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Evoked responses to note onsets 
and phrase boundaries in Mozart’s 
K448
Yijing Feng1,5, Robert J. Quon2,3,5, Barbara C. Jobst2,3,5 & Michael A. Casey1,4,5*

Understanding the neural correlates of perception of hierarchical structure in music presents a 
direct window into auditory organization. To examine the hypothesis that high-level and low-
level structures—i.e. phrases and notes—elicit different neural responses, we collected intracranial 
electroencephalography (iEEG) data from eight subjects during exposure to Mozart’s K448 and directly 
compared Event-related potentials (ERPs) due to note onsets and those elicited by phrase boundaries. 
Cluster-level permutation tests revealed that note-onset-related ERPs and phrase-boundary-related 
ERPs were significantly different at −150 , 200, and 450 ms relative to note onset and phrase markers. 
We also observed increased activity in frontal brain regions when processing phrase boundaries. We 
relate these observations to (1) a process which syntactically binds notes together hierarchically to 
form larger phrases; (2) positive emotions induced by successful prediction of forthcoming phrase 
boundaries and violations of melodic expectations at phrase boundaries.

Musical information is organized hierarchically. The processing of individual musical elements such as phrase 
boundaries and note onsets, is associated with distinct brain regions and neural responses. Understanding 
the neural correlates of perception of hierarchical structure in music presents a direct window into auditory 
organization.

The music-theoretic concept of musical structure describes listeners’ segmentation of auditory information 
into nested hierarchical units of various sizes1. Previous work such as Lerdahl and Jackendoff ’s A Generative 
Theory of Tonal Music2, which was influenced by Bersteins’s The Unanswered Question3, attempted to model music 
understanding with the aid of generative linguistics. In principle, the organization in music is similar to human 
language, where speech is nested recursively into units such as phonemes and words, and extended to phrases 
and sentences. Ding et al.4 have shown a hierarchy of neural processing timescales underlies grammar-based 
internal construction of hierarchical linguistic structure. Prystauka et al.5 reviewed recent studies and summa-
rized the theories linking the oscillatory markers to the processing of hierarchical structure in languages, such 
as linking beta oscillation to syntactic structure building and linking gamma oscillation to semantic structure 
building6,7. Correspondingly, music consists of notes, chords, themes, and higher-level functional units such as 
phrases and sections8, which occur at quasi-periodic intervals and are marked by changes in melodic theme, 
harmony, rhythm, and key9,10. These higher-level compositional elements underlie audience engagement with 
the music and are experienced as anticipation of upcoming events. Thus, phrase-level components are regarded 
as primary functional units in the cognitive processing of music.

To better understand the cognitive processing of complex auditory information, previous studies have inves-
tigated neural responses to important structural elements in music by examining event-related potentials (ERPs). 
Several ERP components that are linked to syntactic violations in language processing have also been observed in 
music perception. For example, the N400 component is associated with words that are semantically anomalous 
given the preceding context11, and it was also discovered to be elicited in the processing of out-of-key or unex-
pected notes in familiar melodies12,13. The P600 component, which is sensitive to the non-preferred continuation 
of a sentence14, can also be elicited by incongruous elements in musical sequences15,16. In addition, the closure 
positive shift (CPS), an electrical phenomenon that can be detected at the close of a phrase, has been reported to 
mark prosodic phrase boundaries in both speech17 and music18. These findings contribute to the understanding 
of the perception of individual higher-order structural elements in music.
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However, it remains unclear how the human brain processes and integrates auditory information at different 
hierarchical levels with naturalistic music stimuli. Most previous studies extracted musical phrases from simple 
melodies or manipulated phrase boundaries by note filling—a commonly used technique to generate unphrased 
control stimuli by filling pauses with musically plausible notes, which do not allow for the investigation of the 
neural processing of phrase boundaries in naturalistic music perception. Other studies attempted to explore 
hierarchy in music perception but failed to reveal the neural correlates of higher-order structural elements due 
to the lack of score-based segmentation of musical stimuli. These studies relied on neural responses to the non-
cognitive units marked by pauses or bars19, which limited their findings to the lower-level perception of music.

To address the gap in understanding the neural correlates of different hierarchical levels of music perception, 
we analyzed brain responses to naturalistic music with note-onset and phrase-boundary-related ERPs using a 
cluster-based permutation test, and localized brain structures activated by these different stimulus elements. 
The current study extends previous work in two ways: (1) it directly compared the neural responses to musical 
components at different levels, which helps reveal the hierarchical structure in auditory cognition, and (2) it 
generalized Knösche‘s result18 to naturalistic music perception by using naturalistic, i.e. unmodified, musical-
phrase stimuli. We hypothesized that low-level and high-level musical structures would elicit distinct neural 
responses, and that the processing of low-level structures would be associated with lateral temporal brain regions 
and high-level structures would involve increased activity in frontal brain regions. As such, our study serves as 
a foundation for understanding brain responses to the hierarchical structure in music perception.

Results
Note‑onset‑related ERPs and phrase‑boundary‑related ERPs.  A total of twelve sessions of Intrac-
ranial Stereo-EEG data were collected from eight subjects with refractory epilepsy undergoing intracranial EEG 
monitoring for the clinical treatment during exposure to the first 90 s of Mozart’s K448.

To verify the hypothesis that both note onsets and phrase boundaries elicit evoked responses, we computed 
the ERP waveforms (Figs. 1, 2) by averaging intracranial electroencephalography (iEEG) windows sampled near 
stimulus markers (phrase boundaries and note onsets) across all twelve sessions, and performed a cluster-based 
permutation test to determine whether the iEEG windows sampled near the stimulus markers were significantly 
different from reference windows randomly sampled between stimulus markers. Temporal clusters in which a 
significant difference ( p < 0.05 ) was observed between the two conditions were reported. The p-value statistics 
of significant temporal clusters are provided in Tables 1 and 2. Figure 3 shows the result of the statistical analysis 
in each subregion within a single session. We shaded the regions in Figs. 1 and 2 to represent the intersection of 
significant temporal clusters across all twelve sessions in each subregion.

We then integrated the results for frontal brain regions and lateral temporal brain regions over all twelve 
sessions as shown in Figs. 4 and 5. For note-onset-related ERPs, a majority of sessions had significant temporal 
clusters at −150 and 200 ms around the note onset stimulus markers in both frontal and temporal brain regions. 
Notably, ten sessions contained significant clusters at around 200 ms. In the analysis of phrase-boundary-related 
ERPs, all twelve sessions having overlapping clusters at −150 , 0, 200, and 400 ms around the phrase boundaries 
in both frontal and temporal brain regions. Figures 6 and 7 illustrate the cortical distribution of the statistical 

Table 1.   Statistics of significant temporal clusters in the comparison between iEEG sampled around note 
onsets and reference windows within each subregion in all twelve sessions.

Subregion Number of temporal clusters Mean of p-value SD of p-value

Superior temporal cortex 21 0.010 0.012

Rostral anterior cingulate cortex 10 0.015 0.017

Rostral middle frontal cortex 14 0.024 0.015

Medial orbitofrontal cortex 11 0.014 0.016

Table 2.   Statistics of significant temporal clusters in the comparison between iEEG sampled around phrase 
boundaries and reference windows within each subregion in all twelve sessions.

Subregion Number of temporal clusters Mean of p-value SD of p-value

Middle temporal cortex 60 0.012 0.014

Superior temporal cortex 57 0.012 0.013

Rostral anterior cingulate cortex 63 0.011 0.013

Rostral middle frontal cortex 77 0.013 0.014

Medial orbitofrontal cortex 49 0.013 0.014

Superior frontal cortex 62 0.015 0.014

Insular cortex 61 0.012 0.014

Caudal middle frontal cortex 69 0.013 0.014
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analysis results, suggesting that the processing of phrase boundaries selectively activates more cortices, namely 
the superior temporal cortex, middle temporal cortex, medial orbitofrontal cortex, rostral middle frontal cortex, 
and rostral anterior cingulate cortex, before the occurrence of the stimuli.

Note‑onset‑related ERPs versus phrase‑boundary‑related ERPs.  Given that both note onsets and 
phrase boundaries elicited robust evoked responses, our next goal was to determine whether the brain processes 
these two stimuli differently by computing the ERP waveform (Fig. 8) and analyzing it with the cluster-based 
permutation test. The p-value statistics of significant temporal clusters are provided in Table 3.

Figure 9 shows that the two ERPs were significantly different at around −150 , 200 to 450 ms relative to the 
note onset and phrase markers in both frontal and temporal brain regions, with at least eleven sessions showing 
significant differences. Figure 10 further illustrates that the differences were mainly localized to the superior 
temporal cortex followed by the medial orbitofrontal cortex, rostral middle frontal cortex, and rostral anterior 
cingulate cortex. We also observed significant differences at −150 , 100 to 200 and 400 to 500 ms relative to the 
stimulus markers in at least six sessions in the caudal middle frontal cortex, insular cortex, and superior frontal 
cortex (Fig. 11).

Discussion
By integrating the results of within-session analysis, we examined whether note onsets and phrase boundaries 
elicited different neural responses across subjects. Several temporal clusters of significant difference were iden-
tified in the permutation test, demonstrating the difference between the neural responses to note onsets and 
phrase boundaries in terms of peak lag and amplitude. In addition to the auditory cortex, we were motivated to 
examine neural responses in frontal brain regions linked to grammatical structure building in studies of speech 
perception. Besides, the contrast between neural response to note-onsets and phrase boundaries in frontal brain 
regions may also reflect a process of building up syntactic structures with increasing hierarchy in music, similar 
to the computation merge in linguistics demonstrated by Zaccarella et al.20

Figure 1.   Note-Onset-related ERPs observed at these subregions with significance in at least six sessions are 
shaded in light gray.

Figure 2.   Phrase-boundary-related ERPs observed at these subregions with significance in at least six sessions 
are shaded in light gray and ten sessions in dark gray respectively.
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Figure 3.   A cluster-based permutation test for each sub-region within a single session (Subject 3, Session 2). 
The blue line represents the z-score at each time point. The consecutive temporal clusters with z-score > 1.96 
are highlighted. The temporal clusters showing significant ( p < 0.05 ) difference between the iEEG windows 
sampled around note onsets and the reference windows are highlighted in red; the non-significant clusters are 
highlighted in blue.

Figure 4.   Number of sessions showing significant differences in the iEEG windows sampled around note onsets 
and the reference windows at each time point. The purple lines were obtained by averaging all channels within 
the frontal and lateral temporal brain regions. The light gray lines were obtained by averaging the channels 
within sub-regions that contributed to the frontal and lateral temporal regions.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9632  | https://doi.org/10.1038/s41598-022-13710-3

www.nature.com/scientificreports/

We first confirmed that both note onsets and phrase boundaries elicited evoked responses by observing sig-
nificant statistical differences between the iEEG windows sampled near the stimulus markers and the reference 
windows sampled between stimulus markers. Although we are the first intracranial EEG study to examine the 
evoked responses to note onsets and phrase boundaries using the cluster-level statistical analysis, our findings 
paralleled those of previous ERP studies using averaging techniques. A component was identified around 100 ms 
and 200 ms after the stimulus onset in both note-onset-related ERPs and phrase-boundary-related ERPs, which 
resembles the N1-P2 response in the auditory evoked response in language and music21–24. The N1-P2 like effect 
suggests that the processing of local cues takes place very quickly after the onset of the stimulus.

Figure 5.   Number of sessions showing significant differences in the iEEG windows sampled around phrase 
boundaries and the reference windows at each time point. The purple lines were obtained by averaging all 
channels within the frontal and lateral temporal brain regions. The light gray lines were obtained by averaging 
the channels within sub-regions that contributed to the frontal and lateral temporal regions.

Figure 6.   Number of significant sessions within each cortex at −149 , 0, 200, 450 ms relative to the note onsets. 
The electrodes were mapped onto a common MNI space. In the integration analysis, although the location 
of electrodes differed across sessions, all the electrodes within a cortex have identical color for the purpose of 
visualization .
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We then compared the neural responses elicited by note onsets and phrase boundaries and identified three 
temporal clusters at −150 , 200, and after 400 ms relative to the stimulus markers with significant differences in 
at least eleven sessions.

An activation elicited by phrase boundaries at −150 ms was observed in both frontal and lateral temporal 
brain regions in all twelve sessions. The superior temporal cortex shows structural sensitivity in all twelve ses-
sions, followed by the rostral middle frontal cortex, rostral anterior cingulate cortex, medial orbitofrontal cortex, 
and middle temporal cortex showing sensitivity in more than ten sessions. Although this prestimulus effect is 
non-significant in note-onset-related ERPs, we observed an activation of the rostral middle frontal cortex and 
medial orbitofrontal cortex in at least six sessions, which may reflect the entrainment of cortical rhythm to 
rhythm of the stimuli25. However, our analysis shows that this component is not consistent across sessions. The 
−150 ms component unique to the processing of higher-order structures was overlooked in earlier studies of 
phrase boundaries. The prestimulus activation in the superior temporal cortex could be interpreted by audi-
tory attention, indicating the initiation of a new phrase which does not fit within the expectation of ongoing 
phrases26. The activation in frontal brain regions suggests a prediction response27, such as a reward effect of posi-
tive emotions resulting from anticipatory success. During exposure to music, participants gradually learned the 
information dynamics and were able to predict forthcoming phrase boundaries, due to changes in note density, 
melodic themes, key, tempo, and rhythm. This suggests that those neural representations which lead to correct 
predictions are strengthened and reused. This finding is in line with our previous study on the same dataset28, that 
an increased frontal theta power was observed during transitions from prolonged musical segments of Mozart’s 
K448 after at least 30-s exposure. The successful prediction of phrase boundaries may preferentially modulate 

Figure 7.   Number of significant sessions within each cortex at −149 , 0, 200, 450 ms relative to phrase 
boundaries .

Table 3.   Statistics of significant temporal clusters in the comparison between iEEG windows sampled around 
phrase boundaries and iEEG windows sampled around note onsets within each subregion in all twelve 
sessions.

Subregion Number of temporal clusters Mean of p-value SD of p-value

Middle temporal cortex 53 0.012 0.014

Superior temporal cortex 49 0.010 0.01

Rostral anterior cingulate cortex 58 0.012 0.013

Rostral middle frontal cortex 63 0.011 0.013

Medial orbitofrontal cortex 40 0.012 0.014

Superior frontal cortex 61 0.017 0.014

Insular cortex 53 0.012 0.014

Caudal middle frontal cortex 55 0.009 0.010
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activity in frontal emotional networks, suggesting that the widely observed strong pleasurable responses29–31 are 
linked to the prediction of higher-order musical structures.

Although N1-P2 like components were observed in both note-onset related ERPs and phrase boundaries 
related ERPs, the significant contrast between the two components, especially in the superior temporal cortex and 
middle temporal cortex with all twelve sessions showing significant differences, presumably reflects the process-
ing of local cues mediated by more global expectation at phrase boundaries. The timing of the significant differ-
ence in the medial orbitofrontal cortex and rostral anterior cingulate cortex is also in line with an early negative 
component in frontal brain regions which is linked to the building of the grammatical structure in linguistic32–34.

The ERP components at 400 ms and 500 ms post-stimulus onset were only observed around phrase bounda-
ries, potentially indicating higher-order feature extraction for processing the changes in the harmonic and 
rhythmic structure of the music. The 400 ms post-stimulus component has a broad scalp distribution, maximal 
in the superior temporal cortex, and is similar to the N400 response in timing thus possibly suggesting the 
conceptual processing in music35. However, this component is unlikely to be a music N400 response because we 
did not observe a clear negative-going wave as shown in the prior music N400 work12. The 500 ms component 

Figure 8.   Note-Onset-related and Phrase-Boundary-related ERPs observed at these subregions with significant 
differences in at least six sessions are shaded in light gray, and ten sessions in dark gray respectively. Despite all 
note-onset-related iEEG windows being used in the analysis, eight windows were randomly sampled for display 
due to the large difference between the number of windows sampled around note onset and phrase boundaries 
and data variance.

Figure 9.   Number of sessions showing significant differences in the iEEG windows sampled around phrase 
boundaries and note onsets at each time point. The purple lines were obtained by averaging all channels within 
the frontal and lateral temporal brain regions. The light gray lines were obtained by averaging the channels 
within sub-regions that contributed to the frontal and lateral temporal regions.
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resembles CPS discussed in musical phrasing18. This CPS-like effect was observed in both frontal and temporal 
brain regions, maximal in the middle temporal cortex and superior temporal cortex. The activation in frontal 
brain regions suggests that these components may not only reflect the detection of phrase boundaries, but also a 
violation of melodic expectation in the transition from one phrase to the next. As shown in Fig. 13b, the first 90 
s of Mozart’s K448 is structurally organized by contrasting melodic themes. The changes at phrase boundaries 
break the tension built up through harmonic and melodic progression within the previous phrases. Steinbeis 
et al.36 has reported that a violation of expectation could induce strong emotion. Huron27 further points out that 
an unexpected but innocuous event may result in anticipatory failure but generate positive emotions, known as 
the reaction and appraisal responses. Therefore, our findings were in line with the theory of musical expecta-
tions and emotion37.

We also analyzed the neural response to note onsets and phrase boundaries in temporal regions as shown in 
Fig. 12. The posterior temporal regions showed a prestimulus effect on phrase boundaries but not note onsets, 
which is in line with recent works implicating the sensitivity of these regions in linguistics syntax processing38–40. 
Besides, the prestimulus effect was observed in posterior temporal regions but not anterior temporal regions, 
which suggests that this effect is more likely to be induced by music given that the posterior temporal regions 
are linked to the processing of pitch and temporal variation41.

The less significant findings of ERPs at note onsets were not unexpected. First, due to the high note density 
in a naturalistic music excerpt, the iEEG windows sampled around note onsets might cover multiple overlapped 
ERPs which could not be isolated because the intervals between note onsets were variant. These overlapped 
ERPs result in the non-significant peaks at −150 and 450 ms. Secondly, the randomly sampled reference win-
dows might also contain ERPs elicited by weak note onsets which were excluded for comparison. To test this 

Figure 10.   Number of sessions in which neural responses to note onsets and phrase boundaries are 
significantly different at −149 , 0, 200, 450 ms relative to the stimulus markers .

Figure 11.   The location of electrodes within each subregion .
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hypothesis, we compared the note-onset-related ERPs with iEEG windows randomly sampled during exposure 
to the silent washed-out period or violet noise. However, the experiment did not yield meaningful results. This 
might be explained by the yet unknown brain activities that the subjects undergo when not listening to music.

Our analyses extended Quon et al.’s study which shows that the musical structure of K448 may be contributing 
to its therapeutic effect28 and were performed on the same dataset on which Quon et al. observed a significant 
interictal epileptiform discharge (IED) reduction in bilateral frontal cortices coupled with increased frontal 
theta power during transitions from prolonged musical segments after at least 30-s of exposure to K448. It 
has been reported that listening to specific musical works, such as Mozart’s Sonata in D Major for Two Pianos 
(K448)42–44 and the Piano Sonata in C Major (K. 545)45, is associated with a reduction in seizure frequency and a 
reduction in abnormal interictal epileptiform discharges in patients with epilepsy. However, this effect has been 
demonstrated with only a small number of musical works with similar structures46–48, suggesting that this effect 
is dependent on musical structures such as a high degree of long-term periodicity49,50. In revealing the potential 
reward linked to prediction response occurring at phrase boundaries in Mozart’s K448, we shed light on the 
theory that structural organization of Mozart’s K448 could explain the mechanism behind music interventions 
such as the Mozart effect for epilepsy.

The results of our study must be interpreted in light of several limitations. First, we only studied the time-
locked evoked and anticipatory responses while music perception also involves oscillatory response which could 
be estimated by an oscillator model. However, we considered oscillatory response to be trivial in our case because 
of the interplay between oscillatory and evoked components in auditory processing. Doelling et al.51 has shown 
that the evoked response can be reduced by smoothing the attack of note onsets. In contrast, the evoked response 
is the dominant response to the strong attack of note onsets that we investigated. Another major limitation was 
the overlapping of multiple note-onset-related ERPs within one window. Most importantly, we would like to 
acknowledge that the sample size might have limited our ability to generalize our results. The number of sub-
jects was relatively small and 8 phrase boundaries were insufficient compared to 274 note onsets in the same 
music excerpt. Although previous studies52 have shown that 8 trials would be sufficient to detect certain ERP 
components, the statistical power does not saturate at this number. This could be improved in further studies by 
introducing more high-order structural changes in longer music excerpts.

In conclusion, our findings demonstrate that musical components at different hierarchical levels in Mozart’s 
K448 evoke consistent differential neural responses. We identify a prestimulus ERP component unique to note 
onsets occurring at musical phrase boundary, which indicates a predictive response in the frontal brain regions to 
higher-order structural changes within the music. These findings may guide future investigation of electrophysi-
ological markers for processing hierarchy in music cognition and lead to new insights into potential auditory 
treatments for neurological disorders such as epilepsy.

Material and methods
Study population.  A total of twelve sessions of Intracranial Stereo-EEG data were collected from eight sub-
jects with refractory epilepsy undergoing monitoring for the clinical treatment. The electrodes were implanted 
based on clinical needs. These subjects had an average normalized baseline IED rate of 1.43 (SD 0.94). Each 
subject had electrode coverage in both hemispheres with between 34 and 77 artifact-free channels after exclud-
ing channels outside of MRI co-registered brain regions and bad channels for which the raw signal was greater 
than 2.5 standard deviations from the median value across channels. All subjects reported little to no previous 
musical training and limited exposure to classical music. Other subject demographic and clinical characteristics 
are provided in Table 4.

All patients provided informed consent to participate in this study, approved by the Committee for the Pro-
tection of Human Subjects (CPHS#: 12495) at Dartmouth College. Approval by CPHS was based on the study’s 
appropriate balance of risk and benefit to subjects and a study design in which risks to subjects are minimized. 
As such, our study followed the ethical standards laid down in the 1964 Declaration of Helsinki and its later 
amendments. Specific national laws were also observed, and all details that might disclose the identity of the 
subjects under study were omitted.

Figure 12.   Number of sessions showing significant differences in the iEEG windows sampled in anterior 
temporal cortex and superior temporal cortex .
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Experiment paradigm.  Each session of the experiment lasted approximately 30 minutes, consisting of 9 
trials including (1) A baseline period only before the first trial of each session; (2) two minutes of a randomly 
sampled piece of music. The subject was required to finish the SART attention task, during the last 30 s of the 
music excerpt to confirm that the subject was attending to the piece of music. The attention task was reported 
separately; and (3) A washout period of one minute of silence after each music excerpt. Subjects listened to a 90-s 
violet noise and eight pieces of music including Mozart’s Sonata for Two Pianos in D major (K448) during data 
collection. The trials were repeated in random permutation until each piece of music was presented once. The 
current data analysis was only performed on sessions in which subjects listened to Mozart’s K448. Other audi-
tory stimuli were Frederic Chopin’s Bolero in C–Op. 19 for piano, performed by Nikita Magaloff; Franz Liszt’s 
Piano Sonata in B Minor, 1st movement: Lento assai–Allegro energico, performed by Leslie Howard; Wagner’s 
Lohengrin Prelude to Act I; Mozart K448 with boosted 40Hz harmonics; and three songs chosen by each subject 
from a preferred musical genre (Tumbling Tumble Weeds by Sons of the Pioneers, Barbara Allen by Bradley Kin-
caid, Jugulator by Judas Priest, Just For by Nickelback, Na Na Hey Hey Kiss Him Goodbye by Steam, Peggy Sue 
by Buddy Holly). These eight auditory stimuli were excluded due to a lack of ground truth for phrase boundaries.

Stimulus.  Figure  13 shows 274 note onsets and 8 phrase boundaries extracted from the music excerpt 
as low-level and high-level musical components. The note onsets were detected by picking peaks in an onset 
strength envelope using librosa53. To reduce overlapping between iEEG windows sampled around two adja-
cent note onsets, we excluded 50% of the weak note onsets based on the conclusion of previous studies54,55 that 
increasing stimulus intensity produces an increase in P300 amplitude of the ERP. The phrase boundaries were 
first annotated by a music expert on the score, and labeled in the audio by aligning the midi generated from the 
score with the audio using dynamic time warping (DTW). A theoretical evaluation of the first 90 s of Mozart’s 
K448 is performed to analyze the musical structure and annotated on Fig. 13b.

Intracranial stereo‑EEG data.  iEEG was sampled at 512Hz from either 0.80-mm PMT platinum depth 
electrodes or 0.86-mm Ad-Tech platinum depth electrodes (Natus Medical Inc.). For all subjects, pre-implant 
T1-weighted and T2-weighted MRI images were co-registered with postoperative computed tomography (CT) 
to obtain the position of small-spacing Stereo-EEG depth electrodes. Freesurfer and the Desikan–Killany atlas 
were used for hippocampal subfield localization and cortical parcellation, and then final electrode positions 
were manually reviewed by two neuroradiologists56–59. The coordinates of the electrodes were transformed into 
a common MNI space for display. Figure 11 shows the electrodes placement within each subregion.

Due to the inconsistent electrode coverage across subjects and sessions, all the statistical analysis in this study 
was performed in a within-session manner.

The data were subsequently notch filtered at 60 Hz and band-pass filtered from 1 Hz to 250 Hz. All data were 
then re-referenced to an average referential montage, then downsampled to 256 Hz. This study was based on 
the data collected during exposures to the first 90 s of Mozart’s the Sonata for Two Pianos in D major, K448.

Data segmentation.  The iEEG data were segmented into windows around the stimuli. Each window 
started from 200 ms before the stimuli and 600 ms after the stimuli to include all desired ERP components. To 
generate reference windows for comparison in the analysis of note-onset-related and phrase boundaries-related 
ERPs, we randomly sampled 800 ms windows between note onsets with as little overlapping as possible. This 
resulted in 44 reference windows. The iEEG windows were then grouped by cortex and averaged across channels. 
The number of windows was resampled to 200 for statistical analysis.

IED rejection.  We rejected all iEEG windows that contained at least one interictal epileptiform discharge 
(IED) in at least one channel. The IEDs were detected using a template matching method60 which was validated 
and performed comparably to clinicians and other published detectors61–64. Figure 14 shows an example of an 
IED identified by this detector.

Table 4.   Subject demographic. Left channels and right channels denote the number of contacts remaining 
after the exclusion of bad channels and channels outside of co-registered grey matter regions.

Subject Gender Age Left channels Right channels Handedness

1 Female 29 68 0 Right

2 Female 43 0 25 Right

3 Male 30 32 18 Right

4 Male 56 44 45 Right

5 Male 27 51 51 Right

6 Male 27 51 38 Right

7 Male 32 2 38 Right

8 Male 35 60 0 Right
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Statistical analysis.  To determine the most appropriate statistical measurement, we first examined the 
distribution of iEEG signal across channels at each time point within a window by normality test. Different tests 
were implemented based on the sample size of iEEG windows: D’Agostino and Pearson’s test was conducted 
for iEEG windows sampled around note onsets and reference windows; Shapiro-Wilk test was conducted for 
windows sampled around phrase boundaries windows. Since the data distribution at each time point was non-
Gaussian, a two-sided Mann-Whitney U test was conducted in the statistical analysis.

We utilized a cluster-based permutation test65 to identify the consecutive temporal clusters in which neural 
responses were significantly different in two conditions and thereby verified the existence of note-onset-related 
and phrase-boundary-related ERPs. The cluster-based permutation test was conducted as follows: (1) A two-sided 
Mann-Whitney U test was performed at each time point within the window. The U statistics were converted 
to a time series of Z-scores. (2) The time points with Z-scores larger than the threshold were clustered based 
on temporal adjacency. The threshold was determined by the Z-score corresponding to the p-value of 0.05 in a 
two-sided test. (3) We repeated steps (1) and (2) on the data permuted for 1000 times if clusters were identified 

Figure 13.   A visualization of the stimuli extracted from the first 90 s of Mozart’s K448. In (a), the blue lines 
mark the normalized note onset strength. 274 note onsets above the threshold marked by the red dotted line are 
selected. (b) shows the position of 8 phrase boundaries on the spectrogram of first 90 s of K448 .

Figure 14.   Intracranial recording from an electrode in the rostral anterior cingulate cortex of Subject 1 with an 
IED highlighted in red.
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in step (2). The cluster-level statistics were calculated by taking the maximum of the Z-score within a cluster. 
The p-value of each cluster was given by the distribution of statistics on the permuted data. (4) We selected the 
temporal clusters with p-value ≤ 0.05.

Data availibility
Deidentified Stereo-EEG data are available upon reasonable request.
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