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Background & Aims: Gastric cancer is the common malignancies from cancer

worldwide. Endoscopy is currently the most effective method to detect early gastric

cancer (EGC). However, endoscopy is not infallible and EGC can be missed during

endoscopy. Artificial intelligence (AI)-assisted endoscopic diagnosis is a recent hot spot

of research. We aimed to quantify the diagnostic value of AI-assisted endoscopy in

diagnosing EGC.

Method: The PubMed, MEDLINE, Embase and the Cochrane Library Databases

were searched for articles on AI-assisted endoscopy application in EGC diagnosis. The

pooled sensitivity, specificity, and area under the curve (AUC) were calculated, and the

endoscopists’ diagnostic value was evaluated for comparison. The subgroup was set

according to endoscopy modality, and number of training images. A funnel plot was

delineated to estimate the publication bias.

Result: 16 studies were included in this study. We indicated that the application of AI in

endoscopic detection of EGC achieved an AUC of 0.96 (95% CI, 0.94–0.97), a sensitivity

of 86% (95% CI, 77–92%), and a specificity of 93% (95% CI, 89–96%). In AI-assisted

EGC depth diagnosis, the AUC was 0.82(95% CI, 0.78–0.85), and the pooled sensitivity

and specificity was 0.72(95% CI, 0.58–0.82) and 0.79(95% CI, 0.56–0.92). The funnel

plot showed no publication bias.

Conclusion: The AI applications for EGC diagnosis seemed to be more accurate

than the endoscopists. AI assisted EGC diagnosis was more accurate than experts.

More prospective studies are needed to make AI-aided EGC diagnosis universal in

clinical practice.
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INTRODUCTION

Gastric cancer is ranked as the third leading cause of death
from cancer worldwide (1). Most gastric cancers are diagnosed
at advanced stages because their symptoms and signs tend to
be inconspicuous and non-specific, leading to an overall poor
prognosis, whereas in the case of early detection, the 5–years
survival rate can exceed 90% (2–4). Endoscopic examination is
still considered the most effective method for EGC detection (5).
However, early gastric cancer (EGC) is particularly difficult to
identify since it usually exhibits a subtle elevation or depression
with faint redness, which is likely recognized as normal mucosa
or gastritis. In addition, the invasion depth within the gastric
wall is also hard to predict. Ten studies involving 3,787 patients
who received an upper gastrointestinal endoscopy examination
revealed an 11.3% miss rate of upper gastrointestinal cancers up
to 3 years before diagnosis (6). A meta-analysis involving 2,153
lesion images showed that the area under the receiver operating
characteristic curve (AUC) for the diagnosis of EGC using white
light imaging (WLI) endoscopy was only 0.48 (7).

In the past decade, the application of artificial intelligence
(AI) in medicine has attracted extensive attention. AI-assisted
endoscopic diagnosis is a hot spot of research. AI refers
to the capacity of a computer to execute a task associated
with intelligent beings, such as the “learn” function that
mimics the cognitive ability of human beings (8). AI subfields
contain machine learning and deep learning (Figure 1). Machine
learning, a term originally created by Arthur Samuel in 1959, is a
field of computer science, whereby a system is able to develop the
ability to “learn” from the input data without a certain program
(9). Common machine-learning methods in classification model
training comprise ensemble trees, decision trees, support vector
machines, k-nearest neighbors, etc. (10).

Deep learning, which was initially applied in the image
processing field in 1998, refers to the application of layers in
non-linear processing based on machine learning algorithms
used for feature extraction and transformation (11). Neural
networks, similar to the human brain, particularly mimic closely
interconnected neurons to recognize patterns, extract features
or “learn” things about the input data to predict a result (12).
Different model training paradigms, such as scaled-conjugate
gradient, Levenberg-Marquardt and Bayesian regularization,
have been termed “neural networks” (13). Several computer aided
detection (CAD) algorithms for automatic early gastric cancer
detection have been recommended for images from standard
endoscopes. The performance improvements of original image
classification models mainly depend on visual features and
large-scale datasets, which are difficult to implement in EGC

Abbreviations: EGC, Early gastric cancer; AUC, Area under the receiver operating
characteristic curve; ROC, Receiver operating characteristic; WLI, White light
imaging; WLE, White light endoscopy; NBI, Narrow band imaging; BLI, blue-
laser imaging; EMR, Endoscopic mucosal resection; ESD, Endoscopic submucosal
dissection; WHO, World Health Organization; AI, Artificial intelligence; CNN,
Convolutional Neural Network; CAD, Computer aided detection; CIs, Confidence
intervals; VGG-16, Visual Geometry Group-16; SSD, Single Shot MultiBox
Detector; SVM, Support vector machines; DRL, Deep reinforcement learning;
Grad-CAM, gradient-weighted class activation mapping.

detection models. Although the invasion depth in EGC is defined
differently, visual characteristics such as textures, colors, shapes,
and regions are similar.

To date, the existing data on the diagnostic value of AI for
EGC diagnosis are scattered. Jin et al. (14) reviewed the current
studies on AI application for gastric cancer, while the definite
diagnostic ability of AI application for EGC was still unclear.
The aim of this study was to systematically summarize the
recent available studies on the diagnostic accuracy of AI on EGC
diagnosis to address the current status of this area and discuss
future perspectives.

METHODS

Search Strategy and Study Selection
Electronic databases (PubMed, Web of Science, EMBASE,
and the Cochrane Library) were searched from initiation
to November 2020 using presupposed search terms. The
following medical subject terms and keywords were used:
“endoscopy,” “Endoscopic Diagnosis,” “early gastric cancer,”
“artificial intelligence,” “computer-assisted diagnosis,” “Deep
learning,” and “Convolutional neural network.” The full texts
of potentially appropriate studies were then reviewed after the
screenings of citations and abstracts exported from the electronic
databases. The search strategy was shown as follows: (1) (artificial
intelligence [Title/Abstract]) OR (computer-assisted diagnosis
[Title/Abstract]) OR (Deep learning [Title/Abstract]) OR
(Convolutional neural network [Title/Abstract]) (2) (endoscopy
[Title/Abstract]) OR (Endoscopic Diagnosis [Title/Abstract])
OR (early gastric ancer [Title/Abstract]) (3) (1) AND (2).

Study Eligibility Criteria
The eligible studies fulfilled the following criteria: (1) the study
was a diagnosis test about AI application in endoscopy for EGC
diagnosis. Diagnosis test included AI detection of EGC from
other gastric disease or distinguishment of invasion depth; (2) the
absolute numbers of true-positive, false-negative, true-negative,
and false-positive observations for EGC diagnosis were reported
directly or were able to be calculated; (3) the study provided clear
information about the database and number of images; (4) the
study clearly described the CAD or CNN algorithms and the
process applied in the EGC diagnosis.

Data Extraction
Two reviewers (Jiang X. T., Wen Y.) independently extracted
information, including the author, publication year, region, study
type, endoscopy modality, algorithm gold standard and dataset,
and used the quality assessment of diagnostic accuracy studies-
2 instrument to assess the quality of the study (15). Divergence
was resolved through discussion and the involvement of the third
reviewer (Li P. W.).

Statistical Analysis
Stata, version 14.2 (StataCorp, College Station, TX) was used
for all statistical analyses. Graphpad Prism 8.2.1 was used to
delineate the histogram. The TP, FP, FN, and TN observations of
each study were input, and the pooled sensitivity and specificity
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FIGURE 1 | Artificial intelligence methods in medical imaging. Artificial intelligence (AI) methods for a typical classification task were shown. Two classical methods

comprise traditional machine learning (A) and deep learning (B). Conv, Convolutional layer; Pool, Pooling layer; FC, receiver operating characteristic curve; EGC,: Early

gastric cancer.

with the 95% confidence intervals (CIs) for EGC diagnosis
with AI were thus calculated. The forest plot was delineated.
The inconsistency index (I2) test was used to evaluate the
heterogeneity between studies using sensitivity (16). A fixed-
effects model would be used with a I2 value <50%. More
than 50% of the I2 values indicated significant heterogeneity.
Under this situation, a random-effects model would be applied,
and subgroup analysis and influence analysis were performed.
A summary receiver operating characteristic (ROC) curve was
plotted (17). The area under the curve (AUC) was calculated
to estimate the diagnostic accuracy. When the AUC reaches
1.0, it suggests an excellent performance diagnostic test, while
if the AUC approaches 0.5, it suggests a poor performance test.
Publication bias was evaluated by the Deeks test.

RESULT

Literature Search and Characteristic of
Studies
A total of 3,714 studies were retrieved after the search. After
removing duplicated studies and excluding improper studies, 17
studies were reserved in this systematic analysis. While Ling et al.
(18) distinguished differentiated and undifferentiated type EGC
with a sensitivity and specificity of 88.6 and 78.6%, thus was
finally excluded in our meta-analysis. A total of 16 studies were
finally included in the meta-analysis according to the PRISMA
flowchart (Supplementary Figure 1). Three studies were from
Korea, eight studies were from Japan, four studies were from

China, and one was from Pakistan. Nine studies used white
light endoscopy (WLE) images to establish a training dataset,
five studies used narrow band imaging (NBI) images, and two
used both WLE and NBI images. Four studies distinguished the
invasion depth of EGC. Seven studies compared the diagnostic
ability of AI with endoscopists. Two studies applied video to train
the dataset. No prospective studies were carried out currently.
The general algorithm methods were Visual Geometry Group-
16 (VGG-16), ResNet-50, GoogLeNet, Single Shot MultiBox
Detector (SSD), Inception neural network and Support vector
machines (SVM) classifier. Yoon et al. applied two kinds of
algorithm models in his study. The basic characteristics of the
included studies and the risk of bias using the Quality Assessment
of Diagnostic Accuracy Studies (QUADAS-2) tool are presented
in Table 1 and Supplementary Figure 2.

Diagnostic Performance of AI on EGC
Diagnosis
A total of 170,8519 images were utilized for machine training.
A total of 22,621 EGC images from the 16 studies were
included in the meta-analysis of EGC diagnosis. The diagnostic
ability of AI-assisted endoscopy in each study is shown in
Supplementary Table 1. The AUC of the AI-assisted endoscopy
diagnosis in EGC detection was 0.96 (95% CI, 0.94–0.97) with
heterogeneity I2 value of 0.98, thus the random effect model
was applied. The pooled sensitivity was 86% (95% CI, 77–92%),
and the specificity was 93% (95% CI, 89–96%). While the AUC,
sensitivity and specificity of AI-assisted depth distinction was
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TABLE 1 | Basic characteristic of the included studies.

Year Nation Study type Endoscopy for

training

Image

type

Format Processing

image size

DL Algorithm Affiliated

tools

Gold standard Training database Endoscopist

involvement

Real-

time

Yoon et al.

(19)

2019 Korea Retrospective WLE Image Not

mentioned

Not

mentioned

CNN VGG-16(20) Grad-CAM WHO

classification of

Tumors (21),

Japanese

classification (22)

Gangnam Severance Hospital, Yonsei

University College

of Medicine, Korea

No No

Cho et al.

(23)

2019 Korea Retrospective WLE Image JPEG 1,280 × 640

pixels

CNN Inception-

Resnet-v2

SGD Histopathology Endoscopically biopsied or EMR/ESD

lesions from Chuncheon and Dongtan

Sacred Heart Hospitals,Korea

Yes No

Sakai et al.

(24)

2018 Japan Retrospective WLE image Not

mentioned

224 × 224

pixels

CNN GoogLeNet(25) No Histopathology Not mentioned No No

Horiuchi

et al. (26)

2019 Japan Retrospective ME-NBI Image Not

mentioned

224 × 224

pixels

CNN GoogLeNet No Histopathology Cancer Institute Hospital, Ariake,

Koto-ku, Japan

No No

Lan et al.

(27)

2019 China Retrospective ME-NBI Image Not

mentioned

299 × 299

pixels to 512

× 512 pixels

CNN Inception-v3 Keras deep

learning

framework

Revisited Vienna

classification of

gastrointestinal

epithelial

neoplasia(28)

Four hospitals in four areas of Zhejiang

province

Yes No

Toshiaki

et al. (29)

2018 Japan Retrospective WLE,

Chromoendoscopy

and NBI

image Not

mentioned

300 × 300

pixels

CNN SSD(30) No Japanese

classification

Cancer Institute Hospital Ariake, Japan,

Tokatsu Tsujinaka Hospital, Japan and

Tomohiro Institute of Gastroenterology

and Proctology, Japan, Lalaport

Yokohama Clinic, Japan

No No

Yan et al.

(31)

2019 China Retrospective WLE image Not

mentioned

299 × 299

pixels

CNN ResNet50(32) No Japanese

classification

Endoscopy Center of Zhongshan

Hospital, China

Yes No

Kanesaka

et al. (33)

2017 Japan Retrospective ME-NBI image Not

mentioned

40 × 40

pixels

CAD SVM classifier No pathology-proven

EGCs resected by

ESD

Ethics Committee of the Osaka

International Cancer Institute

No No

Wu et al.

(34)

2018 China Retrospective WLE, NBI, BLE video Not

mentioned

224 × 224

pixels

CNN VGG-16,

ResNet-50

No Histopathology Renmin Hospital of Wuhan University,

China

Yes Yes

Miyaki et al.

(35)

2013 Japan Retrospective magnifying

endoscope

image Not

mentioned

1,280 ×

1024 pixels

CAD SVM classifier No Histopathology Hiroshima University Hospital No No

Ikenoyama

et al. (36)

2020 Japan Retrospective WLE image Not

mentioned

300 × 300

pixels

CNN SSD SGD Histopathology Cancer Institute Hospital Ariake,

Tokatsu-Tsujinaka Hospital, Tada

Tomohiro Institute of Gastroenterology

and Proctology, Lalaport Yokohama

Clinic, Japan

Yes No

Ali et al. (37) 2018 Pakistan Retrospective Chromoendoscopy Image Not

mentioned

Not

mentioned

CAD SVM classifier G2LCM

descriptors

Not mentioned Public data-set at the Portuguese

Institute of Oncology

No No

Bun-Joo

et al. (38)

2020 Korea Retrospective WLE Image JPEG 480 × 480

pixels

CNN Inception-

ResNet-v2 and

DenseNet- 161

Class

activation

map (CAM)

Histopathology Chuncheon Sacred Heart Hospital No No

Horiuchi

et al. (39)

2020 Japan Retrospective ME-NBI Video Not

mentioned

224 × 224

pixels

CNN GoogLeNet SGD Histopathology Lesions initially treated with ESD at the

Cancer

Institute Hospital

Yes No

Ueyama

et al. (40)

2020 Japan Retrospective ME-NBI Image Not

mentioned

224 x 224

pixels

CNN ResNet50 SGD Japanese

Classification

Department of Gastroenterology,

Juntendo University School of Medicine

No No

Zhang et al.

(41)

2020 China Retrospective WLE Image Not

mentioned

Not

mentioned

CNN ResNet34 DeepLabv3

structure

Histopathology Gastric cases admitted to Peking

University People’s Hospital

Yes Yes

WLE, White Light Endoscopy; NBI, Narrow Band Imaging; BLI, blue-laser imaging; WHO, World Health Organization; SVM, support vector machine; SSD, Single Shot MultiBox Detector; CNN, Convolutional Neural Network, CAD,

Computer-aided diagnosis; Grad-CAM, gradient-weighted class activation mapping; VGG-16, Visual Geometry Group-16, SVM, Support vector machines, SGD, Stochastic gradient descent.
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FIGURE 2 | The forest plot of pooled sensitivity and specificity of AI detection on EGC. The pooled sensitivity was 86% (95% CI, 77–92%) and specificity was 93%

(95% CI, 89–96%).

0.82 (95% CI, 0.78–0.85), 72% (95% CI, 58–82%), and 79%
(95% CI, 56–92%). The forest plots of sensitivity, specificity of
AI detection and depth distinction are shown in Figures 2, 3.
ROC of detection and depth distinction are shown in Figure 4.
Influence analysis showed that Bum-Joo Cho, Hiroya Ueyama,
and Yusuke Horiuchi’s study had the greatest impact on the
results (Supplementary Figure 3). After rejecting them, the
pooled AUC, sensitivity and specificity were 0.95 (95% CI, 0.93–
0.97), 85% (95% CI, 78–90%), and 92% (95% CI, 90–94%),
respectively, which still indicated an accurate diagnostic ability
of AI-aided diagnosis of EGC. The funnel plot asymmetry with
a p-value of 0.81 showed the absence of publication bias for the
included studies (Supplementary Figure 4).

Other Factors That Have an Impact on the
Accuracy of AI
The effects of the original images from WLE or NBI on the
AI diagnostic ability were compared. The sensitivity of the NBI
image application was 95% (95% CI, 91–97%), while that of WLE
was 73% (95% CI, 57–85%), and the specificity was 96% (95% CI,
70–100%) and 93% (95% CI, 90–95%).

When the number of training images was more than 10,000,
the sensitivity and specificity were 88% (95% CI, 83–92%) and
94% (95% CI, 91–96%), respectively, more than that of the
sensitivity 85% (95% CI, 69–93%) and specificity 93% (95% CI,
82–97%) of the group that had >10,000 training images.

For the control group, sensitivity and specificity of the expert
endoscopist vs. non-expert endoscopist diagnosis were 79% (95%
CI, 61–90%) vs. 73% (95% CI, 61–82%), 85% (95% CI, 77–
90%) vs. 83% (95% CI, 67–92%), respectively. Here, the general
expert endoscopists were those who had clinical experience with
endoscopy examination for more than 10 years. Figure 5 shows
the subgroup results.

DISCUSSION

Japanese researchers published a minimum required standard
for the “systematic screening protocol for the stomach,” which
comprised 22 images of the stomach to precisely discover
suspicious cancerous lesions (42). In 2016, the European Society
of Gastrointestinal Endoscopy (ESGE) published a protocol
comprising 10 images of the stomach (43). However, these
protocols could not be carried out absolutely, and endoscopists
may miss some regions during the examination due to individual
operative levels and subjective factors, which can lead to the
misdiagnosis of EGC (44–46).

Deep learning (47, 48), which is typically based on artificial
neural networks, aims at learning multilevel manifestations
of data to make predictions. The development of deep
convolutional neural networks has particularly altered the
computer vision field (49, 50).
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FIGURE 3 | The forest plot of pooled sensitivity and specificity of AI distinction depth on EGC. The pooled sensitivity was 72% (95% CI, 58–82%) and specificity was

79% (95% CI, 56–92%).

FIGURE 4 | Area under the receiver operating characteristic curve (A). The AUC of the AI-assisted endoscopy diagnose in the EGC detection was 0.96 (95% CI,

0.94–0.97). (B) The AUC of the AI-assisted endoscopy diagnose in the EGC depth distinction was 0.82 (95% CI, 0.78–0.85).

Application of AI recognition with endoscopic images to
detect the depth of wall invasion of gastric cancer was initially
reported by Keisuke Kubota with an accuracy of 64.7% (51).
Soon afterwards, several studies have shown excellent results
for advanced technology. Hence, it is necessary to summarize
the existing studies to realize the probable ability of AI
on EGC detection and discuss what factors may influence
the results.

This is the first meta-analysis on the performance of AI on
EGC diagnosis with endoscopy. In this article, we indicated that
the application of AI in endoscopic detection of EGC achieved
an AUC of 0.96 (95% CI, 0.94–0.97), a sensitivity of 86% (95%
CI, 77–92%), and a specificity of 93% (95% CI, 89–96%), which
manifested a more accurate diagnostic ability than independent
detection by endoscopists, while the depth distinction was
dissatisfied with a sensitivity, specificity and AUC of 0.82 (95%
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FIGURE 5 | Result of subgroup analysis. (A) The pooled sensitivity and specificity of number of images in training process showed when the images were more than

10,000, the diagnostic value would be better. (B) The pooled sensitivity and specificity of AI detection, expert endoscopist, and non-expert endoscopist showed AI

detection and expert endoscopist judgement were significantly more accurate than non-expert endoscopist. (C) The pooled sensitivity and specificity of original

images extracted by NBI and WLE showed NBI image applied performed better.

CI, 78–85%), 72% (95%CI, 58–82%), and 79% (95%CI, 56–92%).
The common reasons for misdiagnosis were lesions of gastritis
or flat or depressed texture and anatomical structure which
was hard to identify. The cancer invasion depth was classically
distinguished by morphologically evaluating several findings
such as the concentration of stomach wall folds, the marginal
ridge, the elasticity and thickness of the lesion, and the presence
of variant of the stomach wall due to the volume of insufflation
air in the stomach with WLE (52–54). Furthermore, the accuracy
of discriminating EGC depth by conventional endoscopy was
reported to be 62–80% (55). Thus, the AI applied endoscopy
performed well on EGC depth determination. Bum-Joo Cho,
Hiroya Ueyama and Yusuke Horiuchi’s study (23, 26, 40) showed
significant heterogeneity. Cho et al. used the Inception-Resnet-
v2 model with an AUC of 74.5 (95% CI, 67.9–80.4) and a
sensitivity of 28.3 (95% CI, 16.0–43.5). The included poor-
quality images, composition of the database, and pathological

classification criteria may cause poor diagnostic performance. In
addition, we performed several subgroup analyses to delineate
the probable influencing factors of AI performance.

For the algorithm model, Simonyan et al. (56) investigated
the value of the convolutional network depth on its accuracy
in large-scale image recognition setting. The result showed that
when the depth was pushed to 16–19 weight layers, it would
have a significant improvement on the prior-art configurations.
VGG-16 had 16 convolutional and three fully connected layers,
which were carried out by five max-pooling layers and used
filters with a small receptive field to achieve a low error rate in
practice. On the other hand, SVM also performed excellently
in the included studies. SVM is utilized in distinguishing
two classes and creating the boundary line to maximize the
distance between the hyperplane and the nearest sample.
Compared to other mathematical models (57–59), SVMs are
utilized to model physical systems by adapting their parameters
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(60–63). SVMs are widely known for their application in
classification (64).

The endoscopic image modality of validation set should be
same to the training set. For training images from different
endoscopy modalities, the sensitivity of studies using images
fromNBI seemed to be better than those using images fromWLE
(96 vs. 93%). A model which was trained with NBI images could
only recognize NBI images in practice. However, a multicenter
randomized controlled trial that compared a non-magnifying
NBI withWLI indicated no significant difference in gastric cancer
detection (65). Although NBI is currently regarded as the most
broadly applied image-enhanced modality in AI research, the
impact of other imaging modalities, such as the lately available
linked-color imaging or blue-laser imaging modalities, need
more studies for verification.

For the number of training images, it seemed that the more
images the machine trained, the more accurate the AI detection
would be. The concept that a large number of images are a
prerequisite to structure a learning model was also certified in
the research conducted by Seguí et al. (66) for motility movement
classification in wireless capsule endoscopy. A recent meta-
analysis similarly indicated that a ten-fold increase in training
data size could improve the accuracy of AI detection by 3% (67).

Neural networks have the potential capacity for clinical
practice and can be significantly popularized in the
gastrointestinal field. However, CNN detection is temporarily
in the stage of research. This study also had some limitations.
A limited number of available studies fit the inclusion criteria
since the novel technology has just been developed in recent
years. Thus, the subgroup results were not completely reliable
due to the limited number of studies. All the included studies
were retrospective, which may lead to selection bias of included
images, particularly in the validation dataset. In addition,
few studies provided a solution to multiple gastrointestinal
abnormalities as comparison, while most studies only researched
the detection of a single abnormality, including Barrett’s
esophagus, Helicobacter pylori infection, early gastric cancer,
atrophic gastritis, etc. (68–70), which is insufficient for clinical
application. Moreover, an AI EGC detection model based
on full-length videos was scarce, which postpones its general
application in clinical practice.

To overcome these limitations, several projects can be
carried out in the future. More prospective studies can be
designed for strict images, including criteria, high-definition
image extraction and expert endoscopist involvement to prove
higher level evidence. Luo et al. (71) has carried out a multicenter,
case-control, prospective real-time diagnostic study on artificial
intelligence for detection of esophagus and gastric cancer with
accuracy of 0.955 (95% CI 0.952–0.957). GRAIDS algorithm,
which was based on the concept of DeepLab’s V3+ (72, 73),
was utilized in this prospective study. Expanding the training
image number is necessary to improve the machine recognition
ability. On the other hand, the validation images are supposed
to be larger. Training images extracted from different endoscopy
modalities still need to be investigated to establish a popularized
dataset. Currently, limited data have shown that the VGG-16,
SSD, and SVM classifier models are credible computer-aided
diagnosis algorithms. Another branch of deep learning, deep

reinforcement learning (DRL), recently performed at the top
level in the GO game in 2016 (74). DRL is likely to be applied
in the EGC detection field. DRL combines deep learning with
reinforcement learning, incorporating not only the excellent
perception and distinguishing abilities of deep learning in visual
tasks but also the decision-making capabilities of reinforcement
learning (75). DRL has performed well in dealing with dynamic
decision problems (74–76). However, DRL has not yet been used
in clinical trials. Wu et al. (77) reported that the application
of WISENSE, a mechanism that utilizes aspects of both CNN
and DRL, could decrease the number of blind spots during an
upper endoscopy, initially achieving an accuracy of 90.02%. The
exploration of accurate algorithms is worthy of being explored.

CONCLUSION

This is the first meta-analysis to summarize current evidence
of AI applications in EGC diagnosis. The AI applications
seemed to be more accurate in parts of EGC detection than
the endoscopists. The VGG-16, SSD, and SVM classifier models
probably performed better according to the limited studies.
When the number of training images is expanded, the accuracy
will be improved. More strictly designed perspective studies
with different reliable CNN algorithms are needed to make AI
universal in clinical practice.
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