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This paper presents a new algorithm for adaptive resampling, called percentile-based resampling (PBR) in a 
sequential Bayesian filtering, i.e., particle filter (PF) in particular, to improve tracking quality of the frequency 
trajectories under noisy environments. Since the conventional resampling scheme used in the PF suffers from 
computational burden, resulting in less efficiency in terms of computation time and complexity as well as the 
real time applications of the PF. The strategy to remedy this issue is proposed in this work. After state updating, 
important high particle weights are used to formulate the pre-set percentile in each sequential iteration to create 
a new set of high quality particles for the next filtering stage. The number of particles after PBR remains the 
same as the original. To verify the effectiveness of the proposed method, we first evaluated the performance of 
the method via numerical examples to a complex and highly nonlinear benchmark system. Then, the proposed 
method was implemented for frequency estimation for two time-varying signals. From the experimental results, 
via three measurement metrics, our approach delivered better performance than the others. Frequency estimates 
obtained by our method were excellent as compared to the conventional resampling method when number of 
particles were identical. In addition, the computation time of the proposed work was faster than those recent 
adaptive resampling schemes in literature, emphasizing the superior performance to the existing ones.
1. Introduction

Frequency estimation is one of the most important tasks in many 
areas that are related to signal and information processing, especially 
in electrical engineering, mechanical engineering, and environmental 
studies [1, 2, 3, 4]. For environmental study, frequency estimation is 
a crucial step that must be done with accurate estimating results, and 
then these results are used to obtain the environmental parameters for 
inversion problem. This can be seen in the ocean acoustic inversion 
where the signals received from the field were utilized to extract the 
frequency content from ocean acoustics time-series which is typically 
done by using particle filtering framework [5, 6, 7, 8].

To track the objects or targets that are moving, changing, or evolving 
over time, a sophisticated framework is required for such task. Recently, 
sequential Bayesian filtering has attracted researchers and engineers 
who are working on tracking applications. Since the establishment of 
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a well-known Kalman Filter (KF) that it can estimate the parameters of 
interest for tremendous number of problems in the cases of additive and 
Gaussian perturbations in the evolution of the unknown parameters, 
many challenging problems could be resolved [9]. Under the assump-

tion that the system follows additive Gaussian noise in the measured 
data, and a linear relationship between state vector and measurements, 
KF can work efficiently. Unfortunately, under highly nonlinear/non-

Gaussian systems, simple KF barely provides satisfactory estimating 
results and it is no longer efficient for highly nonlinear/non-Gaussian 
systems [10, 11, 12, 13]. Particle Filtering, a numerical technique to es-

timate or track the parameters of interest via a recursive computation, 
hence, comes into consideration. Recently, particle filter (PF) has been 
used in many science and engineering applications containing wireless 
networks, economic, multimedia, geography, and medicine [14, 15, 16, 
17, 18, 19, 20], for examples. The need of PF stems from the fact that it 
can handle the highly nonlinear/non-Gaussian systems, the restriction 
https://doi.org/10.1016/j.heliyon.2021.e06768

Received 22 January 2021; Received in revised form 26 March 2021; Accepted 7 Ap

2405-8440/© 2021 The Author(s). Published by Elsevier Ltd. This is an open a
censes/by-nc-nd/4.0/).
ril 2021

ccess article under the CC BY-NC-ND license (http://creativecommons.org/li-

https://doi.org/10.1016/j.heliyon.2021.e06768
http://www.ScienceDirect.com/
http://www.cell.com/heliyon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2021.e06768&domain=pdf
mailto:nattapol.aun@mfu.ac.th
https://doi.org/10.1016/j.heliyon.2021.e06768
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


N. Aunsri, K. Pipatphol, B. Thikeaw et al. Heliyon 7 (2021) e06768
of Gassianity is now relaxed. PF is a class of sequential Monte Carlo ap-

proach that can sequentially approximates the probability distribution 
of the parameters of interest. The available measured or observed data 
is used to update the predicted state values.

Typical PF conducts important process called resampling in the PF 
iteration. Resampling has been implemented and used successfully in 
various fields of applications. In social sciences, the income of the pop-

ulation is calculated by using the resampling, the results show good 
accuracy [21]. Moreover, in engineering problems, the PF was em-

ployed in robot localization for position tracking [22] and hardware 
usage. In addition to that, resampling was also used to calculate bat-

tery endurance [23]. The main idea of resampling is that the particles 
with small weight will be replaced by new particles in the area around 
or close to the particles with large weight [24], resulting in the du-

plication of significant quantity (particle containing the parameters of 
interest, frequency in our work) to represent the posterior probability 
density functions (PDFs) of the investigating parameters. Nevertheless, 
a problem that resampling process can cause is a diversity problem. 
This is known as sample impoverishment and this problem occurs when 
all particles are identical. Some scenarios, the conventional resampling 
does not perform well under some noisy environments.

From the drawback mentioned above, the development to conquer 
the problem has continuously conducted [25, 26]. The technique called 
a diversity enhanced particle filter was introduced to improve the esti-

mation accuracy. The technique is done by generating new sets of sec-

ondary particles from high weight primary particles, and then combin-

ing those sets to create the updated particles [27]. Residual-systematic 
resampling for fixed duration of the new randomness and partial re-

sampling for reducing the burden of traffic through hardware networks 
has been proposed [28]. The development of the weight distribution of 
the abandoned particles for higher tracking efficiency [29], and adap-

tive fission particle filter (AF-PF) to increase the efficiently of parameter 
tracking by creating a better set of particles [30, 31] has been reported 
in literature for enhancing the resampling process. The above works 
performed resampling satisfactory by providing excellent tracking re-

sults, but those algorithms are still complicated and take substantial 
amount of processing time, preventing the realtime applications to be 
possible. To address the above mentioned issue, this paper therefore in-

tends to present a new technique created for faster resampling while 
the tracking or estimating accuracy of the PF remains the same. Since 
the complexity of the proposed algorithm is reduced, lower processing 
time is required, allowing the applicability of the method for realtime 
state estimation.

The rest of this paper is organized as follows. In Section 2, we 
present a background of particle filter (PF), and the methodology of 
new adaptive resampling proposed in this paper is described in sec-

tion 3. Time-frequency representation of the signal and particle filter 
implementation are described in Section 4. Tracking results at different 
noise levels will be illustrated, and the proposed algorithm is compared 
with the other two methods which include conventional resampling and 
adaptive fission resampling, there tracking results are presented in Sec-

tion 5. Conclusions of the paper can be found in Section 6.

2. Particle filtering

To begin the particle filtering, the state-space model formulation 
for parameter estimation for this framework is required, it needs the 
following two state equations

𝐗𝑘 = 𝐟𝑘−1(𝐗𝑘−1,𝐕𝑘−1) (1)

and

𝐘𝑘 = 𝐠𝑘(𝐗𝑘,𝐖𝑘) (2)

where 𝑘 is the time index. Vector 𝐗𝑘 = {x1, x2, … , x𝑘} contains track-

ing parameters and 𝐘𝑘 = {y1, y2, … , y𝑘} contains the data observed in 
2

the field (measured signals). The noise quantities in the state transi-

tion equation, Eq. (1), and the observation equation, Eq. (2), are given 
by 𝐕𝑘−1 and 𝐖𝑘, respectively. Both components were assumed to fol-

low Gaussian distributions. The nonlinear functions 𝐟𝑘−1 and 𝐠𝑘 portray 
the movement of the state variables, and the relation between the state 
variables and the observed data, respectively.

As previously mentioned that particle filtering is a processor that 
approximates the PDF of the tracking parameters at each stage (time 
step). This processor is based on the point mass density (or probability 
mass function (PMF)) in order to assess the density of past iteration 
using the principles of sequential importance sampling (SIS) [32, 33]. 
The estimated posterior PDF can be written as

𝑝(𝐗𝑘|𝐘𝑘)≈ 𝑁∑
𝑖=1
𝑤𝑖
𝑘
𝛿(𝐗𝑘 −𝐗𝑖

𝑘
) (3)

and

𝑤𝑖
𝑘
∝ 𝑝(𝐗𝑖

𝑘
|𝐘𝑘)

𝑞(𝐗𝑖
𝑘
|𝐘𝑘)

=𝑤𝑖
𝑘−1

𝑝(𝐲𝑘|𝐱𝑖𝑘)𝑝(𝐱𝑖𝑘|𝐱𝑖𝑘−1)
𝑞(𝐱𝑖

𝑘
|𝐗𝑖
𝑘−1,𝐘

𝑖
𝑘
)

(4)

where 𝑁 is the number of particle, 𝑤𝑖
𝑘

is the weight of 𝑖𝑡ℎ particle at 
time 𝑘, 𝛿 is the Dirac data function, and 𝑞(𝐗𝑖

𝑘
|𝐘𝑘) is the proposal density 

[34]. Since the estimation is done sequentially, therefore the results 
from the previous step are used. If we assume that the state and the 
observed data are statistically independent, hence

𝑞(𝐱𝑘|𝐗𝑘−1,𝐘𝑘) = 𝑞(𝐱𝑘|𝐱𝑘−1,𝐲𝑘). (5)

As suggested by [35] that the following choice of the proposal den-

sity can be chosen to minimize the IS error in the prediction step, i.e., 
if

𝑞(𝐱𝑘|𝐱𝑘−1,𝐲𝑖𝑘) = 𝑝(𝐱𝑘|𝐱𝑘−1), (6)

then Eq. (4) can be written as

𝑤𝑖
𝑘
∝𝑤𝑖

𝑘−1

𝑝(𝐲𝑘|𝐱𝑖𝑘)𝑝(𝐱𝑖𝑘|𝐱𝑖𝑘−1)
𝑞(𝐱𝑖

𝑘
|𝐱𝑖
𝑘−1,𝐲

𝑖
𝑘
)

, (7)

consequently, the weight of the particle can be updated by

𝑤𝑖
𝑘
= 𝑝(𝐲𝑘|𝐱𝑖𝑘)𝑤𝑖𝑘−1, (8)

and thus the estimated posterior PDF can now be rewritten as

𝑝(𝐱𝑘|𝐱𝑘)≈ 𝑁∑
𝑖=1
𝑤𝑖
𝑘
𝛿(𝐱𝑘 − 𝐱𝑖

𝑘
). (9)

Since the SIS mostly fails after a few iterations, resampling plays an 
important role in solving this problem. The resampling process creates 
a new set of particles from the high weigh particles and ignores those 
having negligible weights [35, 36, 37, 38]. The inclusion of a resam-

pling into the SIS is called sequential importance resampling (SIR) [15, 
39]. To decide if resampling is needed, the following quantity 𝑁𝑒𝑓𝑓 is 
used to make a judgment:

𝑁𝑒𝑓𝑓 = 1∑𝑁

𝑖=1(𝑤
𝑖
𝑘
)2

(10)

The illustration of SIRPF is shown in Fig. 1. Please be noted that 
the quantities 𝐱0∶𝑘 and 𝐲0∶𝑘 in the figure are referred to the state and 
observed data up to time 𝑘.

The resampling step reduces the effects of degeneracy, but new 
problems are presented [10]: limitation of the ability to parallelize the 
SIS algorithm is introduced, and statistical independence assumption is 
no longer valid after resampling. Consequently, convergence problems 
occur if resampling takes a serious loss of particle validity. This is well-

known as sample impoverishment problem which is typically happened 
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Fig. 1. The sequential importance sampling resampling particle filter (SIR PF).
when the noise level in the measured data is low. Currently, some de-

velopments of resampling for PFs [2, 10, 25, 26, 40, 41] have been 
proposed to tackle these problems.

In this work, we propose a new resampling algorithm which has 
little computational complexity for PF instead of using conventional 
resampling and those algorithms presented in literature. The computa-

tional cost is very low while the tracking results which will be seen in 
Section 5 are excellent as compared to the other existing resampling 
methods. The detail of the proposed technique is presented in the next 
section.

3. Percentile-based resampling particle filter (PBRPF)

This section provides the proposed technique that improves the 
performance of the sequential Bayesian framework in terms of lower 
complexity, yet computation time. The developed technique can be 
considered as a type of adaptive resampling which aimed mainly to 
reduce the complexity of the conventional SIR scheme while the track-

ing performance remains the same or better than the convention one. 
Percentile-based resampling can be considered as the selection process 
of the parent particles by accumulating the best parent particles accord-

ing to the importance weights obtained from the update step in the PF. 
The top ten quantity is used in this work [42] since it sufficiently cap-

tures very important particles to represent the probability distribution 
of the states.

Consider a set of particle weights at time step 𝑘, 
{
𝑤𝑖
𝑘

}𝑁
𝑖=1, where 𝑁 is 

number of particles. It should be emphasized that ∑𝑁

𝑖=1𝑤
𝑖
𝑘
= 1. Without 

loss of generality, let W𝑘 = [𝑤𝑘,1 𝑤𝑘,2 … 𝑤𝑘,𝑁 ] be a vector contain-

ing the particle weight in ascending order, i.e., 𝑤𝑘,1 > 𝑤𝑘,2 > 𝑤𝑘,1 ⋯ >
𝑤𝑘,𝑁 ≥ 0. To formulate PBR-PF, let 𝑃 be the required percentage (above 
90% is preferable) of the sum of the weights of particles, this can be ob-

tained by the following condition:

𝑃 ≥
𝑁𝑃∑
𝑗=1
𝑤𝑘,𝑗 , (11)

where 𝑁𝑃 represents number of particle weights that their sum reaches 
𝑃 . It is clear that 𝑁𝑝 is smaller than 𝑁 in general. For the extreme 
case, if 𝑁𝑝 = 1, which means that a single particle already occupies 𝑃
percents of the whole distribution, and we will use this particle as a 
3

parent particle to generate offspring particles. If 𝑁𝑝 is greater than one, 
we will use those particles as a set of parent particles, then the offspring 
particles are created according to this set. Number of offspring particles 
depends on the individual parent weight, i.e., if 𝑤𝑘,1 > 𝑤𝑘,2, particle 
x𝑘,1 will be duplicated in a greater number than that the copies of x𝑘,2. 
After generating offspring particles, a total number of particle remains 
the same.

Now, let W𝑘,𝑝 = {𝑤𝑘,1, 𝑤𝑘,2, … , 𝑤𝑘,𝑝} be a set of 𝑃 -percentile 
weights of the parent particles, the offspring particles are constructed 
from the corresponding parent particle achieving 𝑛1, 𝑛2, … , 𝑛𝑝 particles, 
respectively, where 𝑛1 + 𝑛2 +… + 𝑛𝑝 =𝑁 . To this, it is intuitively seen 
that the number of new particles are proportionally generated accord-

ing to the weight of each chosen parent, i.e.,

𝑛𝑖 =

⌈
𝑤𝑘,𝑖∑𝑁𝑃
𝑗=1𝑤𝑘,𝑗

𝑁

⌉
. (12)

Note that ⌈∙⌉ creates the roundup to the nearest integer.

Number of new particles that were generated depends on the weight 
of each parent particle. If the weight is high, it will be able to gener-

ate new offspring particles more than those with the low-weight ones. 
It must be noticed here that ∑𝑁𝑃

𝑗=1 𝑛𝑗 may not equal to 𝑁 in practical 
implementation. Moreover, number of total particles for each iteration 
may vary. We have to eliminate or duplicate some offspring particles in 
order to retain total number of particle as 𝑁 . The process of alteration 
in PBR is demonstrated in Fig. 2. The final result obtained from PBR 
contains a set of new particles that were generated from high quality 
parent particles, these new particles will be used in the next PF itera-

tion.

4. Time-frequency representation of signal and particle filter 
implementation

We consider a noisy signal in the time-domain that is composed of 
multiples frequencies. In addition, the number of components evolves 
over time.

Standard Short-Time Fourier Transform (STFT) is utilized in the 
work for a TF representation of the time-varying noisy signal, the cor-

responding squared magnitude of the STFT is expressed by:

𝑆𝐺𝑥 =
1 ||| 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗𝜔𝜏𝑑𝜆

|||2, (13)

2𝜋 |∫ |
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Fig. 2. Process of alteration in percentile-based resampling.
where 𝑤(𝑡) is the window function applied for enhancing the signal 
information in STFT calculation.

In the frequency domain, the frequency components of the signal 
can be considered as a sum of squared sinc functions. With modeling

by sinc function, the center of a sinc is therefore a position of a fre-

quency component and it indeed evolves with time. The particle filter 
tracks this position along with the amplitude of each frequency compo-

nent. Therefore, the state vector contains the frequencies of the signal 
(sinc position) and their amplitudes. In addition to this, since the sig-

nal is time-varying, we hence allow the dimension of the state vector 
to change with time. In other words, the filter also tracks the evolution 
of the frequency components by allowing the birth and death processes 
throughout tracking operation. For full detail describing this, the read-

ers can consult [43, 44, 45, 46].

5. Experimental results

5.1. One-dimensional experiment

In this section, we illustrate via numerical example the performance 
of the PFs from the famous and commonly used in sequential Bayesian 
filtering [47, 48, 49]. This experimental system requires high perfor-

mance of the filtering framework because it is highly nonlinear, and 
the likelihood function is bimodal. The system model is described as 
follows:

𝑥𝑘 =
1
2
𝑥𝑘−1 +

25𝑥𝑘−1
1 + 𝑥2

𝑘−1

+ 8cos[1.2(𝑘− 1)] + 𝜈𝑘 (14)

and

𝑦𝑘 =
1
20
𝑥2
𝑘
+𝜔𝑘 (15)

where 𝜈𝑘 ∼  (0, 𝜎2
𝜈,𝑘

) and 𝜔𝑘 ∼  (0, 𝜎2
𝜔,𝑘

) represent the process and 
measurement noises, respectively. In the experiment, we set 𝜎𝜈,𝑘 = 2
and 𝜎𝜔,𝑘 = 1. The initial particles are drawn from

𝑥
𝑗

0 ∼ (0.5, 𝜎2
𝜈,𝑘

). (16)

In this experiment, the number of particles was 200, and the time steps 
was 100 in one realization. The number of noisy realizations, 𝑁𝑟, was 
set as 200 in order to evaluate the performance of the PFs.

The metrics used for performance evaluation are Monte Carlo root 
mean squared error (𝑀𝐶𝑅𝑀𝑆𝐸), mean absolute error (𝑀𝐴𝐸), and 
average running time of each iteration (𝑇𝑎𝑣). These quantities are de-

fined as:

𝑀𝐶𝑅𝑀𝑆𝐸 =

√√√√√ 1
𝐾𝑁𝑟

𝑁𝑟∑
𝑗=1

𝐾∑
𝑘=1

(𝑥𝑘,𝑗 − �̂�𝑘,𝑗 )2, (17)
4

Table 1. Performance comparison of the PF with different resampling schemes.

Method MCRMSE MAE Tav

SIRPF 5.1217 3.0189 1.2532

AFRPF 4.8245 2.1549 1.3016

PBRPF 3.9156 1.9249 0.6395

𝑀𝐴𝐸 = 1
𝐾𝑁𝑟

𝑁𝑟∑
𝑗=1

𝐾∑
𝑘=1

|𝑥𝑘,𝑗 − �̂�𝑘,𝑗 )|, (18)

and

𝑇𝑎𝑣 =
1

𝐾𝑁𝑟

𝑁𝑟∑
𝑗=1

𝐾∑
𝑘=1

𝑇𝑘,𝑗 , (19)

where 𝐾 represents number of time steps. 𝑥𝑘,𝑗 and �̂�𝑘,𝑗 are the true and 
estimated state values. 𝑇𝑘,𝑗 is the running time at the time 𝑘 in the 𝑗th 
experiment.

Presented in Table 1 the 𝑀𝐶𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, and 𝑇𝑎𝑣 of the pro-

posed method and others. It can be observed that the proposed PBRPF 
delivers better results as compared to the other resampling techniques. 
Moreover, the computational time of the PBRPF is significantly lower 
than those from the other methods. These results are the evidences that 
the proposed resampling scheme could enhance estimating results as 
well as computation time, resulting in the feasibility of real-time usage 
for highly nonlinear systems.

Finally, to demonstrate the comprehensive understanding of the su-

perior ability in state estimation of the proposed method over the other 
techniques, we show in Figs. 3, 4 and 5, with number of particle of 
200, the estimates of the state with the true state values superimposed 
as provided by SIRPF [11], AFRPF [30], and our PBRPF, respectively. 
These estimation results emphasize that the PBRPF offers more consis-

tent tracks with the real state values than those delivered by SIRPF and 
ARPF. The performance of both SIRPF and AFRPF are similar, while the 
proposed method appears to perform more accurately.

5.2. Frequency tracking from noisy signals

For this experiment, we generated two signals for performance eval-

uation, and their spectrograms of the clean signals were calculated 
according to what we discussed in Section 4. Shown in Figs. 6 and 7 are 
the spectrograms of both signals. For spectrogram calculation, Ham-

ming window was used in this work [50]. We used these two signals 
for frequency tracking for all PFs with different resampling schemes. 
The existing resampling schemes used for performance evaluation in 
this work include conventional resampling [11] and exixting adaptive 
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Fig. 3. State estimation results obtained by the SIRPF and true state values 
superimposed.

Fig. 4. State estimation results obtained by the AFRPF and true state values 
superimposed.

resampling proposed in literature. In addition, three different SNR lev-

els were considered to investigate the noise robustness of the proposed 
algorithm.

For signal 1, the tracking results demonstrate that the PBRPF pro-

vided better tracks than the conventional SIRPF [11, 51] and ARPF 
[52]. This can be seen in Fig. 8(a)-(c), where the SNR was 20 dB. The 
PBRPF is able to track the low frequency component of the signal, while 
the other two filters cannot. Only some periods of time that the PBRPF 
misses the tracks, these errors could be a result from low number of par-

ticles used in this experiment which was only 1000 particles. To further 
investigate the noise robustness of the filter, we applied each filter for 
different SNR levels.

We conducted more experiments for lower SNRs, 15 dB and 10 
dB, and the frequency estimates are presented in Figs. 9 and 10, re-

spectively. Shown in Figs. 9(a) and 10(a), the SIRPF cannot track the 
frequency trajectories precisely. Specifically, it misses identify the fre-

quency component of 100 Hz at time 50-150 ms. Moreover, illustrated 
via Figs. 9(b) and 10(b), the ARPF always misses the 100 Hz compo-

nent. On the other hand, the proposed PBRPF provides much better 
5
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Fig. 5. State estimation results obtained by the PBRPF and true state values 
superimposed.

Fig. 6. Spectrogram of the clean signal 1.

Fig. 7. Spectrogram of the clean signal 2.
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Fig. 8. Frequency estimates of signal 1 from the PFs: (a) SIRPF, (b) ARPF, and (c) PBRPF. The number of particles was 1,000 and SNR was 20 dB.

Fig. 9. Frequency estimates of signal 1 from the PFs: (a) SIRPF, (b) ARPF, and (c) PBRPF. The number of particles was 1,000 and SNR was 15 dB.
tracking results than those two filters, this can be seen in Figs. 9(c) and 
10(c).

For the results shown in Figs. 8, 9 and 10, the reason that SIRPF 
and ARPF failed to track the low frequency components in the signal 
could be as follows. Since PF adapts itself by predicting and updating 
the state values as time evolves to formulate the best distribution of 
the estimating frequency, but this can be done effectively by using a 
good set of particles from the previous time step. Unfortunately, SIRPF 
and AFPF did not deliver a good set of particles, but the PBRPF. It 
can be seen in the figures that the low frequency components of the 
signal are quite apart from the others, the tracking results indicate that 
the ability to capture frequency components that are apart from the 
6

others of SIRPF and ARPF is low, while the PBRPF can capture these 
components satisfactory.

To see more about the tracking capability of the proposed filter, 
we created signal 2 for further investigation. This signal contains more 
complication in terms of the appearance of the frequency trajectories. 
As expected, illustrated by three different SNR levels, 20 dB, 15 dB, and 
10 dB, the PBRPF provides better tracking results than the SIRPF and 
ARPF. These experimental results confirm better tracking performance 
of the proposed method over the other two, the frequency estimates are 
displayed in Figs. 11, 12 and 13.

Finally, we present in Table 2 the computation time for all resam-

pling schemes. It is obviously found that the proposed PBRPF takes 
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Fig. 10. Frequency estimates of signal 1 from the PFs: (a) SIRPF, (b) ARPF, and (c) PBRPF. The number of particles was 1,000 and SNR was 10 dB.

Fig. 11. Frequency estimates of signal 2 from the PFs: (a) SIRPF, (b) ARPF, and (c) PBRPF. The number of particles was 500 and SNR was 20 dB.
Table 2. Computation time of the PF with different re-

sampling schemes (ms).

Signal 1 Signal 2

SIRPF 427.93 358.70

ARPF 460.58 418.32

PBRPF 382.12 341.03

lowest computational time for both signals. Therefore, the utilization of 
the proposed method for online or realtime applications could be pos-

sible. This is the main advantage of the PBRPF in addition to tracking 
accuracy.
7

In summary, comparing with two existing resampling schemes, all 
experiments have confirmed that the proposed PBRPF offers much bet-

ter tracking results than the other techniques with lower computation 
time.

6. Conclusions

We presented in this paper a new resampling algorithm called 
percentile-based resampling (PBR) that is one of the important parts

in the particle filtering framework to replace the conventional resam-

pling. This algorithm selects the most important weights of the parent 
particles by adding the most top weights until the pre-set percentile is 
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Fig. 12. Frequency estimates of signal 2 from the PFs: (a) SIRPF, (b) ARPF, and (c) PBRPF. The number of particle was 500 and SNR was 15 dB.

Fig. 13. Frequency estimates of signal 2 from the PFs: (a) SIRPF, (b) ARPF, and (c) PBRPF. The number of particles was 500 and SNR was 10 dB.
reached. The rest of the particles that have low weights are ignored, and 
a new set of particles is then generated according to the selected par-

ents particles. The amount of the offspring is proportional to the weight 
of each parent particle. The number of particles in the filtering remains 
the same, no matter how many parent particles were selected.

The simulation results showed that the PBRPF could deliver bet-

ter frequency estimates as compared to the conventional resampling 
(SIRPF), adaptive fission resampling (AFRPF), and another adaptive re-

sampling (ARPF) technique. The computation time for each resampling 
method has been provided and the results dictated the advantage of 
the proposed method. This technique is easy to implement and it takes 
less computation time than other techniques. Therefore, the proposed 
8

resampling scheme is plausible for realtime object and parameter track-

ing applications. Moreover, this work can be applied to ocean acoustics 
signals for modal frequency tracking and dispersion curves estimation, 
vibration applications, nondestructive testing for crops analysis and 
classification, and speech processing, etc.
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