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Abstract

Cadherins are Ca2+ dependent cell-cell adhesion proteins that maintain the structural integrity of 

the epidermis; their principle function is to resist mechanical force. This review summarizes the 

biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical 

stress. We first relate the structure of classical cadherins to their equilibrium binding properties. 

We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. 

In particular, we highlight recent studies which show that cadherins form three types of adhesive 

bonds: catch bonds which become longer lived and lock in the presence of tensile force, slip bonds 

which become shorter lived when pulled and ideal bonds that are insensitive to tugging.

Introduction

The epidermis serves as a physical barrier that protects organisms from their external 

environment. This multilayered tissue is composed of keratinocytes bound together by two 

types of cell-cell adhesion complexes: desmosomes and adherens junctions. (Jensen and 

Wheelock, 1996). The primary adhesive components of both these structures are the 

cadherin family of Ca2+ dependent transmembrane proteins (Al-Amoudi and Frangakis, 

2008; Green and Simpson, 2007; Gumbiner, 2005; Halbleib and Nelson, 2006; Niessen et 

al., 2011). Desmosomes are composed of two types of desmosomal cadherins (desmocollin 

and desmoglein) (Desai et al., 2009; Green and Simpson, 2007), while epidermal adherens 

junctions contain a single classical type-1 cadherin (either E-cadherin or P-cadherin) 

(Halbleib and Nelson, 2006; Jensen and Wheelock, 1996). Both desmosomes and adherens 

junctions act in a coordinated fashion to help the epidermis withstand mechanical stress. 

While the interactions that mediate desmosomal cadherin binding are not completely 

understood, the structural basis of classical cadherin adhesion has been extensively 

characterized.

Classical cadherins share a conserved cytoplasmic domain, and an ectodomain containing 

five tandem extracellular (EC) repeats. Their expression levels vary within the epidermis; 

while E-cadherins are present in all keratinocytes, expression of P-cadherins is limited to the 

basal layer (Halbleib and Nelson, 2006; Takeichi, 1988). Adhesion is mediated by the 
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cadherin ectodomain while the cytoplasmic region binds to adaptor proteins which link 

cadherins indirectly to the cytoskeleton, regulate cadherin turnover and modulate actin 

assembly (Nelson and Nusse, 2004; Niessen et al., 2011; Takeichi, 2007). Since the 

epidermis is a self-renewing tissue with a continuous upward movement of cells, cadherins 

dynamically tune their adhesive strength in order to preserve epidermal barrier integrity 

(Niessen, 2007). Epidermal cadherin knockout studies in mice show that loss of E-cadherin 

correlates with a loss of adherens junctions, altered epidermal differentiation and loss of hair 

follicles (Tinkle et al., 2004; Young et al., 2003). Similarly, deletion of α-catenin, an 

adaptor protein associated with the cadherin cytoplasmic domain, results in impaired 

adhesion and epidermal detachment (Vasioukhin et al., 2001).

Cell-cell adhesion is a dynamic process and classical cadherins tailor their binding kinetics 

in order to withstand mechanical perturbations. While the equilibrium binding properties of 

classical cadherins have been extensively characterized (Brasch et al., 2012), the role of 

mechanical force in altering cadherin binding is only now being measured. Recent studies 

show that upon being exposed to mechanical perturbation, E-cadherins change their 

unbinding kinetics (Rakshit et al., 2012). These kinetic changes are not manifested in 

solution or in the absence of mechanical loading, but are critical for cadherin adhesion.

This brief review summarizes our current understanding of the effect of mechanical force on 

the kinetics of E-cadherin adhesion. We focus on the ectodomain; the role of the 

cytoplasmic domain and its associated proteins have been reviewed elsewhere (Gomez et 

al., 2011; Ladoux and Nicolas, 2012; Leckband et al., 2011; Papusheva and Heisenberg, 

2010; Schwartz and DeSimone, 2008). We begin by relating the structure of E-cadherins to 

their equilibrium binding properties. We then review the role of mechanical perturbations in 

tuning the kinetics of adhesion. Finally, we discuss major open questions and future 

directions in this exciting area of research.

Adhesive states of classical cadherins

Classical cadherins adhere via ‘trans’ interactions where ectodomains from opposing cells 

bridge the inter-membrane gap and interact with each other. Adhesion is strengthened by the 

cooperative self-assembly of cadherins on the same cell into cis clusters (Brasch et al., 

2012).

Structure and kinetics of trans adhesive states

Structural studies of both the complete ectodomain of type I classical C-cadherin (EC1–5) 

(Boggon et al., 2002) and of smaller fragments of E-Cadherin and N-Cadherin (Harrison et 

al., 2010; Haussinger et al., 2004; Nagar et al., 1996; Pertz et al., 1999; Shapiro et al., 1995) 

have identified key interactions that mediate trans adhesion (Fig. 1). The primary adhesive 

conformation involves the interaction of opposing EC1 domains and is termed the strand-

swapped dimer (Fig. 1A). In this structure, N-terminal β-strands between opposing EC1 

domains are swapped and the side chain of a conserved Tryptophan at position 2 (W2) is 

inserted into a pocket on their adhesive partner (Boggon et al., 2002; Haussinger et al., 

2004; Parisini et al., 2007; Shapiro et al., 1995) (Fig. 1A). The physiological relevance of 

this adhesive interface has been confirmed in numerous mutational, structural and cellular 
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studies (Harrison et al., 2005; Pertz et al., 1999; Prakasam et al., 2006a; Shan et al., 2004; 

Tamura et al., 1998; Troyanovsky et al., 2003). In solution, the affinity for strand-swap 

dimer formation is low; dissociation constants (Kd) for trans dimers of the full length 

ectodomain of C-cadherin measured using Analytical Ultra Centrifugation (AUC) is 64 µM 

(Chappuis-Flament et al., 2001). Similarly, EC1–2 domains of E-cadherin expressed in 

mammalian and bacterial cells have trans dimer Kd values of 97 µM (Katsamba et al., 2009) 

and 80 µM (Koch et al., 1997) respectively.

Prior to strand-swapping, cadherin monomers are in a “closed” conformation where W2 is 

docked into each monomer’s binding pocket; the monomers thus act as competitive 

inhibitors of strand-swapping (Chen et al., 2005). The closed monomeric conformation 

places a strain on the short swapping strand due to its anchorage at one end by the W2 and at 

the other by a Ca2+ ion; relieving this conformational strain is the driving force for strand 

swapping (Vendome et al., 2011). Equilibrium affinity measurements using AUC show that 

mutations that relieve strain in the swapping strand in E-cadherin monomers, decrease 

dimerization affinities (Vendome et al., 2011). Single molecule Fluorescence Resonance 

Energy Transfer (FRET) experiments suggest that prior to swapping N-terminal β-strands, 

E-cadherin monomers first form a non-swapped, intermediate “encounter complex” (Fig. 

1C) (Sivasankar et al., 2009). E-cadherins can be trapped in this encounter complex by 

mutating W2 (Sivasankar et al., 2009); consequently, W2A fragments weakly adhere to each 

other (Prakasam et al., 2006a; Sivasankar et al., 2009). Recently, the atomic resolution 

structure of the encounter complex has been resolved in W2A mutants (Fig. 1B). This 

conformation, called an X-dimer, is formed by extensive surface interactions between the 

base of the EC1 domain, EC1–EC2 interdomain linker region and the apex of domain EC2 

(Harrison et al., 2010) (Fig. 1B). The affinity for X-dimer formation in solution is 

significantly weaker than strand-swap dimers; the Kd of W2A cadherin X-dimers is an order 

of magnitude higher (916 µM) than wild type (WT) cadherin strand-swap dimers (Harrison 

et al., 2010).

Mutations in the cadherin X-dimer binding interface alter the kinetics of strand-swapping 

but do not change the structure of the strand-swap dimer. When a key Lys 14 residue in the 

X-dimer binding interface is mutated to a Glu, the trans-dimers are virtually 

indistinguishable from WT cadherin strand-swap dimers (Harrison et al., 2010). As 

measured using Surface Plasmon Resonance, the K14E mutants show no binding in a short–

time frame suggesting that their binding rate (on rate) is low. Similarly, sedimentation 

velocity AUC and size-exclusion chromatography show that the monomer to strand-swap 

dimer conversion is impeded in these mutants (Harrison et al., 2010). Presumably, lower on-

rates are measured since the formation of X-dimers, which serve as kinetic intermediates 

strand-swapping (Fig. 1C), are impaired in the K14E mutants. In epithelial cells, inactivation 

of X dimers result in extraordinarily stable cell-cell junctions; this has been interpreted to 

indicate that X-dimers are an intermediate in the pathway to dissociation of strand-swap 

dimers (Hong et al., 2011). AUC measurements show that the Kd of the K14E mutants are 

virtually indistinguishable from WT cadherin which suggests that besides their low on-rate, 

the dissociation (off-rate) of these mutants is also decreased (Harrison et al., 2010). 

However, in contrast to these studies, recent single molecule force measurements indicate 
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that the dissociation rate of K14E is similar to WT cadherin (Rakshit et al., 2012). 

Consequently, the molecular role of X-dimers in the dissociation of strand-swap dimers is 

unclear.

Structure and kinetics of cis adhesive states

Cadherin adhesion is enhanced by their lateral assembly on the cell surface (Kim et al., 

2005; Takeda et al., 1999). However, the biophysical mechanisms by which cis clustering 

boosts adhesion are just beginning to be understood. Early studies showed that beads 

decorated with cadherin pairs aggregated to a greater extent than beads with immobilized 

monomers (Brieher et al., 1996). While this data was interpreted to suggest that cadherin 

ectodomains form cis dimers, recent single molecule experiments show that ectodomains 

located adjacent to each cooperatively enhance the probability of adhesion even if they do 

not associate with each other in a cis geometry (Zhang et al., 2009).

Based on contacts observed in X-ray crystal structures of a range of classical cadherins, it 

has been proposed that interactions between the apex of EC1 and the base of EC2 of 

neighboring cadherins mediate dimerization in a cis orientation (Boggon et al., 2002; 

Harrison et al., 2011). These interactions are however not observed in NMR measurements 

of EC1–2 (Haussinger et al., 2002), indicating that their Kd exceeds 1mM (Harrison et al., 

2011). Similarly, single molecule FRET experiments could not detect cis dimer formation 

between two cadherin ectodomains that were located adjacent to each other in a 

configuration that would permit lateral dimerization (Zhang et al., 2009). This discrepancy 

is explained by recent theoretical studies which predict that the cis assembly of cadherin 

ectodomains requires prior trans dimerization (Wu et al., 2011; Wu et al., 2010). When 

trans dimers are formed, the conformational flexibility of ectodomains is dramatically 

reduced which lowers the entropic penalty associated with cis dimer formation (Wu et al., 

2011).

In qualitative agreement with these predictions, micropipette manipulation experiments 

show that the binding of cadherins from opposing cells occur in two stages: an initial rapid 

stage ascribed to trans adhesion followed by a second, slower stage interpreted to occur due 

to cis clustering (Chien et al., 2008). However, while the first stage requires the EC1 domain 

as expected for trans dimer formation, EC3 is required for the second adhesive state (Chien 

et al., 2008). Micropipette experiments also demonstrate that hypoglycosylation of EC2 and 

EC3 enhance the lateral assembly of ectodomains (Langer et al., 2012).

Mechanical tension alters the kinetics of cadherin adhesion

The structural and biophysical studies described above, provide a detailed picture of the 

kinetic determinants of classical cadherin binding in equilibrium, under force-free 

conditions. However, the molecular mechanisms by which cadherins alter their binding 

kinetics in response to mechanical forces are still unclear.

When cadherin trans dimers, are pulled apart, they can form one of three distinct types of 

bonds (Dembo, 1994; Dembo et al., 1988) (i) Slip bonds which weaken and have a higher 

off-rate when pulled. (ii) Catch bonds which counter-intuitively strengthen such that their 
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off-rates decrease. (iii) Ideal bonds which are unaffected by mechanical stress. Slip bonds 

are the most commonly observed interactions in biology. Catch bonds provide a way for the 

interacting proteins to grip tightly in the presence of tugging forces. Finally, though ideal 

bonds were theoretically proposed more than a decade ago (Dembo, 1994; Dembo et al., 

1988), they had not been experimentally observed in any biological system.

Recently, single molecule Atomic Force Microscope (AFM) force measurements were used 

to show that E-cadherins form bonds with catch, slip and ideal mechanical properties 

(Rakshit et al., 2012). The lifetimes of E-cadherin binding conformations were measured as 

they were subjected to different pulling forces. These experiments showed that while W2A 

mutant X-dimers formed catch bonds, WT and K14E strand-swap dimers formed slip bonds 

(Rakshit et al., 2012) (Fig. 2A & 2B). WT cadherins were also shown to form ideal bonds 

which were hypothesized to arise as X-dimers converted to a strand-swap conformation 

(Fig. 2B) (Rakshit et al., 2012).

X-dimers form catch bonds

When X-dimers were tugged, their bond lifetimes increased with force, indicative of a catch 

bond. After reaching a maximum at a critical force of ~ 30 pN, the lifetimes decreased with 

force (Fig. 2A). A similar behavior was measured when WT cadherins were forced into an 

X-dimer conformation by competitively inhibiting strand swapping using free W in solution 

(Rakshit et al., 2012). X-dimer catch bonds are observed because the cadherins reorient 

when they are pulled such that they form transient, force-induced bonds and lock more 

tightly.

While this was the first observation of catch bonds in cadherin adhesion, these bonds have 

previously been measured with other adhesive proteins like selectins (Marshall et al., 2003; 

Sarangapani et al., 2004; Yago et al., 2004), FimH (Le Trong et al., 2010; Thomas et al., 

2002) and integrins (Kong et al., 2009). Although it is tempting to speculate that the 

physiological role of X-dimer catch bonds is to allow cells to grip tightly and lock in place 

when pulled; this hypothesis remains to be tested.

Catch bonds resolve discrepancies between solution and surface force measurements

Over a decade ago, Surface Force Apparatus (SFA) measurements of the interactions 

between cadherin ectodomains immobilized on lipid membranes suggested that classical 

cadherins bind in three distinct conformations (Sivasankar et al., 2001). The weakest 

conformation required W2, and corresponded to a strand swapped dimer (Prakasam et al., 

2006b; Zhu et al., 2003). The second conformation had an intermediate binding strength and 

required EC1–2 (Zhu et al., 2003); based on recent structural data, it is likely that this 

adhesive state corresponds to the X-dimer complex. The third and strongest adhesion 

required the EC3 domains to interact directly (Zhu et al., 2003); while this adhesive state 

likely corresponds to a cis-dimer structure, this remains to be confirmed. Single molecule 

AFM force measurements of the interaction of different classical cadherins confirmed the 

results of the ensemble SFA measurements (Bayas et al., 2006; Perret et al., 2004; Shi et al., 

2008; Shi et al., 2010).
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It was initially believed that the SFA measurement of stronger adhesion between X-dimers 

compared to strand-swap dimers directly contradicted the results of solution affinity 

measurements which showed that X-dimers have higher off rates than strand-swap dimers. 

However, the discovery of X-dimer catch bonds resolves this apparent discrepancy (Fig. 

2A). Since catch bonds strengthen in the presence of force, X-dimer adhesion which is weak 

in the absence of force becomes stronger when pulled.

Strand swap dimers form slip bonds

Since strand-swap dimers have a higher binding affinity than X-dimers (Harrison et al., 

2010; Katsamba et al., 2009), WT cadherins form strand-swap dimers when they interact for 

long periods of time. Single molecule AFM force clamp experiments showed that these WT 

cadherin strand-swap dimers formed slip bonds; their bond lifetimes decreased with 

increasing tensile force (Fig. 2B). Not surprisingly, identical slip bonds were formed by the 

K14E strand-swap dimers (Rakshit et al., 2012) (Fig. 2B). The intrinsic off rate of both the 

WT E-cadherin and K14E strand swap dimers was 1.6 s−1 (Rakshit et al., 2012) which is 

similar to an off-rate of 0.7 s−1 measured for WT E-cadherins using NMR (Haussinger et al., 

2004).

Ideal bonds are formed as X-dimers transition to a strand-swap conformation

Besides forming catch and slip bonds, cadherins also form ideal bonds that behave like 

mechanical dampers and prevent the abrupt jolting of cells. When WT cadherin interaction 

time was decreased, the lifetimes of their interactions were independent of force; they 

formed ideal bonds (Rakshit et al., 2012) (Fig. 2B). It was hypothesized that ideal bonds 

correspond to an intermediate state which is formed when X-dimers transition to strand-

swap binding (Rakshit et al., 2012). However, the structure of the intermediate state and the 

molecular contacts responsible for ideal bond formation still need to be resolved.

Future Directions

Catch, slip and ideal bonds suggest a physical mechanism that E-cadherins use to resist 

tensile force as cells rearrange during skin renewal and wound healing. It is tempting to 

speculate the as keratinocytes reposition themselves, E-cadherins bind rapidly to form X-

dimer catch bonds that allow cells to grip strongly under load (Rakshit et al., 2012) (Fig. 

2C). Over time, the X-dimers proceed to form more robust strand-swap dimers that have a 

high affinity in the absence of force (Fig. 2C); this conversion is facilitated by an 

intermediate conformation that is insensitive to tensile force (Rakshit et al., 2012). However, 

it is currently unclear if keratinocytes utilize such a mechanism to tune adhesive properties. 

Studying cadherin bond mechanics in living cells will be a crucial first step to addressing 

this question.

Besides mediating robust adhesion, classical cadherins play a key role in 

mechanotransduction by sensing physical stimuli at cell-cell junctions, transmitting them to 

the cytoplasm and activating a biochemical response (Ladoux et al., 2010; le Duc et al., 

2010; Liu et al., 2010; Weber et al., 2012). It is believed that cadherins along with their 

adaptor proteins, β-catenin and α-catenin form the core force-bearing unit in the 
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transmission of mechanical signals (Leckband et al., 2011). To accomplish this, it is critical 

that the interactions between cadherins and catenins remain intact when exposed to force. 

However, the force dependent binding kinetics of these interactions have not yet been 

studied. Furthermore, the role of these adapter proteins in altering cadherin mechanical 

properties is still an open question. For instance, it is known that the adapter protein α-

catenin plays an important role in strengthening cadherin bonds following initial adhesion 

(Bajpai et al., 2008). Whether α-catenin and other adapter proteins alter the force dependent 

kinetics of cadherin bonds needs to be investigated.

Some of the discrepancies in cadherin binding measured using solution affinity 

measurements and force measurements arise due to differences between cadherin 

interactions in solution, under force independent conditions, and cadherin adhesion in the 

presence of mechanical stress. The discovery that cadherins vary their lifetimes in response 

to force reconciles some of these differences (Rakshit et al., 2012). However, several open 

questions remain. For instance, the molecular interactions by which cadherins form catch 

bonds are not known. Furthermore, the hypothesis that ideal bonds correspond to an 

intermediate state which is formed as cadherin X-dimers transition to a strand-swap 

conformation needs to be tested at the molecular level. Finally, the role that X-dimers play 

in the dissociation of strand-swap dimers is unclear.
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Figure 1. Adhesive states of classical cadherin and the pathway for cadherin binding
(A) The extracellular region of type-I classical cadherin is composed of five tandem 

Extracellular (EC) domains. Linkers between successive EC domains are each bound to 

three Ca2+ ions which give the ectodomain its characteristic curvature. Ectodomains from 

opposing cells (shown in green and magenta) adhere across the inter-membrane gap via 

‘trans’ interactions. The primary trans interface involves the interaction of opposing EC1 

domains and is termed the strand-swapped dimer. In this conformation, N-terminal β-strands 

between opposing EC1 domains are swapped and the side chain of a conserved Tryptophan 

at position 2 (W2) is inserted into a pocket on their adhesive partner. (B) Prior to strand-

swapping, cadherin ectodomains form a non-swapped, intermediate conformation, called an 

X-dimer. This conformation is formed by extensive surface interactions between the base of 

the EC1 domain, EC1–EC2 inter-domain linker region and the apex of domain EC2. (C) 
Cadherin monomers adopt a “closed” conformation where W2 is docked into each 

monomer’s binding pocket. Monomers from opposing cells interact to form X-dimers and 

then proceed to swap W2 residues to form a strand-swap dimer. The Kd of the EC1–2 
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domains of W2A E-cadherin X-dimers is 916 µM (Harrison et al., 2010) while the Kd of the 

EC1–2 domains of WT E-cadherin strand-swap dimers is 97 µM (Katsamba et al., 2009).
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Figure 2. Mechanical force tunes the kinetics of cadherin adhesion
Adapted from (Rakshit et al., 2012). (A) X-dimers form catch bonds which become longer 

lived and lock in the presence of tensile force. When W2A cadherin X-dimers are pulled, 

their bond lifetimes increase with force. After reaching a maximum at a critical force of ~ 30 

pN, the lifetimes decrease. (B) Strand swap dimers form slip bonds which become shorter 

lived when pulled. Slip bonds are formed by K14E mutants that interact for short and long 

periods of time and also by WT cadherins that interact for long periods of time. However, 

when WT cadherins interact for a short period of time, they form ideal bonds that are 

insensitive to force. (C) Hypothetical mechanism by which keratinocytes resist tensile forces 

during skin renewal and wound healing. As skin cells reposition themselves, E-cadherins 

bind rapidly to form X-dimers that allow cells to grip strongly under load. In immobile 

keratinocytes, E-cadherins form more robust strand-swap dimers that have a high affinity in 

the absence of force.
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