cause of cancer-related deaths
worldwide (1, 2), is distinguished by two histological subtypes:
small cell lung cancer and non-small cell lung cancer. The most
common subtype of non-small cell lung cancer is lung
adenocarcinoma (LUAD), which accounts for 40% of lung
cancer cases. LUAD incidence has increased in recent decades,
posing a significant danger to human health and life. Thus, early
diagnosis and treatment of LUAD have become essential
research aims (3, 4). Early diagnosis of LUAD is challenging
because of the lack of early biomarkers and symptoms.
Consequentially, local progression likely ensues by the time
patients exhibit symptoms and receive a differential diagnosis,
missing the optimal time for surgical treatment (5–7). Exploring
prognostic methods specific to LUAD patients is urgently needed
to provide personalized treatment and management plans.

Imbalance in the immune tumor microenvironment (TME) is
one of the most conspicuous features of tumors (8). The TME
contains various cell types, including tumor cells, stromal cells
(epithelial cells, fibroblasts, and adipocytes), and immune cells (T
cells, B cells, and macrophages) (9). Among them, the adaptive
immune responses mediated by immune cells play a critical role
in tumor progression. Particularly, CD8+ T cells are the
predominant antitumor effector cells in the TME that mainly
play a cytotoxic role, but their function is impaired by the
presence of various immunosuppressive cells or molecules in
the TME (10). Additionally, co-inhibitory molecules on the
surface of CD8+ T cells are upregulated as the immune
response dampens, such as programmed death protein 1 (PD-
1), and the expression of cytotoxic T lymphocyte-associated
protein 4 (CTLA4) increases (11, 12). These co-inhibitory
molecules bind to ligands in the TME, ultimately leading to T
cell exhaustion (13). Therefore, elucidating the regulatory
mechanisms associated with CD8+ T cells in the TME is critical.

Previous studies have demonstrated that infiltration of CD8+

T lymphocytes in LUAD tissues results in significant
improvement in patient prognosis (14). However, these CD8+

T lymphocytes are often dysfunctional and fail to initiate an
immune response to eliminate tumor cells (15). For example, IL-
38 reportedly promotes LUAD proliferation by inhibiting the
number of CD8+ T lymphocytes in the TME (16). Conversely,
the aspartic acid in the TME promotes CD8+ T cell activation
through the LCK signaling pathway and exerts antitumor effects
(17). These findings suggest that targeting and regulating the
function of CD8+ T cells has potential clinical implications.
Indeed, CD8+ T cell infiltration density combined with TNM
stage is an independent predictor of poor prognosis in LUAD
patients (18). However, the regulatory mechanisms and clinical
significance associated with CD8+ T cells have not been fully
elucidated in LUAD.

The goal of this study, through the use of immune cell line-
associated datasets, was to identify CD8+ T cell-associated
marker genes to construct a multi-gene signature and develop
a prognostic risk model for LUAD. The study findings will help
improve predictions of prognosis and immunotherapeutic
response in LUAD patients, thus enhancing treatment outcomes.
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2 MATERIALS AND METHODS

2.1 Data Sources
Thirteen immune cell line-associated datasets were downloaded
from the Gene Expression Omnibus: GSE13906, GSE23371,
GSE27291, GSE27838, GSE28490, GSE28726, GSE37750,
GSE39889, GSE42058, GSE49910, GSE59327, GSE6863, and
GSE8059. The datasets included microarray expression data for
14 immune cell types, including B cells, CD4+ T cells, CD8+ T
cells, dendritic cells, eosinophils, gamma-delta T cells, immature
dendritic cells, lymphocytes, monocytes, myeloid dendritic cells,
natural killer cells, neutrophils, plasmacytoid dendritic cells, and
natural killer T cells. RNA-sequencing data and clinical
information from samples in the TCGA-LUAD project were
downloaded using the National Cancer Institute Genomic Data
Commons Application Programming Interface.

In addition, microarray and time to live data were
downloaded from the Gene Expression Omnibus for datasets
GSE37745, GSE19188, GSE50081, GSE30219, and GSE31210.

2.2 Data Pre-Processing
Each immune cell line-associated dataset was processed using the
RMA algorithm of the affy package in R software. Batch effect
corrections were performed using the “removeBatchEffect’
function of the limma package in R software. The probes were
subsequently converted to gene symbols based on the
annotation file.

The following steps were additionally performed on the RNA-
Seq data of samples from the TCGA-LUAD dataset. Samples
without clinical follow-up information or living status were
removed. The ensemble gene IDs were then converted to gene
symbols. The median value was taken when multiple gene
symbols were expressed across cell lines. Additionally, samples
were filtered out if > 50% gene expression was less than 1.

The following steps were additionally performed on sample
data from the GSE-LUAD dataset. Normal tissue samples and
samples without clinical follow-up information, overall survival
data, or living status were removed. The probes were then
converted to gene symbols based on the annotation file.
Principal component analysis was performed to verify the
batch effect correction for the expression profiles of the GSE
dataset (Supplementary Figure 1), revealing no significant
differences between the different datasets following batch
effect correction.

After pre-processing and quality control steps, the final
dataset consisted of 500 samples from the TCGA-LUAD
cohort and 582 samples from the GSE-LUAD cohort.

2.3 Identification of CD8+ T Cell
Marker Genes
2.3.1 Pre-Processing of Immune Cell Data
The 13 immune cell line-associated datasets were merged, and a
batch effect correction was performed as previously described.
Principal component analysis was performed to verify the batch
effect correction for the expression profiles of the immune cell
dataset (Supplementary Figure 2). Our analysis indicated that
February 2022 | Volume 13 | Article 806877
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the different datasets were dispersed before but harmonized after
the batch effect correction.

2.4 Weighted Correlation Network
Analysis-Based Co-Expression Analysis
of CD8+ T Cell-Associated Genes
The 179 expression profiles from the immune cell dataset were
clustered using hierarchical clustering, and distances between
genes were calculated using Pearson’s correlation coefficient.
Furthermore, a weighted co-expression network was
constructed using the WGCNA package in R software. We
found that the co-expression network was scale-free, i.e., log(k)
of the node with connectivity k was negatively correlated with log
(P(k)) of the probability P of occurrence of that node, and the
correlation coefficient > 0.85. The expression matrix was
converted into an adjacency matrix and subsequently into a
topology matrix. The genes were clustered using the average
linkage hierarchical clustering method based on the topological
overlap matrix. The minimum number of genes per gene-
network module was set to 100, according to the criteria of the
hybrid dynamic tree cut. The eigenvector values of each module
were calculated after determining the gene modules using the
dynamicTreecut package in R software. The modules were
clustered and merged with closer modules to form new
modules with the following settings: applied height = 0.25,
deepSplit = 2, and minModuleSize = 100.

Further, Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis and Gene Ontology functional enrichment
analysis of the CD8+ T cell-associated genes were performed
using the clusterProfiler package in R software (v3.14.0).

2.5 Molecular Subtyping Based on CD8+

T Cell-Associated Genes
Univariate cox analysis of CD8 T cells genes was performed from
the TCGA and GEO cohorts and obtain their intersection genes.
Subsequently, cluster analysis was performed using common
CD8 T cells prognostic genes. Specifically, the 500 TCGA-
LUAD samples were clustered using the ConsensusClusterPlus
package in R software based on the expression of CD8 T cells
prognostic genes. The optimal number of clusters was
determined according to the cumulative distribution function
(CDF). The CDF delta area curve value was used to select the
optimal number of clusters with the greatest stability.
Subsequently, the immune subtype features of different clusters
were analyzed. The same analysis was performed on the GEO-
LUAD cohort to demonstrate the ability to distinguish molecular
subtypes across different study cohorts.
3 RESULTS

3.1 Selection and Analysis of CD8+

T Cell-Associated Genes
The 179 expression profiles in the immune cell line-associated
dataset were clustered using hierarchical clustering, as shown in
Figure 1A. To ensure the network was scale-free, b = 8 was
Frontiers in Immunology | www.frontiersin.org 3
chosen (Figure 1B). A total of 16 modules were obtained
(Figure 1C), from which X modules were categorized as gray,
where the gene set could not be aggregated into other modules.
The correlations between modules and immune cells were
further analyzed (Figure 1D), indicating that the cyan-colored
module had the most significant positive correlation with CD8+

T cells, was less correlated with other immune cells, and
contained 252 genes.

Gene Ontology enrichment analysis was performed to
determine which signaling pathways were enriched in the
CD8+ T cell module, indicating that 129 genes were
significantly enriched in biological processes (P < 0.05), of
which the top ten biological process terms are shown in
Figure 2A. Twelve genes were significantly enriched in
pathways related to cellular component (P < 0.05), of which
the top 10 cellular component pathways are shown in Figure 2B.
Five genes were significantly enriched in pathways related to
molecular function (P < 0.05) (Figure 2C). We also identified 19
pathways that were significantly enriched via KEGG pathway
enrichment analysis (P < 0.05), of which the top 10 annotations
are shown in Figure 2D. The annotation results indicated that
these genes were closely associated with immune function
and pathways.

3.2 Molecular Subtyping Based on CD8+

T Cell-Associated Genes
Univariate analysis was performed on the TCGA-LUAG and
GSE-LUAG datasets to identify whether tumor-infiltrating CD8+

T cells were associated with LUAD patient outcomes. Sixty and
65 genes were associated with prognosis in the TCGA-LUAD
and GSE-LUAD datasets, respectively. Among these, only 20
genes were present in both datasets, as shown in Figure 3A,
suggesting that the expression of CD8+ T cell-associated genes
may be inconsistent across datasets obtained using different
sequencing platforms, as well as across cohorts. 20 CD8+ T
cell-associated genes include AGMAT, AMIGO1, AQP3,
ATP8B2, BEX5, CD69, DVL3, EPHX2, GPRASP1, HEMGN,
IL7R, LRRN3, MAL, MGP, NR3C2, PPP1R13B, SMAGP,
STRN4, TCEA3 and ZNF540.We subsequently proceeded with
downstream analysis using the 20 CD8+ T cell-associated genes
that were significantly associated with prognosis (P < 0.05).We
further analyzed the expression of 20 genes in tumor tissues and
normal tissues, and found that the expression of 20 genes in most
tumors was significantly different from that in normal tissues
(Supplementary Figure 3). 345 pathways and corresponding
genes were obtained from KEGG, and then used 20 genes to
match pathway, of which 7 genes can be matched. Then,
Cytoscape software was used to map pathways and genes
interactively, as shown in the Supplementary Figure 4. We
obtained the original data of single-cell data GSE148071 (42
samples in total), retained 18 patient samples of lung
adenocarcinoma, and performed cell annotation analysis. The
results are shown that most genes are significantly expressed in
CD8+ T cells (Supplementary Figure 5).

Performing a consensus clustering analysis of the TCGA-
LUAD cohort, we obtained two stable immune clusters (ICs) by
February 2022 | Volume 13 | Article 806877
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choosing k = 2, as shown by the CDF delta area curve associated
with molecular subtypes (Figures 3B, C). We observed
significant differences in the prognostic efficacy based on two
molecular subtypes (Figure 3D). The IC2 subtype was correlated
with a worse overall prognosis than the IC1 subtype. Using the
same approach, we validated these findings in a separate cohort
(GSE-LUAD) (Figure 3E), which suggested the potential
application of the two molecular subtypes given our
reproducible results across independent study cohorts.

We explored the clinical features of the molecular subtypes in
the TCGA-LUAD dataset, discovering 1) the surviving fraction
differed significantly between the two subtypes, with higher
mortality in the IC2 group; 2) the proportions of T-stage
patients differed significantly between the two subtypes, with a
higher proportion of T2, T3, and T4 patients in the IC2 group;
and 3) the proportion of patients with advanced disease stage (II,
III, and IV) was significantly higher in the IC2 group than the
IC1 group (Supplementary Figure 6). We further analyzed
differences in tumor mutation burden (TMB) between the two
molecular subtypes (Figure 4A), determining a significant
difference in TMB between the IC1 and IC2 groups. Further,
the number of mutant genes also differed significantly between
Frontiers in Immunology | www.frontiersin.org 4
these molecular subtypes (Figure 4B). Among a total of 9780
genes screened for > 3 mutation frequencies, we obtained 936
genes. The top 15 mutation genes were characterized by
mutation for the two molecular subtypes, as shown in Figure 4C.

3.3 Comparison of Immune Molecules and
Functions in Molecular Subtypes
We analyzed the differential expression of immune molecules in
the two molecular subtypes using the TCGA-LUAD cohort. As
shown in Figure 5A, the expression of 28 out of 41 chemokines
(68.29%) differed significantly between the molecular subtypes,
suggesting differing degrees of immune cell infiltration,
which may lead to differences in tumor progression
and immunotherapeutic effects. Furthermore, 16 out of 18
chemokine receptor genes (88.89%) were significantly
differentially expressed in the molecular subtypes (Figure 5B).
CD8+ T cells in the TME can produce interferon-g (IFNg), which
stimulates the upregulation of T cell exhaustion markers over
time, such as PD-1/PD-L1 and IDO1 (19, 20). Upregulation of
IDO1 expression has been positively correlated with poor
prognosis, tumor progression, and metastasis (21, 22). The
Th1/IFNg gene signatures were extracted as previously
BA

DC

FIGURE 1 | WGCNA-based co-expression analysis of CD8+ T cell-associated genes. (A) Sample clustering analysis. (B) Analysis of network topology for various
soft-thresholding powers. (C) Gene dendrogram and module colors. (D) Correlation results between the 16 modules and each clinical phenotype.
February 2022 | Volume 13 | Article 806877

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. CD8+ T Cell-Associated Gene Signature
described (23), and IFNg scores were calculated for each sample
using the single-sample GSEA method. We found significant
differences in IFNg scores among molecular subtype samples,
with higher IFNg scores in the IC1 group than in the IC2 group
(Figure 5C). Additionally, the intra-tumor immune T cell lysis
activity of each sample was assessed using mean values of GZMA
and PRF1 expression levels, as previously described (24),
revealing significant differences between the two molecular
subtypes (Figure 5D). Interestingly, the IC1 group displayed
higher immune T cell lysis activity than the IC2 group. Finally,
angiogenesis-associated gene sets were obtained from a previous
study (25), and angiogenesis scores were calculated for each
sample. The IC1 group displayed significantly higher
angiogenesis scores than the IC2 group (Figure 5E).

Among 47 immune checkpoint-associated genes obtained
from the literature (23), the expression of 41 checkpoint-
associated genes (87.23%) differed significantly between the
molecular subtypes, as shown in Figure 5F. Most of these
genes were significantly more expressed in the IC1 group than
Frontiers in Immunology | www.frontiersin.org 5
in the IC2 group, suggesting that patients with different subtypes
may differ in their response to immunotherapy.

We subsequently identified 22 immune cell types from
sample-specific immune signatures using CIBERSORT. The
distribution of these immune cell types in the molecular
subtype samples is shown in Figure 6A, and differences in
immune cell score for each immune cell type between the
molecular subtypes are shown in Figure 6B. The immune cell
scores indicated significant differences in the proportion of
immune cell features between the molecular subtypes,
including memory B cells, CD4+ memory T cells, M0
macrophages, activated natural killer cells, resting dendritic
and mast cells, which may play an important role in LUAD.

A prior study reported ten canonical pathways that displayed
differences across multiple cancer types (26). In the current
study, seven of the ten pathways differed significantly between
the molecular subtypes of LUAD. Specifically, the cell cycle
and PI3K pathways were mainly enriched in the IC2
subtype (Figure 6C).
BA

DC

FIGURE 2 | Functional enrichment analysis of CD8+ T cell-associated genes. (A) Biological process annotation map of genes in the cyan-colored module.
(B) Molecular function annotation map of genes in the cyan-colored module. (C) Cellular component annotation map of genes in the cyan-colored module. (D) Kyoto
Encyclopedia of Genes and Genomes annotation map of genes in the cyan-colored module.
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Immune infiltration analysis indicated that the IC1 group had
the highest immune microenvironment infiltration, as shown in
Figure 6D. Further, most of the immune checkpoint-associated
genes were significantly more expressed in the IC1 group than in
the IC2 group, which may account for the better prognosis of
patients with the IC1 subtype.

Finally, we compared our molecular subtypes with five
previously identified pan-cancer immunophenotypes by
utilizing molecular subtype data of these samples from the
literature (26). The molecular subtypes of LUAD differed
significantly from the five published immunophenotypes
(Figure 6E and Supplementary Figure 7). The proportion of
patients with the C1 immune subtype and poor prognosis was
significantly higher in the IC2 group than in the IC1 group, while
the proportion of patients with the C3 immune subtype and the
better prognosis was significantly lower in the IC2 group than in
the IC1 group. These findings suggested that the two
Frontiers in Immunology | www.frontiersin.org 6
molecular subtypes of LUAD complemented the five published
immune subtypes.

3.4 Potential Clinical Impact of
Molecular Subtypes
Higher T cell dysfunction and exclusion (TIDE) prediction
scores indicate a higher likelihood of immune escape,
suggesting that patients are less likely to benefit from
immunotherapy. As shown in Figure 7A, the TIDE scores of
the IC2 group were significantly higher than those of the IC1
group in the TCGA-LUAD dataset, indicating that patients with
the IC1 subtype could benefit more from immunotherapy than
those with the IC2 subtype. Further, we compared the predicted
T cell dysfunction and rejection scores for the molecular
subtypes (Figures 7B, C), observing that the IC2 group had
lower predicted T cell dysfunction scores and higher T cell
rejection scores than the IC1 group. These findings may
BA

D EC

FIGURE 3 | Immune clusters (ICs) in lung adenocarcinoma (LUAD). (A) Venn diagram displaying the intersection of CD8+ T cell genes significantly associated
with prognosis between the two cohorts (TCGA-LUAD and GSE-LUAD). (B) Cumulative distribution function (CDF) curve and CDF delta area curve of TCGA-
LUAD samples: delta area curve of consensus clustering indicates the relative change in area under the CDF curve for each category number k compared with
k–1, where the horizontal axis represents the category number k, and the vertical axis represents the relative change in area under CDF curve. (C) Heat map of
sample clustering at consensus k = 2. (D) Survival curves for the molecular subtypes in the TCGA-LUAD cohort. (E) Survival curves for the molecular subtypes
in the GSE-LUAD cohort.
February 2022 | Volume 13 | Article 806877

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. CD8+ T Cell-Associated Gene Signature
explain the poorer prognosis of the IC2 group and the better
prognosis of the IC1 group. Moreover, these results were also
observed in the GSE-LUAD dataset (Figures 7D–F).

To further validate whether the findings observed from the TIDE
analysis applied to patient outcomes in the GSE-LUAD and TCGA-
LUAD datasets, we compared patient responses to immunotherapy
and chemotherapy for the two molecular subtypes in the GSE 91061
dataset using subclass mapping (submap), with lower P-values
indicating higher similarity. The results indicated that the patients
with the IC1 subtype in the TCGA-LUAD dataset were more
sensitive to both CTLA4 and PD-1 inhibitors, but only CTLA4
monotherapy was effective for patients with the IC1 subtype in the
Frontiers in Immunology | www.frontiersin.org 7
GSE-LUAD dataset, as shown in Figures 8A, E. The responses of
patients with different subtypes to conventional chemotherapeutic
and targeted drugs, including cisplatin, erlotinib, and sorafenib, were
also analyzed. Indeed, patients with the IC2 subtype were more
sensitive to these three drugs compared to those with the IC1 subtype
(Figures 8B–D, F–H).

3.5 Construction of the Prognostic
Risk Model Based on CD8+ T
Cell-Associated Genes
Although we identified 20 CD8+ T cell-associated genes that were
prognostically relevant in independent datasets, prioritizing genes
B

C

A

FIGURE 4 | Relationship between tumor mutation burden (TMB) and molecular subtypes. (A) Distribution of TMB for molecular subtype samples. (B) Distribution of
the number of mutations for molecular subtype samples. Rank sum test was used to determine the p-value, where ***p < 0.001, ****p < 0.0001. (C) Mutation
features of significantly mutated genes in samples of each molecular subtype.
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with the most significant clinical impact while maintaining high
accuracy is necessary to simplify clinical applications for
predicting therapeutic responses. Therefore, we applied Lasso
Cox regression analysis to reduce the number of genes in the
risk model using the glmnet package in R. The trajectory of each
independent variable is shown in Figure 9A. As lambda gradually
increased, the number of independent variable coefficients
approaching zero also increased. Subsequently, the model was
Frontiers in Immunology | www.frontiersin.org 8
constructed using 10-fold cross-validation with the confidence
intervals for each lambda shown in Figure 9B. The model
achieved optimum performance when lambda = 0.0286. The top
10 CD8+ T cell-associated genes were selected as target genes for
further downstream analysis, including brain-expressed X-linked
5 (BEX5), CD69, HEMGN, MAL, PPP1R13B, zinc finger 540
(ZNF540), AGMAT, disheveled protein 3 (DVL3), SMAGP,
and STRN4.
BA

EDC

F

FIGURE 5 | Differences in the expression of immune molecules and function between molecular subtypes in the TCGA-LUAD cohort for (A) chemokines,
(B) chemokine receptors, (C) IFNg, (D) immune T cell lysis activity, (E) angiogenesis scores, and (F) immune checkpoint genes. Significance was determined using
ANOVA, where *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001. ns, no significance.
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These ten genes were then subjected to multivariate Cox
analysis, and the risk coefficient for each gene was calculated
using the RiskScore formula:

RiskScore = −0:103 ∗BEX5 − 0:092 ∗CD69 − 0:695 ∗HEMGN−

0:042 ∗MAL − 0:279 ∗ PPP1R13B − 0:189 ∗ZNF540 + 0:017 ∗

AGMAT + 0:073 ∗DVL3 + 0:119 ∗ SMAGP + 0:151 ∗ STRN4

The RiskScore was normalized to the expression level in the
sample. The distribution of RiskScore values for samples in the
training dataset is shown in Figure 10A. Receiver operator
Frontiers in Immunology | www.frontiersin.org 9
curve analysis of the prognostic classification of RiskScore was
performed using the timeROC package in R. The prognostic
prediction efficiency of the risk model was tested at one, three,
and five years, revealing high area under the curve values
(Figure 10B). Finally, the RiskScore was used to classify high-
and low-risk groups according to the median value. Kaplan–
Meier curves were plotted (Figure 10C), displaying a
significant difference between the high- and low-risk groups
(P < 0.0001).

The risk model was then validated using the independent
validation dataset, GSE-LUAD. The receiver operator curve
B

C D E

A

FIGURE 6 | Immunological features and pathway characteristics of molecular subtypes. (A) Proportions of 22 immune cell types in molecular subtype samples.
(B) Differences in immune cell scores of 22 immune cell components between molecular subtype samples. (C) Differences in enrichment scores of ten pathways
associated with tumor abnormalities between molecular subtypes. (D) Distribution of immune infiltration scores between molecular subtype samples. (E) Comparison
of the molecular subtypes with five previously identified pan-cancer immunophenotypes. *p < 0.05; **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance.
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analysis of the prognostic classification of RiskScore was
performed as previously described, and the RiskScore was used
to classify high- and low-risk groups according to the median
value. Kaplan–Meier curves were plotted as shown in
Supplementary Figure 8, displaying a significant difference
between the high- and low-risk groups (P < 0.0001).

3.6 Relationship Between RiskScore,
Clinical Features, Molecular Subtypes, and
KEGG Pathways
The relationship between RiskScore, clinical features, and
molecular subtypes was investigated in the TCGA-LUAD
dataset. We found significant differences in RiskScore
corresponding to T-stage, N stage, stage (I-IV), molecular
subtype, smoking status, sex, and age (Figure 11, P < 0.05).

To assess the relationship between RiskScore and biological
function, gene expression profiles were selected for single-sample
GSEA analysis using the GSVA package in R, and single-sample
GSEA scores were obtained for each function. The correlations
between these functions and RiskScore were further calculated,
and functions with correlations > 0.4 were clustered based on
correlation coefficient value. Among the 19 top KEGG pathways
Frontiers in Immunology | www.frontiersin.org 10
with the most linear correlations with RiskScore, 14 and five
functions were positively and negatively correlated with
RiskScore, respectively. These KEGG pathways were clustered
according to enrichment score, as shown in Supplementary
Figure 9. The top KEGG pathways included the P53 signaling
pathway, base excision repair, cell cycle, mismatch repair, DNA
replication, and other tumor-associated pathways.

3.7 Analysis of the Constructed Risk
Model Based on 10-Gene Signature
We employed univariate Cox regression analysis to test the
clinical independence of the risk model based on the 10-gene
signature, revealing that RiskScore was significantly correlated
with survival (Figure 12A). In addition, multivariate Cox
regression analysis demonstrated that after adjusting for
biological variables, RiskScore was still significantly correlated
with survival (HR = 1.99, 95% CI = 1.36-2.92, P < 1e-5)
(Figure 12B). The above results confirmed that our risk model
possessed good predictive performance for clinical applications.

A nomogram was constructed using stage and recurrence data
and combined with RiskScore using the full TCGA-LUAD dataset
(Figure 13A) to enable visualization of the risk model in an
B CA
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FIGURE 7 | Differential analysis of T cell dysfunction and exclusion (TIDE) between molecular subtypes in two datasets (TCGA-LUAD and GSE-LUAD). (A) TIDE
scores in TCGA-LUAD samples. (B) T cell dysfunction scores in TCGA-LUAD samples. (C) T cell rejection scores in TCGA-LUAD samples. (D) TIDE scores in GSE-
LUAD samples. (E) T cell dysfunction scores in GSE-LUAD samples. (F) T cell rejection scores in GSE-LUAD samples. *p < 0.05; **p < 0.01, ****p < 0.0001.
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intuitive, practical, and efficient way. The RiskScore feature had the
greatest impact on predicting survival outcomes, indicating that the
10-gene-based risk model could outperform current methods of
determining disease prognosis. The correction curve suggested that
our model was highly accurate (Figure 13B). Further, the decision
curve analysis plot of T-stage, N stage, RiskScore, and nomogram
values indicated that the nomogram had better predictive
performance than other methods (Figure 13C).

3.8 Prediction Efficacy of the Constructed
Risk Model for Immunotherapy
An immunotherapy dataset (Imvigor210) containing
transcriptomic data was retrieved to explore whether the
constructed risk model based on the 10-gene signature could
predict the efficacy of immunotherapy. The Imvigor210 dataset
included expression data of human metastatic urothelial
carcinoma samples from patients who responded or did not
Frontiers in Immunology | www.frontiersin.org 11
respond to anti-PD-L1 immunotherapy. The Kaplan–Meier
curves demonstrated that patients with higher RiskScore values
were associated with poorer survival outcomes following
immunotherapy treatment (Figure 14A).

Furthermore, the risk model had higher area under the curve
values compared to standard prediction models of immunotherapy
response (Figure 14B). There was no significant difference between
immunotherapy response and non-response in the high- and low-
risk groups (Figure 14C). The RiskScore, TMB, NEO, and immune
cell scores of the Imvigor210 samples were calculated and correlated
using the MCPcounter package in R, demonstrating that RiskScore
was negatively correlated with TMB and NEO and weakly
correlated with immune cell score (Figure 14D).

Finally, RiskScore was compared across different groups,
revealing that different immunotherapy response (Figure 15A)
and tumor cell level (Figure 15C) groups displayed significant
differences in RiskScore, while a trend toward a difference in
B C DA
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FIGURE 8 | Differential analysis of immunotherapy/chemotherapy response of molecular subtypes. (A) TCGA-LUAD submap analysis indicating that patients with
the IC1 subtype could be more sensitive to CTLA4 and PD-1 (Bonferroni-corrected p < 0.05). (B–D) Box plots of estimated IC50 values in the TCGA-LUAD dataset.
(E) GSE-LUAD submap analysis indicating that patients with the IC1 subtype could be more sensitive to CTLA4 (Bonferroni-corrected p < 0.05. (F–H) Box plots of
estimated IC50 values in the GSE-LUAD dataset. *p < 0.05; ****p < 0.0001.
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B

C

A

FIGURE 10 | Construction and evaluation of the prognostic risk model based on CD8+ T cell-associated genes using the training set. (A) RiskScore, time to live
(TTL), and survival status after applying the 10-gene signature to the TCGA-LUAD training set. (B) Receiver operator curves and area under the curve based on the
10-gene signature. (C) Kaplan–Meier survival curves for high- and low-risk groups based on the 10-gene signature using the TCGA-LUAD training set.
BA

FIGURE 9 | Multivariate risk analysis using the training set for construction of a prognostic risk model based on CD8+ T cell-associated genes. (A) Trajectory of each
independent variable, where the horizontal axis represents the log value of the independent variable, lambda, and the vertical axis represents the coefficient of the
independent variable. (B) Confidence interval under each lambda.
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FIGURE 11 | Comparison of RiskScore distribution based on clinical features and molecular subtype using the TCGA-LUAD dataset. (A) T stage, (B) N Stage,
(C) M Stage, (D) Stage, (E) Cluster, (F) Smoking, (G) Gender, (F) Age.
B
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FIGURE 12 | Univariate and multivariate analysis of the risk model based on the 10-gene signature using the TCGA-LUAD dataset. (A) Univariate Cox regression
analysis. (B) Multivariate Cox regression analysis.
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RiskScore was observed in different immune cell levels
(Figure 15B) and immune phenotype (Figure 15D) groups.
4 DISCUSSION

In this study, we utilized the expression profile data of 14
immune cell types obtained from 13 publicly available datasets
to identify 252 CD8+ T cell-associated genes by weighted
correlation network analysis. To validate the accuracy of our
initial screening, we employed Gene Ontology and KEGG
enrichment analyses to confirm that the identified genes were
closely related to immune function and tumor-related pathways.
In addition, We obtained the original data of single-cell data
GSE148071 (18 patient samples of lung adenocarcinoma) and
performed cell annotation analysis. The results indicated that
the 20 genes were not uniquely expressed in CD8+ T cells.
Frontiers in Immunology | www.frontiersin.org 14
Single-cell sequencing annotates cell subpopulations based on
expression of marker genes. Some cells expressing multiple cell
marker genes at the same time will lead to certain false negative
in cell annotation. This might be the reason for the inconsistency
between Single-cell sequencing and our results. To ensure the
accuracy and reliability of the data, we rigorously validated our
model predictions with multiple independent analyses. Patients
in the IC2 group had a poor prognosis and advanced TNM stage
compared to those in the IC1 group. Furthermore, the TMB was
significantly higher in the IC2 group than in the IC1 group.
Levels of chemokines and immune cell infiltration, as well as
expression of angiogenesis-associated genes and immune-related
pathways, differed significantly between the IC1 and IC2 groups.
Moreover, the IC1 group had higher immune scores and
immune checkpoint-associated gene expression than the IC2
group, which could explain the better prognostic outcome of
patients in this group. Finally, the IC2 group had higher TIDE
B C

A

FIGURE 13 | Nomogram and forest plot constructed with RiskScore and clinical features using the TCGA-LUAD dataset. (A) Nomogram of RiskScore, TNM stage,
and recurrence. (B) Correction plot of the nomogram. (C) Decision curve analysis plot.
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scores, indicating a higher likelihood of immune escape and thus
a lower probability of benefiting from immunotherapy. Thus,
differences in response to chemotherapy and targeted therapies
(standard first-line therapies for LUAD) were assessed between
the two groups, revealing that patients with the IC2 subtype were
more sensitive to cisplatin, erlotinib, and sorafenib than those
with the IC1 subtype. These results suggest that the two
molecular subtypes of LUAD based on CD8+ T cell-associated
genes can distinguish between high- and low-risk LUAD patients
and potentially have a meaningful clinical impact.

Another important result of this study was the identification of
a robust 10-gene signature based on CD8+ T cell-associated genes
in LUAD patients that includes BEX5, CD69, HEMGN, MAL,
PPP1R13B, ZNF540, AGMAT, DVL3, SMAGP, and STRN4.
Expression of the novel 10-gene signature corresponded with
predictive value in both the TCGA-LUAD and GSE-LUAD
Frontiers in Immunology | www.frontiersin.org 15
datasets and was an independent predictor of prognosis in
LUAD patients. BEX5, a member of the BEX family, is involved
in various biological functions related to normal and tumor tissues
(27). A previous study demonstrated that BEX5 mRNA levels are
downregulated in LUAD tissues and have prognostic value (28).
CD69, a C-type lectin receptor family member, is the earliest
surface antigen expressed after T lymphocyte activation and acts
as a co-stimulatory signal to promote further activation (29, 30).
Compared to normal lung tissues, CD69 is less expressed in LUAD
tissues and is positively associated with the apoptosis of LUAD cells
(31). High expression of HEMGN, a nucleoprotein involved in
regulating the proliferation and differentiation of hematopoietic
cells (32), reportedly indicates a better prognosis in acute myeloid
leukemia (33). Expression of MAL, which occurs at intermediate-
to late-stage T cell differentiation, is downregulated or absent in a
variety of tumor tissues, such as gastric cancer (34) and LUAD (35)
BA
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FIGURE 14 | Prediction efficacy of the risk model based on the 10-gene signature. (A) Kaplan–Meier curves of high- and low-risk groups using the Imvigor210
dataset. (B) Evaluation of the risk model against standard prediction models of immunotherapy response using the Imvigor210 dataset. (C) Corresponding stacked
plots of immunotherapy response among high- and low-risk groups in the Imvigor210 dataset. (D) Correlation between RiskScore, immune score, TMB, and NEO
using the Imvigor210 dataset. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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and corresponds with advanced tumor progression. PPP1R13B,
also known as apoptosis-stimulating proteins of the p53 (ASPP1), is
a member of the newly discovered ASPP family that exerts its
cancer-inhibiting effects mainly by promoting p53-mediated
apoptosis (36) and is downregulated in the lung (37), kidney
(38), and colon (39) cancers. ZNF540 is a newly identified
member of the ZNF protein family that binds to major vault
protein to inhibit the ERK signaling pathway (40). A previous study
reported that high AGMAT expression is closely associated with
poor prognosis in LUAD patients and promotes tumorigenesis
through the NO-MAPK-PI3K/Akt pathway (41). DVL3 belongs to
the DVL family, which is the cytoplasmic mediator of the Wnt/b-
catenin signaling pathway and plays an important role in
embryonic development, cell differentiation, and tumor
formation (42). High DVL3 expression is associated with poor
prognosis in patients with lung cancer (43, 44). SMAGP encodes a
transmembrane glycoprotein that plays an important role in tumor
invasion and metastasis (45–47). STRN4 belongs to the striatin
Frontiers in Immunology | www.frontiersin.org 16
family and functions as a co-factor (48), particularly in cancer-
related pathways (49) in prostate (50), lung (51), and gastric (52)
cancers. In the current study, ZNF540 and SMAGP were identified
as prognostic markers for LUAD for the first time, but their specific
roles and potential regulatory mechanisms require
further investigation.

The novel 10-gene signature developed in the current study
was closely associated with the p53-signaling pathway. p53
regulates the expression of a wide variety of genes, whose
functions include promoting apoptosis and inhibiting growth,
cell cycle progression, DNA repair, genotoxicity, and senescence
following cellular stress. Several additional enriched pathways
were correlated with RiskScore, including base excision repair,
mismatch repair, and DNA replication, likely mediated through
p53. Overall, the p53 pathway likely plays an essential role in the
progression of LUAD.

Traditional antitumor treatments, such as chemotherapy, can
achieve certain efficacy, but the overall survival of patients with
BA

DC

FIGURE 15 | Comparison of RiskScore distribution across different subgroups for (A) immunotherapy response, (B) immune cell (IC) level, (C) tumor cell (TC) level,
and (D) immune phenotype. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. **p < 0.01; ns, no significance.
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LUAD is compromised by several factors, including normal
tissue toxicity and multi-drug resistance (3). In recent years,
targeted tumor therapies such as gefitinib and crizotinib have
been effective against specific tumors, but their application is
limited to a fraction of LUAD patients, and drug resistance
eventually develops (53). The use of immune checkpoint
blockade (ICB) antibodies has achieved significant efficacy in
lung cancer (54), but only 30% of lung cancer patients display
long-term benefits (55). Therefore, biomarkers that can
effectively predict the efficacy of ICB therapy are urgently
needed. TIDE score, which corresponds to T cell dysfunction,
has been shown to effectively predict the efficacy of ICB
treatment (56). In the current study, our constructed risk
model demonstrated better performance than standard
prediction models in predicting the survival of metastatic
urothelial carcinoma patients receiving immunotherapy,
demonstrating the model’s clinical potential for evaluating
candidate LUAD patients to receive ICB therapy.

Although our risk model based on the 10-gene signature
robus t l y de t e rm ined LUAD prognos i s f o l l ow ing
immunotherapy, our study has several limitations. First, this
was a retrospective study. Thus, validation with prospective
samples is required. Second, only the prognostic value and
clinical significance of the 10-gene signature were analyzed;
therefore, the mechanisms underlying gene expression and
CD8+ T cell activity warrant further exploration.

In conclusion, this study identified two robust molecular
subtypes of LUAD based on CD8+ T cell-associated genes,
with each subtype demonstrating significantly different patient
prognoses, clinical characteristics, immune cell phenotypes, and
therapeutic responses. In addition, the constructed risk model
based on the 10-gene signature performed better than current
methods in predicting the prognosis and immunotherapeutic
response of LUAD patients.
Frontiers in Immunology | www.frontiersin.org 17
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