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Abstract

Improved efficiency of Markov chain Monte Carlo facilitates all aspects of statis-
tical analysis with Bayesian hierarchical models. Identifying strategies to improve
MCMC performance is becoming increasingly crucial as the complexity of models,
and the run times to fit them, increases. We evaluate different strategies for improv-
ing MCMC efficiency using the open-source software NIMBLE (R package nimble)
using common ecological models of species occurrence and abundance as examples.
We ask how MCMC efficiency depends on model formulation, model size, data, and
sampling strategy. For multiseason and/or multispecies occupancy models and for
N-mixture models, we compare the efficiency of sampling discrete latent states vs.
integrating over them, including more vs. fewer hierarchical model components, and
univariate vs. block-sampling methods. We include the common MCMC tool JAGS
in comparisons. For simple models, there is little practical difference between com-
putational approaches. As model complexity increases, there are strong interactions
between model formulation and sampling strategy on MCMC efficiency. There is no
one-size-fits-all best strategy, but rather problem-specific best strategies related to
model structure and type. In all but the simplest cases, NIMBLE's default or custom-
ized performance achieves much higher efficiency than JAGS. In the two most com-
plex examples, NIMBLE was 10-12 times more efficient than JAGS. We find NIMBLE
is a valuable tool for many ecologists utilizing Bayesian inference, particularly for
complex models where JAGS is prohibitively slow. Our results highlight the need for
more guidelines and customizable approaches to fit hierarchical models to ensure
practitioners can make the most of occupancy and other hierarchical models. By im-
plementing model-generic MCMC procedures in open-source software, including the
NIMBLE extensions for integrating over latent states (implemented in the R package

nimbleEcology), we have made progress toward this aim.
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1 | INTRODUCTION

Application of hierarchical statistical models for analyzing complex
ecological data has grown rapidly over roughly the last twenty years
(Hobbs & Hooten, 2015; Kéry & Royle, 2016; Royle & Dorazio, 2008).
Fundamentally, hierarchical models allow one to account for nonin-
dependence among data by describing a hierarchy of relationships
between observations, underlying ecological patterns or processes,
and parameters which govern those patterns or processes (Cressie,
Calder, Clark, Hoef, & Wikle, 2009). Examples include state-space
time-series models, spatial models, capture-recapture models, oc-
cupancy models, and abundance models (Dorazio & Royle, 2005;
Dorazio, Royle, Soderstrom, & Glimskar, 2006; Kéry & Royle, 2016;
MacKenzie, Bailey, & Nichols, 2004; MacKenzie et al., 2002, 2006;
Rivot, Prévost, Parent, & Bagliniere, 2004; Royle, 2004; Royle &
Young, 2008).

Estimation and inference for hierarchical models, however, are
not simple. A widely used method is Markov chain Monte Carlo
(MCMC) in a Bayesian framework (Brooks, Gelman, Jones, & Meng,
2011; Ellison, 2004). Alternatives to MCMC include Laplace approxi-
mation (e.g., TMB Kristensen, Nielsen, Berg, Skaug, & Bell, 2016) and
integrated nested Laplace approximation (e.g., INLA, Rue, Martino,
& Chopin, 2009; Rue et al., 2017), but here, we focus on MCMC as
a widely used, customizable approach. MCMC algorithms sample
from the posterior distribution of parameters and latent (unknown)
ecological states given the observed data and assumptions about
the prior distribution of parameters. More simply, they explore the
range of conditions that might explain the data. A major limitation
of MCMC is that when a model has hundreds or thousands of la-
tent states and parameters, which may be highly correlated in the
posterior distribution, MCMC can require hours, days, or weeks to
run. This limits research efficiency, but more importantly, it limits
research quality by constraining the range of models that can be
compared and the potential for using simulations to check estima-
tion performance, cross-validation, or other layers of computational
analysis (Hooten & Hobbs, 2015).

MCMC is not a single algorithm but rather a large family of al-
gorithms that can be combined flexibly. Statistical researchers have
elaborated many MCMC sampling strategies for many kinds of mod-
els, and they have pursued theoretical results on MCMC mixing—how
well the posterior distribution is explored—and how MCMC mixing
scales with the size of a model or data (Gilks & Roberts, 1995; Yu
& Meng, 2011). Though these theoretical results are typically lim-
ited to simple models and lack consideration of computational costs,
these studies suggest that there is no universally best strategy (Gilks
& Roberts, 1995; Turek, Valpine, Paciorek, & Anderson-Bergman,
2017; Yu & Meng, 2011). Instead, the success of customizing sam-
pling strategies for particular models suggests that the best strate-
gies may be problem-specific (Turek et al., 2017).

The recognition that different sampling strategies may work
well for different models points to commonly used software tools
as a hindrance to efficient MCMC. Tools such as WinBUGS and
OpenBUGS (collectively “BUGS”) and JAGS have revolutionized

statistical practice in ecology and other fields by putting MCMC in
the hands of nonspecialists, in part because the BUGS syntax is rel-
atively easy to read and adapt (Lunn, Jackson, Best, Spiegelhalter,
& Thomas, 2012; Plummer, 2015, 2003; Surhone, Tennoe, &
Henssonow, 2010). Other software packages that do not use the
BUGS language include Stan, which implements Hamiltonian Monte
Carlo methods (HMC; Betancourt & Girolami, 2013; Monnahan,
Thorson, & Branch, 2017), as well as numerous other packages that
provide sampling strategies for general models or specialized strat-
egies for narrower models, among which we note PyMC (Salvatier,
Wiecki, & Fonnesbeck, 2016), MCMCpack (Martin, Quinn, & Park,
2011), spBayes (Finley, Banerjee, & Carlin, 2007), and MCMCglmm
(Hadfield, 2010). However, these packages generally prescribe the
MCMC methods to be used or offer a small range of choices for
expert users. A comparatively new package, NIMBLE (“Numerical
Inference for hierarchical Models using Bayesian and Likelihood
Estimation,” de Valpine et al., 2017), adopts nearly the same model
language as BUGS and JAGS but makes it extensible and supports
customization of sampling methods. Provided as R package nimble
(NIMBLE Development Team, 2019), it provides a workflow in R with
code generation of C++ for efficiency.

Beyond limitingthe MCMC sampling strategies applied to amodel,
hierarchical modeling software often limits the way models can be
written, which is important because different ways to write the same
model can yield different MCMC performance. A simple example
is centered and noncentered parameterizations (Papaspiliopoulos,
Roberts, & Skld, 2007). A more complicated example occurs when
one wants to analytically marginalize some latent states out of the
model by direct summation or numerical integration while using
MCMC to sample others. Summing over the latent states in a hidden
Markov model for multistate or multi-event capture-recapture can
yield orders-of-magnitude improvement in computational efficiency
(Turek, Valpine, & Paciorek, 2016). Whereas BUGS and JAGS use a
closed model language, NIMBLE supports extensibility of models,
making such customizations possible.

In this study, we ask how different strategies for MCMC sam-
pling, different kinds of model structures, and alternative ways to
formulate equivalent models all impact MCMC efficiency for com-
mon models in ecology and evolution. We test whether efficiency
is increased by (a) simplifying model structure, (b) block sampling
(e.g., joint sampling of parameters), (c) different types of samplers,
and (d) summing over latent states. Based on typical results from
the statistical literature, we expect the MCMC efficiency of differ-
ent strategies will be model-specific (Browne, Steele, Golalizadeh, &
Green, 2009; Solonen et al., 2012), so we examine the interaction
of these strategies with different models, focusing on occupancy
and N-mixture models (MacKenzie et al., 2006; Royle & Kéry, 2007;
Royle, 2004).

Just over a decade after occupancy models were introduced,
they are being used to model species ranging from bees (M'Gonigle,
Ponisio, Cutler, & Kremen, 2015) to tigers (Hines et al., 2010) with
a great variety of model complexity (Bailey, MacKenzie, & Nichols,

2014; Denes, Silveira, & Beissinger, 2015). Estimating abundance
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and site occupancy is a critical challenge for most subdisciplines in
ecology and evolution concerned with quantifying population dy-
namics including metapopulation, endangered species, and invasion
biology. However, occupancy and N-mixture models can lead to
high-dimensional MCMC algorithms that can mix slowly, requiring
lengthy run times. Standard hierarchical modeling implementations
of these models include latent states for the true occupancy state
or number of individuals at each site in each closed season, as well
as random effects at the level of species, sites, and/or observations.
Together, these can yield hundreds or thousands of dimensions that
require MCMC sampling.

To examine how to increase model estimation efficiency, we
focus on software using the BUGS language including NIMBLE
(NIMBLE Development Team, 2019) as well as JAGS (Plummer,
2015). Within NIMBLE, models can be extended with new func-
tions and distributions, which provides enormous flexibility in how
models are written. In addition, MCMC can be extended with new
sampler configurations and entirely new samplers. Though it is out
of the scope of this study to compare all available MCMC software,
we focus on NIMBLE because it allows us to examine the efficiency
of MCMC customizations in which we are interested, and JAGS to
allow comparison to this widely used tool that uses nearly the same

model language.

2 | MATERIALS AND METHODS

We focus on four models—three occupancy and one N-mixture,
(Table 1, Appendix 1)—that are commonly employed in ecology and
evolution. The efficiency of sampling strategies may depend on
model structure, model size, and the data. To explore the effect of
model structure, for each model we created a version with and with-
out some component of hierarchical structure and the associated
hyperparameters. To examine the effect of different ways to write
the same model, for each case we created a model where we sam-
pled latent states and an equivalent model where we integrate out
the latent states to limit MCMC sampling to top-level parameters
(Turek et al., 2016). To explore the effect of different sampling strat-
egies, we created a variety of sampler configurations in NIMBLE,
including some that use block sampling as well as NIMBLE's default
samplers and a sampler configuration similar to that of JAGS. In one
occupancy model, we simulated the data and were, therefore, able
to include a scenario with high and low detectability of individuals
to explore the effect of changing the parameter values and data on
the efficiency of samplers. We next provide more details on each of
these contrasts, after which we describe how we compare perfor-

mance among MCMC methods.

2.1 | Model choices

We focus on three occupancy models including a single-species, mul-

tiseason; multispecies, single-season; and multispecies, multiseason

TABLE 1 Summary of the occupancy and N-mixture model case studies used to explore MCMC efficiency

Reference

Blocking

Latent states

Top-level parameters

Data

Description

Model

Modified from

Block persistence (¢)

LS sampled (low p): 1,069
LS sampled (high p): 965
LS integrated (low and

+H:7

Simulated: 15 years of data across 100

Colonization and persistence of a
single-species across years

Occupancy:

Ecology and Evolution

(Kery & Schaub,

and colonization (y)

H: 4

sites, each sampled 5 times. Simulated

Single-species,
multiseason
(Egs. A1-A2)

2012) chpt 13.5.1

parameters for each

year

0.27)

detectability. 7,500 possible detections.

0.73) and low (p

with high (p

high p): 0
LS sampled: 2,964

LS integrated: O

Ponisio et al.

Block species-

+H: 20
-H: 10

1 year of data across 70 sites, each

Occupancy model of multiple bird

Occupancy:

(2019)

specific slopes and

intercepts

sampled 3-4 times for 58 species.

species examining the effect of
wildlife management and habitat

characteristics

multispecies,

12,644 possible detections.

single-season
(Egs. A3-A5)

Block species- (Kery & Schaub,

LS sampled: 14,264

LS integrated: O

+H: 38
-H: 27

10 years of data across 31 sites, each
sampled 2-7 times for 49 species.

Colonization and persistence of

Occupancy:

2012), chpt
6.11.1

specific slopes and

intercepts

multiple bee species examining

multispecies,
multiseason

Open Access,

30,527 possible detections.

the effect of local and landscape

variables on population dynamics

(Egs. A6-A11)

(Kéry & Royle,

Block intercept and

LS sampled: 263

+H: 28
-H: 25

Great tit counts across 267 1-km?

Zero-inflated N-mixture model of

N-mixture:

2016), chpt 6.11.1

slopes

LS integrated: O

quadrats on a grid, surveyed 2-3 times
ayear in 2013. Grid covers a little over
41,000 km?Z. 789 possible detections

the abundance of great tits using
breeding bird surveys across

Switzerland

Zero-inflated

(Eqs A12-A14)

Note: For the columns for top-level parameters and latent states, we break down each example by the different combinations of model structures and sampling strategies: (a) more hierarchical (+H), (b)

less hierarchical (-H), (c) latent states (LS) sampled, and (d) LS integrated.
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(Table 1, see Appendix 1 for each model's full details). The two mul-
tiseason examples use dynamic occupancy models (Royle & Kéry,
2007). The single-species, multiseason example (modified from
Kery & Schaub, 2012) uses simulated data (Table 1, Appendix 1.1).
The multispecies, single-season occupancy example is from Zipkin,
Royle, Dawson, and Bates (2010), a study surveying a bird commu-
nity in Catoctin Mountain Park (CATO) and Frederick City Watershed
Cooperative Wildlife Management Area (FCW) with a variety of ex-
planatory variables for habitat suitability (Table 1, Appendix 1.2).
The multispecies multiseason example is from Ponisio, Valpine, and
MGonigle, L.K. & Kremen, C. (2019), a study surveying a bee com-
munity across restored habitat in Northern California, USA, and a
large number of explanatory variables and their interactions on
detection, colonization, and persistence (Table 1, Appendix 1.3).
Finally, for an example N-mixture model, we followed the example
of Kéry and Royle (2016) modeling the abundance of great tits from
breeding bird survey data across Switzerland (Table 1, Appendix 1.4).
Abundance is modeled as a zero-inflated Poisson (ZIP), where the
zero inflation accounts for unsuitable sites (structural zeros). Latent
abundance depends on elevation and habitat-related explanatory
variables, and detection probability depends on site- and survey-re-
lated characteristics (including some interactions). Variants of each

model are described below.

2.2 | Model structure

For each model, we identified model terms for which an analyst
might assume either there is or is not unexplained heterogeneity in
parameters. Without heterogeneity, a single parameter is sufficient.
With heterogeneity, different parameters for different parts of the
data are assumed to follow a shared distribution, typically with hy-
perparameters, yielding an additional hierarchical layer in the model.
Incorporating multiple sources of variation in this way is a common
practice in Bayesian hierarchical modeling and indeed a primary
motivation for it. However, it is also common to see pragmatic as-
sumptions of where unexplained heterogeneity will not be modeled.
Additional hierarchical structure has major implications for the dif-
ficulty of MCMC sampling. For these reasons, we compared MCMC
performance for more hierarchical and less hierarchical versions of
each model.

For each model, the component with more or less hierarchy
corresponded to species-, year-, site-, or survey-specific parame-
ters, along with the hyperparameters for their common distribu-
tions. For the single-species, multiseason occupancy model, we
changed whether there is hierarchical structure for year-specific
persistence and colonization probabilities (Table 1, Appendix 1.1,
Egs. A1-A2). For the multispecies, single-season occupancy model,
we changed whether there are common distributions for spe-
cies-specific coefficients for the effect of habitat characteristics
on occupancy and detection (Table 1, Appendix 1.2, Eqs. A3-A4
v. Eq. A5). For the multispecies, multiseason occupancy model,

we also changed whether there is hierarchical structure in the

species-specific coefficients drawn from common distributions
for the effects of habitat proximity and quality on persistence
and colonization (Table 1, Appendix 1.3, Egs. A7-A9 v. Eq. A10).
Lastly, in the N-mixture model, we changed whether there is hier-
archical structure in site and survey-specific coefficients on both
abundance and detection [Table 1, Appendix 1.4, Eqs. A11-A12,
Kéry & Royle, 2016). The models including species-, year-, site-, or
survey-specific parameters drawn from common distributions are
“more hierarchical” in comparison with the models excluding those
terms. Our a priori expectation is that sampling models with more
hierarchical models will always be less efficient than their less hier-

archical counterparts.

2.3 | Modelsize

For each model, we wrote custom distributions in NIMBLE to di-
rectly sum probabilities over discrete latent states, that is, to mar-
ginalize over them. However, the implications of this marginalization
differed for each model. For the single-species, multiseason model,
we use a hidden Markov model probability summation across the
discrete latent state (occupied vs. unoccupied) across all times for
a given site. Hidden Markov models are a general class of models
for noisy data of system states that change stochastically, and they
encompass many ecological models (Gimenez et al., 2007; Zucchini,
MacDonald, & Langrock, 2017). Hidden Markov models are the same
as state-space models but historically have been used for discrete-
state systems. For the multispecies, single-season model, we simply
sum over the two possible occupancy states for each species at each
site, much like a zero-inflated model. For the multispecies, multisea-
son model, we sum the latent states through time for a species at a
site. For the N-mixture model, we sum over the range of values of N,
the true local abundance at each site, using Meehan, Michel, and Rue
(2017)'s recursive algorithm. Meehan et al. (2017) showed that using
R-INLA, this recursive algorithm was more numerically stable and
efficient for estimating N-mixture models. Still, the N-mixture case
is the most computationally demanding summation because it may
need to cover a large range of N values. The range of relevant values
extended from the lowest 0.00001 quantile to the highest 0.99999
quantile of N given an observed count, across all counts. This range is
heuristic but should include effectively all relevant probability in the
summation. Extensions for latent state integration are now available
in R package nimbleEcology (Goldstein, Turek, Ponisio, & Valpine,
2019).

Our a priori expectation was that integrating over latent states
would increase efficiency in some cases but not in others. It is well
known in MCMC theory and practice that sometimes it is helpful to
deliberately introduce auxiliary variables, even if they can be ana-
lytically integrated over, while in other cases the opposite is true.
MCMC sampling can be viewed as a form of Monte Carlo integra-
tion. Hence, directly integrating vs. sampling represent two ways to
numerically handle a dimension of a hierarchical model, and one or

the other may be more efficient depending on the context.
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2.4 | Data

With the single-species, multiseason example (Table 1, Appendix
1.1), we were able to modify the data because it is simulated. We
simulated the data with high (p =.73) and low (p = .27) detectability.
We expect that because a lower detection probability will result in
more nondetections, the latent states for more site-years will need
to be sampled (Table 1), thereby decreasing efficiency.

2.5 | MCMC sampling strategies

We fit each model using a variety of MCMC sampling strategies.
Before summarizing these strategies, we briefly introduce the kinds
of MCMC samplers involved, including three kinds of scalar sam-
plers and two kinds of multivariate (block) samplers (Roberts & Sahu,
1997; Sargent, Hodges, & Carlin, 2000). Here, we use “parameter” to
mean any estimated quantity, random effect, latent state, or poste-
rior dimension being sampled.

Adaptive random-walk Metropolis-Hastings (ARWMH) samplers
propose a new value for a parameter from a normal distribution cen-
tered on the current value, followed by accepting or rejecting that
value according to the Metropolis-Hastings acceptance probability
(Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953). The “adaptive” aspect updates the standard deviation of the
proposal distribution to achieve an acceptance rate with good mixing
(Haario, Saksman, & Tamminen, 1999; Roberts & Rosenthal, 2001).
While simple and sometimes slow mixing per iteration, ARWMH is
computationally fast, allowing it to run many iterations. Slice samplers
(Neal, 2003) explore a range of new values for a parameter based on
the current value. They almost always result in a new value. They may
mix better than ARWMH, but they have higher computational cost due
to exploring potentially many values, each requiring associated model
calculations. In practical implementations, slice samplers should only be
used when the conditional distribution of the parameter being sampled
is unimodal, which will commonly be the case. For discrete-valued pa-
rameters, one may achieve conjugate (Gibbs) sampling by trying every
possible discrete value to determine the full conditional distribution
by computation, which we call “computational Gibbs.” This also incurs
model computations for each candidate value, a reason that sampling
categorical variables can be slow. Discrete unimodal parameters can
also be sampled with slice samplers. We also mention regular Gibbs (or
“conjugate”) samplers, which draw a new value for a parameter from its
conditional distribution when that distribution can be written analyti-
cally. That is only the case for certain fortunate combinations of prior
and likelihood, which do not occur in the examples below.

Even generally efficient univariate samplers will mix slowly when
the posterior has strong correlations among two or more parameters.
The two kinds of block samplers used here are multivariate adap-
tive random-walk Metropolis-Hastings samplers (“block_RW”) and
automated-factor slice samplers (“block_AFSS”, Tibbits, Groendyke,
Haran, & Liechty, 2014). The block_RW sampler is like the ARWMH

sampler above but draws its proposal from a multivariate normal
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distribution. The adaptation of this sampler attempts to find a pro-
posal covariance that yields good mixing. The block_AFSS sampler
uses univariate slice samplers in a set of orthogonal rotated coordi-
nates, determined by adaptation as the MCMC gains information on
the posterior. Like their univariate counterparts, the block_RW may
mix more slowly per iteration but compute more quickly (allowing
more iterations) than the block_AFSS.

NIMBLE and JAGS make different default sampler choices. Both
assign a Gibbs sampler where possible, but the examples here do not
have conjugate relationships suitable for Gibbs sampling. For non-
conjugate continuous-valued parameters, NIMBLE's default sampler
assignment is an adaptive random-walk Metropolis-Hastings sam-
pler. In contrast, JAGS assigns a slice sampler for continuous-valued
parameters when possible. For the discrete-valued parameters,
NIMBLE assigns a computational Gibbs sampler for binary-valued
or categorical parameters and a slice sampler for parameters with
more than two possible states and unimodal posterior. In contrast,
JAGS assigns computational Gibbs samplers for discrete-valued pa-
rameters with finite support (e.g., binomial distributions) and slice
samplers for discrete-valued parameter with infinite support (e.g.,
Poisson distributions). With JAGS, there is little user control over
samplers, while NIMBLE views its defaults as just the first choices
that a user can and regularly should easily modify.

Using these samplers, we chose a set of sampling strategies for
comparisons for each model. These included the default samplers
for NIMBLE (“nimble”) and JAGS (“jags”), the default JAGS strategy
run in NIMBLE (“jags_like_nimble”), and blocking selected parame-
ters using block_RW or block_AFSS while sampling remaining pa-

rameters using NIMBLE's default samplers.

2.6 | Block samplingin MCMC

To block parameters, we examined each model and formulate
strategies based on possible correlations between the parameters
(Table 1). There are many ways one might consider blocking pa-
rameters. We limited ourselves to one set of blocking choices for
each model, based on preliminary explorations. Our goal was not to
determine the absolute best blocking strategy but rather to use a
reasonable strategy for each model. These serve to illustrate how
blocking can compare to other methods. For the single-season mul-
tispecies occupancy model, we blocked persistence and colonization
parameters for each year, yielding multiple two-dimensional param-
eter blocks. For the two multispecies occupancy models, we blocked
species-specific slopes and intercepts, yielding as many parameter
blocks as there are species. For the N-mixture model, we blocked the

intercept and slopes of covariates, yielding a single block.

2.7 | Priordistributions

For most parameters, we used uninformative priors of nearly flat

normal distributions for the means of the distributions of the
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top-level parameters, and uniform priors over the interval [0,100]
for standard deviations (see Appendix 1 for specific priors for each
model). For the N-mixture model, we followed the example of Kéry
and Royle (2016) and used narrower prior distributions (Appendix
1.4).

2.8 | Comparing MCMC efficiency

To compare performance, we look at MCMC efficiency, which we
define for each parameter as the effective sample size (ESS) divided
by computation time (number of effectively independent samples
per second). The effective sample size gives the equivalent number
of independent samples that would contain the same statistical in-
formation as the actual nonindependent samples. For a single met-
ric of MCMC performance, we use the minimum MCMC efficiency
across all the parameters because the slowest mixing parameter
limits the validity of results. Computation time is measured for the
actual MCMC runs, not the steps to prepare for a run, because the
latter has more to do with rote software engineering than with the
algorithms of interest. To translate MCMC efficiency into practical
terms, we convert MCMC efficiency to the time required for sam-
pling strategies to generate 1,000 effectively independent samples
for the slowest mixing parameter (1,000/efficiency is the time in sec-
onds to generate 1,000 effectively independent samples). For exam-
ple, to generate 1,000 effectively independent samples, efficiencies
of 0.01, 1, 100, and 1,000, require waiting 1.2 days, 16.7 min, 10 s,
and 1 s, respectively.

All methods were run for 300,000 posterior samples. In some
cases, a much smaller sample would be adequate for analysis, but
larger samples support more accurate estimation of ESS for the com-
parisons here. We used a combination of Geweke statistics (Geweke,
1992) and visual examination of the chains to determine conver-
gence. For comparison purposes, we did not thin samples. Although
thinning can be an important practical step, it clouds comparison of
MCMC performance because it always entails a loss of information
(MacEachern & Berliner, 1994). Thus, to simplify comparisons, we
always compare unthinned samples. R code to run all of the models
and MCMC algorithms are available at https://github.com/Iponisio/
hierarchical, https://doi.org/10.5281/zenodo.3583426. Analyses
were conducted in R 3.6.1 (R Core Team, 2017) and NIMBLE v0.71.

3 | RESULTS

All chains converged sufficiently, and all posteriors from different
methods for the same model scenario were in agreement (Appendix
2: Table A1-A8). Interestingly, the slowest mixing parameters were
generally consistent across MCMC strategies (Appendix 3: Figures
A1-A6), suggesting different strategies did not have strong effects
on the relative sampling efficiency of specific parameters. Across
all occupancy and N-mixture models, efficiency was always much

higher in the models without additional hierarchy (species-, year-,

site-, survey-specific parameters). As expected, latent state integra-
tion and MCMC samplers did not have consistent effects on effi-

ciency across models.

3.1 | Occupancy: Single-species, multiseason model

For the single-species, multiseason example, there were interac-
tions between the model hierarchical structure, integrating over la-
tent states, and sampling strategy (Figure 1). With more hierarchical
structure, integrating over latent states decreased efficiency com-
pared to sampling latent states (1 min in comparison with 5.5 min
to generate 1,000 effectively independent samples using default
NIMBLE, Figure 1a,b). In contrast, with a less hierarchical model,
integrating over latent states improved efficiency, though all sam-
pling strategies were very efficient (only a few seconds to gener-
ate 1,000 independent samples regardless of the MCMC approach,
Figure 1c,d). When latent states were sampled, JAGS, JAGS-like
NIMBLE, and default NIMBLE performed similarly in the more hier-
archical model (Figure 1a,b), but JAGS had the highest efficiency in
the less hierarchical model (Figure 1c).

The low detectability generally decreased sampling efficiency
(Figure 1), though in some cases it did not affect efficiency (Figure 1a,b
for NIMBLE and JAGS). In this simple model, sampling additional la-
tent states may not decrease efficiency detectably. In addition, a lower
detection probability may have increased posterior correlations that

would decrease efficiency in some but not all MCMC strategies.

3.2 | Occupancy: Multispecies, single-season model

Model structure and size interacted with the sampling strategies to de-
termine efficiency in the multispecies, single-season example (Figure 2),
but in ways that differed from the single-species, multiseason occu-
pancy models. In this case, integrating over latent states improved effi-
ciency regardless of model hierarchy (the difference between 2.4 hr and
24 min to generate 1,000 independent samples using default NIMBLE
in the more hierarchical model, and 3.2 min and 11 s in the less hier-
archical model with adaptive random-walk Metropolis-Hastings block
sampling of some parameters; Figure 2, compare a & b and ¢ & d).
When latent states are sampled, block sampling decreased ef-
ficiency in the more hierarchical model (Figure 2a) but increased
efficiency in the less hierarchical model (Figure 2c). Moreover,
block sampling also increased efficiency when latent states were
integrated (Figure 2b, d), especially in the less hierarchical model
(Figure 2d). In addition, for the less hierarchical model, block sam-
pling yielded much less variation across parameters in ESS, whereas
other methods yielded large differences between fast-mixing and
some slow-mixing parameters (Appendix 3: Figure A4). When latent
states are sampled, JAGS and JAGS-like NIMBLE again perform sim-
ilarly, a little better than NIMBLE's default samplers (Figure 2a, c),
but only NIMBLE supports the efficiency of integrating over latent

states in this example.
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FIGURE 1 Results for the single-
species, multiseason occupancy model,
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3.3 | Occupancy: Multispecies, multiseason model

For the multispecies, multiseason example, integrating over latent
states in the more hierarchical model yielded only minor efficiency
changes compared to sampling latent states (Figure 3a, b). In contrast,
integrating over latent states in the less hierarchical model was more
efficient than sampling latent states (the difference between 9.5 and
just under 3 hr to generate 1,000 independent samples in default
NIMBLE, Figure 3c,d). When sampling latent states, JAGS performed
much worse than any of the NIMBLE configurations (the difference
between 14.5 d and 1.2 d to generate 1,000 independent samples in
the more hierarchical model, Figure 3a,c). The default NIMBLE sam-
plers tended to have the highest efficiency across model structures
and sizes (Figure 3). One exception is that in the model where latent
states are integrated with the less hierarchical model, the random-

walk block has slightly higher efficiency (Figure 3d).

3.4 | N-mixture model: Zero-inflated Poisson

In the N-mixture example, integrating over latent states is generally
less efficient than sampling latent states, regardless of more vs. less hi-
erarchy (the difference between just under an hour and over four hours
to generate 1,000 independent samples using default NIMBLE in the
more hierarchical model, Figure 4). This is likely because the summation
over a large range of possible N values is computationally costly. We,
therefore, focus on comparing MCMC strategies where latent states

are sampled. Random-walk block sampling had the highest efficiency

across all model sizes and structures. JAGS and JAGS-like NIMBLE had
the lowest efficiencies across all models (the difference between 16 hr
in JAGS and 30 min using NIMBLE and the random-walk block sam-
pler, Figure 4). The slowest mixing parameters were generally consist-
ent across MCMC strategies (Appendix 3: Figures A7-A8).

4 | DISCUSSION

Our results highlight that the best strategy for MCMC depends on
the model. Because of interactions between the handling of latent
states (direct integration vs. sampling), model structure, model type
(single- vs. multiseason and single- vs. multispecies cases of occu-
pancy models; and N-mixture models), and sampling strategy, there
are no one-size-fits-all best strategies for MCMC. These results ac-
cord with typical results from the statistical literature that different
strategies work well for different models (e.g., Browne et al., 2009;
Solonen et al., 2012). efficient. Furthermore, efficiency varies over
many orders of magnitude for different cases.

An example of the context dependence of MCMC strategies is that
latent state integration improved efficiency drastically in some mod-
els (both multispecies occupancy models), while it reduced efficiency
just as strongly in others (the more hierarchical single-species, multis-
eason occupancy model and the N-mixture model). This difference in
results likely arises because the computational cost of latent state in-
tegration is different for each model. For the single-season occupancy
model, marginalization is a quick summation over the two possibilities

of true occupancy or not for a given site. Hence, it is computationally
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FIGURE 2 Results for the multispecies, single-season
occupancy model of bird communities, showing minimum efficiency
for each MCMC sampling strategy. In the more hierarchical model,
we include species-specific coefficients and their hyperparameters
for the effect of habitat characteristics on occupancy and
detection. To integrate out latent states, we sum over the possible
occupancy states for each species at each site

Latent states Latent state integration

(a)

(b)

2 0010 0.010
g 0.008 0.008
© 0.006 0.006
< 0.004 0.004
5 0.002 0.002
e =
S 0000 =3 = e
o P o @ S O &
by S ES K
1%} RSN R RN
%)) Q qa_,/ ) o?/
TN & ©
<
=
> 010-© 0.10- @
g 0.08 0.08
& 0.06 0.06
< 004 0.04
® 0.02 D 0.02
(0]
—10.00 g@D@D 0.00 -F 7 Y
& N L N\ &5 NI
SO KA
@oo ‘0\06'\}9 & 6‘\}&
.@Q A\,.Z,%

FIGURE 3 Results for the multispecies, multiseason occupancy
model of bee communities, showing minimum efficiency for each
MCMC sampling strategy. The more hierarchical model includes
species-specific coefficients drawn from common distributions
for habitat effects on persistence and colonization. To integrate
out the latent states, we sum the latent states through time for a
species at a site

> 0.14 (@) 0.14 (b)
S o012 0.12
S 0.10 0.10
© 0.08 0.08
= 0.06 0.06
© 0.04 0.04
T o 002 0.02 D
S = 0.00 %\Y\:: 0.00 :%]\$:1
o) S P S NP
L, gl SO K &8
LLl Q@/ 0?/
p ¢ ¢
=
> 25 () 25 (d)
2 20 20
E
& 15 15
-g 1.0 1.0
@ 05 D 0.5 D
S 0.0 D I:]:] 0.0- == — [ ]
2] @ & @ S5 N @ A\
NOAV < NN s ¢
&Y ¥ &0 ¥
.\q,q*’ \q;?”

FIGURE 4 Results for the N-mixture model of Swiss great tits,
showing minimum efficiency for each MCMC sampling strategy.

In the more hierarchical model, we included site- and survey-
specific parameters and their hyperparameter distributions on both
abundance and detection. To integrate out latent states, we sum
over the range of values of N, the true local abundance at each site

efficient and removes the need to sample those latent states, yielding
a net benefit. For the multiseason occupancy models, marginalization
is a hidden Markov model filtering calculation that sums over the two
possibilities states sequentially through time for a given site, which is
much more costly. This may explain the decrease in MCMC efficiency
when integrating over latent states in this model. For the multiseason,
multispecies model, NIMBLE's efficiency (with default samplers) was
similar when integrating vs. sampling latent states. This may reflect a
balance between the benefits and costs revealed by the two simpler
cases. However, additional factors such as the overall complexity of the
larger model may also play a role. For the N-mixture model, it seems
clear that the cost is much higher than any benefit of integrating over
latent states. Our model efficiency comparisons for occupancy and
N-mixture models suggest that integrating over latent states seems to
be beneficial primarily when such an integration is simple and efficient.

The costs and benefits of block sampling will also be different for
different model structures. In our examples, the best gain from block
sampling occurred for the more hierarchical N-mixture model when
sampling latent states. When there are strong correlations in some di-
mensions of the posterior, while others are held fixed, then block sam-
pling has the potential to improve mixing. However, in random-walk
block sampling, many proposals are rejected, and adaptation to an
efficient proposal covariance can be slow, with both issues being
more severe when more dimensions are jointly sampled. In the auto-
mated-factor slice sampler, a slice sampler is applied in each of a set
of orthogonal coordinates that combine multiple parameters. While
this can yield good mixing, its poor performance can be attributed

to its high computational cost; slice sampling involves many model
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likelihood calculations. Another important trade-off in block sampling
is whether the parameters being jointly sampled require the same
components of the model to be calculated for the MCMC update. If
the parameters being jointly sampled do not share the same model
components, the MCMC update will have a higher computational cost.
There are many approaches to block sampling, and, more generally,
sampling correlated dimensions of the posterior. The results here in-
clude basic ideas and establish that the success of block sampling, like
other aspects of MCMC, depends on the model.

An important caveat with our analysis is that the efficiency of
MCMC depends on which parameterization is used and which results
are of interest. We have emphasized the MCMC efficiency of the
worst-mixing parameter because one should be cautious about any
output unless all parameters are well mixed. This means that the qual-
ity of results is limited by the worst-mixing parameter. However, if one
decides that, say, log of a standard deviation instead of standard devia-
tion is the parameter of interest, one may obtain different results. This
is life in a Bayesian framework. Bayesian results are not invariant to
parameterization in general, and, specifically, the effective sample size
of a nonlinear function of a posterior sample will not match that of the
sample itself. Such issues are not likely to completely flip or even qual-
itatively change the outcome of comparisons such as ours, but they
would quantitatively change them to some degree.

Though MCMC efficiency was context-dependent, some general
patterns emerged. First, it is almost always possible to obtain large
boosts in MCMC efficiency from some customization of the model
and sampling strategy compared to simple default approaches. The
largest boosts would vastly change a user's model-fitting experience—
for example, the difference between 2 weeks in JAGS and just over a
day in NIMBLE to generate 1,000 independent samples for the mul-
tispecies, multiseason model. The only case where one of the default
strategies was best was the more hierarchical single-species, multisea-
son occupancy model where latent states were sampled. Our results
are consistent with, but less extreme than, those of Turek et al. (2016),
who investigated the use of NIMBLE for capture-recapture models.
Their most extreme efficiency gain was almost an 1,000-fold improve-
ment for a large multistate capture model. Compared to results here,
their larger improvement may be attributable to higher model com-
plexity, use of the automated blocking algorithm of Turek et al. (2017),
and more detailed customization efforts.

Second, the most meaningful improvements were possible with
the most complex (slowest mixing) examples, where the type of gains
possible could mean the difference between a week and a day, or
a day and an hour, of computation. Third, including more hierarchi-
cal structure always slows mixing, a fact well known to practitioners.
Fourth, simpler sampling strategies sometimes outperform more ad-
vanced strategies if the former are computationally cheaper than the
latter and so can iterate more quickly. Finally, customization of the
model and sampling strategy with NIMBLE yielded substantial perfor-
mance improvements over JAGS in all but one case (Figure 1a), where
they were essentially tied. In the two more complicated models (mul-
tispecies, multiseason occupancy, and N-mixture), the default perfor-
mance of NIMBLE was 2.5x-10x more efficient than JAGS, and the
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best performance was 5x-12x more efficient. Given that JAGS [and
other software in the BUGS language, Surhone et al., 2010; Lunn,
Thomas, Best, & Spiegelhalter, 2000) is widely used and has been
transformative in the practice of Bayesian hierarchical modeling in
ecology, our results suggest that NIMBLE can be much more efficient
than JAGS in the cases where it matters most, when overall efficiency
is quite low.
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APPENDIX 1

MODEL DETAILS 1

Notation varies across examples. Parameter labels used in tables and
figures correspond to variable names in the code, which is generally
related to but not the same as the mathematical notation of each

model's description.
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Occupancy: Single-species, multiseason model

The single-species multiseason occupancy model (i.e., dynamic oc-
cupancy model, Royle & Kéry, 2007) uses simulations modified from
Kery and Schaub (2012). We simulated 100 sites sampled 5 times
per year for 15 years. Let z; denote the true occupancy of a species
at the i™" year. z;; is a Bernoulli random variable, z;; ~

Bern(y; ). In the first year, z;, ~ Bern(y/iyl). w;, is the occupancy prob-

site in thej

ability at the i*" site in the j™ year.

The model with more hierarchical structure includes year-specific
persistence and colonization probabilities, each from a prior distri-
bution. Let ®; denote the logit probability the species persists at a
site from years j to j + 1 (given that ;= 1) and 7 denote the logit
probability that site i is colonized in year j + 1 (given that ;= 0). The
priors for 7; and ¢j, priors for their hyperparameters, and the calcula-

tion of w;;are given by:

p, ~N (o,106)
1y~ N (0,10°)

o, ~uniform (0,100)
o, ~uniform (0,100)

©
(©
(A1)
)
()
w1 ~uniform (0,1)

Wije1 = expit (¢;) =z;;+ expit (y;) = (1-z;)

Here, expit is the inverse of the logit function: expit (z) =
(1 + €7). Note that, since z;; is either O or 1, it is equivalent to write
logit (wijy1) =@ x2;;+7; X
tions uses mean and variance, that is, “N (mean, variance)”.

(1-2;;). Our notation for normal distribu-
We then let Yiik indicate whether the species was (y,.,i,k =1) or was
not (yi,j,k = 0) detected in the k' visit to site i in year j. The logit prob-
ability of detection when a site is occupied in year j is p; Similar to
i and ¢, p; is year-specific and follows a normal distribution. These

relationships and relevant priors are given as follows:

u,~N (0,10

o, ~uniform (0,100)

p~N (102

yijx ~Bern (expit (p;) z;;)

(A2)

The model with less hierarchical structure lacks the year-specific
parameters; instead, there are single, time-independent y, ¢, and p
parameters, so their subscripts j can be removed in the above equa-
tions. Each follows a normal prior with mean 0 and variance 10°. In

this case, there is no need for K, 6, Ky 0y Hy, OF 0.

Occupancy: Multispecies, single-season model
The multispecies, single-season occupancy example mod-

els bird community data in relation to variables about wildlife


https://doi.org/10.1007/s10651-016-0353-z
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2010).
There are 70 sites, each sampled 3-4 times for detection/non-

management and habitat characteristics (Zipkin et al.,

detection of 58 species. For species i and site j, the probability
1 that is,
z;;~Bern (y;;). Detection probability for the kth visit to site j for

of occupancy is vij and the true occupancy status is z;;

species i is p;j- The corresponding detection/nondetection datum
is v~ Bern (p;+z;;).

Both site occupancy and detection were allowed to depend on
habitat and study area (Zipkin et al., 2010). The two study areas were
labeled CATO (Catoctin Mountain Park) and FCW (Frederick City
Watershed Cooperative Wildlife Management Area), with indicator
variableInd; set to O or 1 if site j was in the CATO or FCW study area,
respectively. The two study areas corresponded to different deer
management strategies.

Occupancy probability was allowed to depend on study
area, tree basal area (BA), and understory foliage cover (UFC).
Detection probability was allowed to depend on study area and
date. Relationships with BA, UFC, and date included both linear
and quadratic terms.

In the model with more hierarchical structure, the coefficients of
BA, UFC, and study area are species-specific and drawn from com-

mon distributions with similar priors as above:

Similarly, the species-specific detection probabilities are modeled
with species-specific coefficients from distributions with priors, all

as follows:
expit (4 cato ) ~uniform (0,1)
expit (pyrew ) ~uniform (0,1)
o ycato ~ uniform (0,100)
o urcw ~ uniform (0,100)
~N(0,20¢)
=N (010°)
~N(0,10%)
Haa~N (0,10°) (A3)
21 ~uniform (0,100

0,100

(
22 ~uniform (

23~ uniform (0,100
(

)
)
)
44 ~uniform (0,100)
uCATO;~N (ﬂ uCATO ’GiCATO )
UFCW, ~N (urcw o2y )
at;~N (Mal, o2,
-N(
N
ad;~N (Mam"z
logit (;;) =uCATO ;* (1- Ind ;) + uFCW ;* Ind;
+a1; UFC+a2;" UFC +43," BA+a4;" BA”

expit (puycato) ~uniform (0,1)
expit (uypcw) ~uniform (0,1)
6,cato ~ uniform (0,100)
oyrew ~ uniform (0,100)
i~ N (0,106)
w2 ~N (010°) (A4)

b1 ~ uniform (0,100)
o4 ~ uniform (0,100)

VCATO, ~N (icato02earo )
VECWi~N (yrewso ey )
b1;,~N (ubl,ofl)
logit (p;;; ) =VCATO, * (1~Ind;) +VFCW % Ind,
+b1; +date;+b2; * datejz

The case with less hierarchical structure has no species-specific
parameters, so all of the species share the same coefficients for the

effect of habitat and management. This gives:

logit (;;) =uCATO* (1 Ind;) + uFCW * Ind
+a1*UFC;+a2* UFC” +a3" BA +a4* BA”

. (A5)

logit (p;;) =vCATO* (1— Ind;) + VFCW * Ind

+b1* datej +b2* datei2

As for the first example, the priors for the coefficients in this
model are normal with mean O and standard deviation 1,000. The
purpose of this model is not to be a scientific alternative to the more
hierarchical model but rather to provide a useful case for comparison
of MCMC methods.

Occupancy: Multispecies, multiseason model

The multispecies, multiseason occupancy example models data on
wild bees in on-farm habitat restoration patches (Ponisio et al., 2019).
There are 31 sites, each sampled 2-7 times per year for 10 years for
detection/nondetection of 49 bee species. For species i, site j, and

year t, the latent occupancy state is z..,. For the same indices and

ij,t"
visit r, the detection probability is Dijkr ;nd the detection/nondetec-
tion datum is y;;;,. Thus, y;;¢, ~Bern (p;;;,#2;;¢ )-

Occupancy probability is denoted y;;; and defined by persistence
and colonization probabilities. If a site is occupied in year t, the logit
probability that it persists (continues to be occupied) in year t + 1
is ¢ If a site is unoccupied in year t, the logit probability that it is
colonized (becomes occupied) in year t + 1 is Yije- The definition of
;¢ is then given by:

logit (Wijes1) = BijetZise +7iiex (1=2i¢) (A6)
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Note that only one term of the right-hand side will be nonzero.
Probability of occupancy in year 1 is denoted y;;; and defined as
the equilibrium occupancy calculated from the mean logit persis-

tence and colonization probabilities. Specifically,

Z¢11t

logit (qs,, )

logit (7;;.) Z Yije (A7)
i 7:’4,-
==
1-¢y;.—7ij.

Site-level intercept and slope parameters for the effects of habi-
tat quality (floral resource diversity, frd;,) and the weighted proxim-
ity of other habitat patches (hedgerows and remnant natural habitat,
HRwtprox; and RemnantWtProx , respectively) were modeled as in-
dependent species-level random effects. Species-level covariates in-
cluded species' body size (BodySize ) and diet breadth (k). Interactions
between site-level and species-level covariates were also included. The

persistence components of the model including priors are as follows:

~N(O 106)
(o 106) s=1..3

6, ~uniform (0,100)

(
615 ~uniform (0,100) ,s=1...3

a~N (/la,Of)
Blsli~N (ﬂﬁ[sl,ag[q) s5=1...3
pIsI~N(0,10¢) s=4...10 (A8)
#ije =+ [1], *HRwtProx; + § [2], *RemnantWtProx; + B[3];*frd;,
+8 [4] *k;+ 8 [5] “BodySize;

+p [6] *frd;*"HRwtProx; + f [7] *frd;;*RemnantWtProx;

+8 [8] *k*HRwtProx; + f [9] *BodySize;*HRwtProx;

+p [10] *k;"RemnantWtProx; + § [11] *BodySize;*RemnantWtProx;

The colonization components of the model including priors are
as follows:

MA~N(0,1O")
),5:1...3
0,100)

0,100) s=1...3

ey ~N (0,100
oa~uniform (
gy ~ uniform (
AN (a2 )
Blsl, ~N (/45[5],6;[51) s=1..3
7ij¢ =Ai+B [1], "HRwtProx; + B [2], *RemnantWtProx; + B[3];*frd;,
+B [4] #k;+B [5] *BodySize;

(A9)

+B [6] *frd;*HRwtProx; + B [7] *frd;*RemnantWtProx;
+B [8] «k;*HRwtProx; + B [9] *BodySize;*HRwtProx;
+B[10] sk;*RemnantWtProx; + B [11] *BodySize;*RemnantWtProx;

CWILEY--27

Here o; and A; denote species-specific intercepts of logit per-

[Open Access]

sistence and colonization probabilities, respectively. The g[s]
and B[s] parameters preceeding each of the explanatory vari-
ables represent the effect of those variables on persistence and
colonization.

The detection probability of each species was allowed to vary over
the season according to species-specific phenologies defined by a
quadratic function of day of year (date i,t,r) with species-specific coef-
ficients drawn from across-species prior distributions (M'Gonigle et

al., 2015). Specifically, p;;;, was modeled as follows:

g ~N (010°) 5=0...2
6,5 ~ Uniform (0,100) s=0...2
pLO}~N (sppo}.9%o))
UL~ (1)

PI2}i~N (kppz1 %)
logit (p;;.,) =p [O];+p[ 1]*date;;, +p[2]; *datem

(A10)

where p[0], p[1]; and p[2]; denote species-specific intercept, linear co-
efficient, and quadratic coefficient, respectively, for effect of day of
year on detection probability of species i.

The case with less hierarchical structure does not have species-
specific coefficients. Instead, all species share the same coeffi-
cients for the effect of local and landscape habitat variables. This
is given by:
¢ =a+p [1] *HRwtProx; + § [2] *RemnantWtProx; + g [3] *frd;,

+B [4] *k;+ B [5] *BodysSize;

+B [6] *frd, *HRwtProx; + 8 7] *frd;*RemnantWtProx;

+B [8] *k;*HRwtProx; + f [9] *BodySize;*HRwtProx;

+ [10] *k;*RemnantWtProx; + # [11] *BodySize;*RemnantWtProx;
%ije =A+B [1] *HRwtProx; + B [2] *RemnantWtProx; + B [3] *frd,,

+B [4] *k;+B [5] *BodySize; (A11)

+B [6] *frd; *HRwtProx; + B [7] *frd;, "RemnantWtProx;

+B [8] *k;*HRwtProx; + B [9] *BodySize;"HRwtProx;

+B[10] *k;*RemnantWtProx; + B [11] *BodySize;*RemnantWtProx;

logit (p;;.,) =p [0] +p [1] *date;,, +p |2] +(date;,,)?

As for the first example, the priors for the coefficients in this
model are normal with mean 0 and standard deviation 10°.

Zero-inflated N-mixture model

The zero-inflated N-mixture example models the abundance of
birds (great tits) using breeding bird survey data across Switzerland
(Kéry & Royle, 2016, ch. 6.11.1). There are 267 routes, each ina 1
square kilometer quadrat in a grid, each surveyed 2-3 times in one
year. Kéry and Royle (2016), this example features some informative

priors.
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The number of birds available to be counted on each route is as-
sumed to follow a zero-inflated Poisson distribution. The probability
of a structural zero (due to unsuitable habitat) is ¢. The unobserved
state w; is O if the habitat is unsuitable, 1 if it is suitable. The number
of birds available to be counted at site i is N;, which is O if w;=0 and
follows a Poisson with mean 4; if w; = 1. These relationships are writ-

ten as follows:

w; ~Bernoulli (1-¢)
(A12)
N; ~ Poisson (w; ;)

Covariates for 4;included site-level forest cover (%, forest ), eleva-
tion (m, elev ), and route length (km, length )). In addition, a random
effect of site on 4; allowed for unexplained route-to-route variation.
The 4; component of the model is as follows:

fo~N (0,10)
p~N(01) 5=1...7
£,;~N(0.0,,) (A13)
o, ; ~uniform (0,2)
log (4;) = o+ By elev +,* elev 2 + p;* forest ;

+ 5, forest 2+ fs* elev * forest + g, * elev 2 forest  + §,* length  +¢;

The observed abundance of birds on the ith route during the jth
survey is then modeled, including priors, as follows:

expit («0;) ~uniform (0,1)
a,~N(0,1)s=1...13

2
Ep(site),i ~ N <O’O_g,p (site))

2
Ep(survey),ij ~ N (O’oe,p (survey))
6, pisitey ~ Uniform (0,2)
y;;IN; ~Binomial (N;,p;;)
. 2
logit (p;;) =a0;+a;* elev;+a,* elev
+ay* date ;;+a," date >
) (A14)
+as" dur;+a," dur
+a;" elev ;" date ;;+ag* elev iz* date ;
+ag” elev;*dur;+aqo" elev* durf}.
+aq, " elev i2* dur;;j+ay," date ;" dur;
2
+ayz" date ;" dur §; +€pite) i £

p(survey),ij

where covariates for survey date (date ), duration (min, dur;)), eleva-
tion, and their interactions are included as well as random effects for
site and survey.

The model with less hierarchical structure has no random effects for
site (e, €psite,) OF survey (pisurvey)ij) on abundance and detection, nor
their associated hyperparameters (Kery & Schaub, 2012, ch. 13.5.1).
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POSTERIORS possible issues with chain convergence. We combined this metric
The Geweke Z-score is a standard Z-score with a standard normal with visual inspection of the chains to assess convergence.

distribution. If the Geweke Z-score is >1.96 or <-1.96, this indicates

TABLE A1 Single-species, multiseason occupancy model including year-specific parameters and their hyperparameters (more
hierarchical): posterior mean, SD, and Geweke Z-score for chain convergence

block_AFSS block_RW jags_like_nimble nimble
p=.27 Mean SD z Mean SD z Mean SD z Mean SD z
Latent state  psil 0.27 0.06 0.63 0.27 0.06 0.73 0.27 0.06 0.47 0.27 0.06 0.48
integration -1.08 007 -1.02 -1.08 007 -0.89 -108 007 -0.38 ~-108 007 164
sigma.p 0.13 0.08 -1.09 0.13 0.08 0.49 0.13 0.08 0.29 0.13 0.08 -1.79
mu.phi -1.08 0.19 1.02 -1.08 0.19 0.62 -1.08 0.19 1.6 -1.08 0.19 -1.28
mu.gamma -0.17 0.12 0.95 -0.17 0.12 -0.45 -0.17 0.12 0.25 -0.17 0.12 -1.07
sigma.phi 0.38 0.23 -1.14 0.38 0.24 1.09 0.38 0.24 -0.2 0.38 0.23 -1.38
sigma.gamma 0.13 0.1 -0.89 0.13 0.1 -1.5 0.13 0.1 1.79 0.13 0.1 -0.57
block_AFSS block_RW jags_like_nimble jags nimble
p=.27 Mean SD Z Mean SD Z Mean SD Z Mean SD Z Mean SD Z
Latent psil 0.27 0.06 -0.69 0.27 0.06 1.26 0.27 0.06 -0.69 0.27 0.06 264 0.27 0.06 2.33
z;i:isled mu.p -1.08 0.07 -0.87 -1.08 0.07 0.72 -1.08 0.07 -0.74 -1.08 0.07 -243 -1.08 0.07 -0.26
sigma.p 0.13 0.08 -1.15 0.13 0.08 047 0.13 0.08 -0.64 0.13 0.08 1.03 0.13 0.08 -0.76
mu.phi -1.08 0.19 177 -1.08 0.19 -0.51 -108 0.19 0.19 -1.08 0.19 1.12 -1.08 0.19 -142
mu. -0.17 0.12 1.72 -0.17 0.12 0.82 -0.17 0.12 0.78 -0.17 012 292 -0.17 0.12 -0.04
gamma
sigma.phi 0.38 0.24 -2.23 0.38 0.24 0.62 0.38 0.24 0.5 0.39 0.24 039 039 024 249
sigma. 0.13 0.1 0.2 0.12 0.1 0.64 0.13 0.1 1.45 0.13 0.1 -1.51 0.13 0.1 -0.56
gamma
block_AFSS block_RW jags_like_nimble nimble
p=.73 Mean SD V4 Mean SD 4 Mean SD Z Mean SD Z
Latent state psil 0.26 0.08 -0.74 0.26 0.08 0.11 0.26 0.08 0.81 0.26 0.08 0.13
integration 1, 093 011 015 0.93 011 -1.38 093 011 -002 093 011 -0.81
sigma.p 0.16 0.12 -0.74 0.16 0.12 -0.96 0.16 0.12 0.23 0.16 0.12 2.04
mu.phi -1.21 0.23 2.47 -1.21 0.23 -0.37 -1.21 0.23 1.05 -1.21 0.23 -0.21
mu.gamma -0.21 0.17 -1.65 -0.21 0.17 0.16 -0.21 0.17 0.83 -0.22 0.17 1.38
sigma.phi 0.23 0.19 0.09 0.24 0.19 0.64 0.24 0.19 -1.52 0.24 0.18 -1.24
sigma. 0.3 0.2 -1.66 0.3 0.2 1.22 0.3 0.21 2.23 0.3 0.2 -1.08
gamma
block_AFSS block_RW jags_like_nimble jags nimble
p=0.73 Mean SD Z Mean SD Z Mean SD Z Mean SD Z Mean SD Z
Latent psil 0.26 0.08 0.97 0.26 0.08 -0.74 0.26 0.08 -0.46 0.26 0.08 -0.37 0.26 0.08 0.37
z;:isled mu.p 0.93 0.11 -0.86 0.93 0.11 -0.55 0.93 0.11 0.48 0.93 011 1 0.94 011 -1.5
sigma.p 0.16 0.12 -0.25 0.16 0.12 044 0.16 012 -1.79 0.16 0.12 0.13 0.16 012 -1.76
mu.phi -1.21 0.23 0.99 -1.21 023 -0.72 -121 0.23 -048 -121 0.23 -155 -1.21 0.23 -1.46
mu. -0.22 017 -192 -0.21 0.17 -0.88 -0.22 0.17 0.99 -0.22 017 0.69 -0.22 017 3.59
gamma
sigma.phi  0.24 0.19 1.38 0.23 019 -1.84 0.24 019 1.77 0.24 0.19 1.09 0.24 0.19 -1.08
sigma. 0.3 0.21 119 0.3 021 -14 0.31 0.2 0.02 0.31 0.2 -1.95 0.32 0.2 -1.42

gamma
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APPENDIX 3

PARAMETER-SPECIFIC EFFICIENCIES
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FIGURE A1 The parameter efficiency of the more hierarchical single-species, multiseason occupancy model (Eq. A1). Colors denote
the different sampling strategies. In the models, latent states were either sampled (circled) or integrated out (squares). Data were either

generated with high detectability (solid line) or low detectability (dashed line)
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FIGURE A2 The parameter efficiency of the less hierarchical single-species, multiseason occupancy model (Eq. A2). Colors denote
the different sampling strategies. In the models, latent states were either sampled (circled) or integrated out (squares). Data were either

generated with high detectability (solid line) or low detectability (dashed line)

FIGURE A3 The parameter efficiency
of the more hierarchical multispecies,
single-season occupancy model (Egs. A3-
A4). Colors denote the different sampling
strategies. In the models, latent states
were either sampled (circled) or integrated
out (squares)
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Open Access,

—— block_AFSS —— block_RW —— jags_like_nimble = nimble —— jags FIGURE A4 The parameter efﬁciency
e Latent states m | atent state integration of the less hierarchical multispecies,
single-season occupancy model (Eq. A5).
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FIGURE A5 The parameter efficiency of the more hierarchical multispecies, multiseason occupancy model (Egs. A6-A10). Colors denote
the different sampling strategies. In the models, latent states were either sampled (circled) or integrated out (squares)



PONISIO ET AL.

Fcology and Evolution o 2415
= WILEY-| 2%

——— block_AFSS —— block_RW — jags_like_nimble == nimble — jags

® [atent states m | atent state integration

Effective sample size
per second (log)

FIGURE A6 The parameter efficiency of the less hierarchical multispecies, multiseason occupancy model (Eq. A11). Colors denote the
different sampling strategies. In the models, latent states were either sampled (circled) or integrated out (squares)
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FIGURE A7 The parameter efficiency of the more hierarchical zero-inflated N-mixture model (Egs. A12-A14). Colors denote the
different sampling strategies. In the models, latent states were either sampled (circled) or integrated out (squares)
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FIGURE A8 The parameter efficiency of the more hierarchical zero-inflated N-mixture model. Colors denote the different sampling
strategies. In the models, latent states were either sampled (circled) or integrated out (squares)



