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Abstract

Transcriptome sequencing (RNA-seq) is gradually replacing microarrays for high-throughput studies of gene expression.
The main challenge of analyzing microarray data is not in finding differentially expressed genes, but in gaining insights
into the biological processes underlying phenotypic differences. To interpret experimental results from microarrays, gene
set analysis (GSA) has become the method of choice, in particular because it incorporates pre-existing biological knowledge
(in a form of functionally related gene sets) into the analysis. Here we provide a brief review of several statistically different
GSA approaches (competitive and self-contained) that can be adapted from microarrays practice as well as those specifically
designed for RNA-seq. We evaluate their performance (in terms of Type I error rate, power, robustness to the sample size
and heterogeneity, as well as the sensitivity to different types of selection biases) on simulated and real RNA-seq data. Not
surprisingly, the performance of various GSA approaches depends only on the statistical hypothesis they test and does not
depend on whether the test was developed for microarrays or RNA-seq data. Interestingly, we found that competitive meth-
ods have lower power as well as robustness to the samples heterogeneity than self-contained methods, leading to poor re-
sults reproducibility. We also found that the power of unsupervised competitive methods depends on the balance between
up- and down-regulated genes in tested gene sets. These properties of competitive methods have been overlooked before.
Our evaluation provides a concise guideline for selecting GSA approaches, best performing under particular experimental
settings in the context of RNA-seq.
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Introduction

‘The death of microarrays?’ note, published in 2008 [1], marks
the beginning of the ongoing transition from microarrays to
whole transcriptome sequencing (RNA-seq). RNA-seq not only
enables researcher to identify differentially expressed (DE)
genes with higher resolution than microarrays [2], but it also
allows to study alternative splicing [3], new coding and noncod-
ing RNA transcripts [4, 5] and long noncoding RNAs [6]. That is,
RNA-sequencing answers a much wider range of questions
than microarrays. Yet, the basic set of questions asked in re-
gards to RNA-seq data remains the same as before: (Q1) how to
identify significantly DE genes with high accuracy; (Q2) how to

interpret a long list of seemingly unrelated DE genes; and (Q3)
how to gain insights about the biological mechanisms, underly-
ing phenotypic differences, that are not inferable from a list of
DE genes.

Microarrays have been used for genome-wide gene expres-
sion experiments since 1997 [7], and there are many statistical
approaches available for their analysis. Is it possible to apply
the same methodologies that were developed for microarrays to
answer Q1–Q3 questions for RNA-seq data? Initially the answer
was ‘no’. In RNA-seq experiments, the expression level of a
transcript is quantified in counts of transcript reads mapped to
a genomic region [4, 5]. The read counts are integer numbers,
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but the methodologies for microarrays model the gene expres-
sion by continuous (e.g. normal) distributions. To solve this
problem, new models fitting RNA-seq data properties were ac-
tively looked for. Specifically, for finding DE genes (Q1), gene
counts were modeled using a Poisson or Negative Binomial (NB)
distribution and special software packages, such as edgeR [8],
DESeq [9] and SamSeq [10], to name a few, were developed.
However, recently, a count data transformation was suggested
(‘variance modeling at the observational level’, VOOM [11]), and
many of the approaches initially developed for finding DE genes
for microarrays became applicable for RNA-seq. It was shown
that log counts, normalized for sequencing depth and incorpo-
rating the mean-variance trend into a precision weight (VOOM
procedure), can be entered into the ‘limma’ analysis pipeline,
developed for microarrays [12], and then the pipeline performs
as well as NB or Poisson methods [11].

The main challenge of analyzing microarray data is not in find-
ing DE genes, but in interpreting the results (i.e. in answering Q2
and Q3 questions). To facilitate interpretability, approaches that in-
corporate existing biological knowledge (in a form of functionally
related gene sets or known biological pathways) into the analysis
were developed. The simplest technique incorporating biological
knowledge, designed toward interpreting long gene lists (Q2), is the
gene set overrepresentation analysis. Here, a set of a priori selected,
significantly DE genes, is tested for overrepresentation in annotated
gene sets such as Gene Ontology (GO) categories or Kyoto
Encyclopedia of genes and genomes (KEGG), using standard statis-
tical tests for enrichment [13]. However, this approach has several
shortcomings. First, it does not account for genes with small
changes in expression that might be biologically relevant [14] but
are almost always absent in the list of statistically significant DE
genes. Second, because genes do not work in isolation, statistical
tests need to account for the multivariate nature of expression
changes [15, 16], but the overrepresentation analysis does not.
Notwithstanding the shortcomings, overrepresentation analysis is
widely used for microarray data and has been also adapted for
RNA-seq data. Specifically, Young and colleagues [17] developed
GOseq, a GO categories overrepresentation analysis that accounts
for transcript length bias inherent for RNA-seq. The GOANA func-
tion in ‘limma’ package is supposed to work similarly to GOseq [18].

The aim of this review is to present an alternative technique
that considers differential expression of gene sets and does not re-
quire a priori selected genes in the context of RNA-seq data. There
are many methodologies developed for microarrays, collectively
named gene set analysis (GSA) approaches, which treat a gene set
as a unit of expression [16, 19–21]. Overall, the purpose of using
GSA is to provide an expansive view of the underlying biological
processes, leading to phenotypic differences (Q3 question). The re-
view is organized as follows. In the first part, we overview GSA
approaches that can be adapted from microarrays practice to fit
RNA-seq data as well as those specifically designed for RNA-seq.
While there are plenty of GSA approaches, they are readily distin-
guished based on the null hypothesis they test. According to
Goeman and Buhlmann [22], the formulation can be either ‘self-
contained’ or ‘competitive’. ‘Self-contained’ approaches compare
whether a gene set is DE between two phenotypes, while ‘com-
petitive’ approaches compare a gene set against its complement
that contains all genes except genes in the set [22, 23].
‘Self-contained’ approaches can be (i) univariate, in a sense that
they use gene-level tests for GSA and combine univariate statistics
for individual genes into a single test score [19, 24, 25]; and (ii)
multivariate, when a multivariate statistic is used to address the
null hypothesis. Importantly, gene-level tests for GSA disregard
existing correlation structure within a gene set. In real biological

settings, moderate [26] and extensive [27] correlations between
genes in gene sets are well documented [28] and may result in a
decrease of power for gene-level tests as compared with multivari-
ate tests [15, 25, 28, 29]. Hanzelmann et al. [30] have suggested to
distinguish two groups of ‘competitive’ GSA approaches: (i)
‘supervised’, when the class labels are known; and (ii) ‘unsuper-
vised’, when the enrichment score is computed for each gene set
and individual sample. These two terms ‘supervised’ and ‘un-
supervised’ are mostly associated with machine learning parlance.
For GSA, the ‘supervised’ term simply refers that the samples clas-
sification information is known, while the ‘unsupervised’ term in-
dicates that the samples classification is unknown [30], somewhat
similar to supervised and unsupervised learning concepts.
Another difference is whether the null hypothesis is tested
through subject sampling or gene sampling [31]. A number of re-
view articles concerning the different aspects of GSA approaches
developed for microarrays data analysis have been published [19,
22, 32–37]. The recommendations expectedly depend on the pool
of GSA tests selected for comparisons, biological data sets and
simulation strategies used for performance evaluation.

In the second part of the review, we attempt to provide a
meaningful comparison of the few GSA approaches that cover
intrinsically statistically different (in terms of null hypotheses)
tests: self-contained (univariate, multivariate) and competitive
(supervised, unsupervised). Figure 1 illustrates different null
hypotheses tested by different GSA approaches. We assess the
performance of different methods in terms of Type I error rate,
power and robustness to the sample size and heterogeneity, as
well as the sensitivity to different types of selection biases using
simulated and real RNA-seq data. Not surprisingly, the perform-
ance of various GSA approaches depends only on the statistical
hypothesis tested and does not depend on whether the test was
developed for microarrays or RNA-seq data. It should be noted
that because pathways databases do not include different iso-
forms of the same gene, GSA approaches operate with genes
and not isoforms, with one exception. The SeqGSEA method
was proposed specifically with the aim of integrating the differ-
ential expression (DE) and differential splicing (DS) analyses
from RNA-seq count data with competitive Gene Set
Enrichment Analysis (GSEA) [38]. By integrating DE and DS
scores, SeqGSEA was able to detect more overrepresented gene
sets than without integration [38]. To be as comprehensive as
possible, we include SeqGSEA in our analysis.

Methods

We introduce the following notations. Consider two different
biological phenotypes, with n1 samples of measurements for
the first and n2 samples of the same measurements for the se-
cond. Let the two random vectors of X¼ (X1, . . . , Xn1) and
Y¼ (Y1, . . . , Yn2) represent the measurements of p gene expres-
sions (constituting a pathway) in two phenotypes where Xi cor-
responds the ith p-dimensional sample in one phenotype and Yi

corresponds the ith p-dimensional sample in the other pheno-
type. Let X, Y be independent and identically distributed with
the distribution functions Fx, Fy, mean vectors lx and ly and
p� p covariance matrices Sx, Sy.

H0 for self-contained tests

For multivariate self-contained tests, we consider the problem
of testing the general hypothesis H0: Fx¼ Fy against an alterna-
tive Fx= Fy, or a restricted hypothesis H0: lx ¼ ly against an al-
ternative lx 6¼ ly, depending on a test statistic.
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Gene-level GSA approaches test a null hypothesis that the
gene-set associated score does not differ between phenotypes.
The score can be calculated, for example, as an L2-norm of the
moderated t-statistics [39] or as a combined P-value [25]. In all
cases, statistical significance is evaluated by comparing the
observed score with the null distribution, obtained by permut-
ing sample labels.

H0 for competitive tests

Barry et al. [31] have introduced the statistical framework for
classifying null hypotheses that are tested by different competi-
tive GSA approaches. In their framework, all competitive tests
belong to either ‘Class 1’ or ‘Class 2’ gene category tests. The
major distinction is that to evaluate significance of the global
test statistic, Class 1 approaches use gene sampling, while Class
2 approaches use subject sampling [31]. The first competitive
GSA test for microarray data analysis, GSEA method [14, 40], be-
longs to Class 2. As a local test statistic, it uses a signal to noise
ratio and a weighted Kolmogorov–Smirnov (KS) as a global test
statistic (enrichment score, normalized to factor out the gene
set size dependence) [34, 40]. Assuming a null distribution F0

perm

induced by permuting sample labels, GSEA evaluates signifi-
cance of the global test statistic fk

GSEA by estimating nominal P-
value from F0

perm [34, 40]. Thus, GSEA tests the null hypothesis
that the genes in a gene set are randomly associated with the
phenotype.

Most competitive GSA approaches are ‘supervised’, in a
sense that sample labels are known (that is, there are at least
two different phenotypes). Hazelmann et al. [30] formulated the
concept of ‘unsupervised’ GSEA where an enrichment score is
computed for each gene set and individual sample [30].
Essentially, unsupervised competitive GSA approach imple-
ments a ‘dimensionality reduction’ by transforming a matrix of

gene expressions across samples into a matrix of gene sets en-
richment scores across the same samples. It makes the choice
of null hypothesis flexible and context dependent. For example,
Barbie et al. [41] use unsupervised competitive GSEA to test the
null hypothesis that the Spearman correlation between gene set
enrichment scores is zero, while Hazelmann et al. [30] test the
hypothesis that gene set enrichment score does not differ be-
tween two phenotypes.

RNA-SEQ counts normalization

Raw RNA-seq counts are neither directly comparable between
genes within one sample nor between samples for the same
gene. Longer genes produce more reads in the sequencing pro-
cess; therefore, the counts of each gene are proportional to both
gene abundance and gene length. The counts will also vary be-
tween samples as a result of differences in the total number of
mapped counts per sample (library size or sequencing depth).
The first normalization for RNA-seq data ‘reads per kilobase per
million’ (RPKM) was suggested by Mortazavi et al. [42]. While
RPKM remains popular, a number of other normalizations were
suggested [9, 43–45]. Recently, we have shown that in the con-
text of multivariate self-contained GSA approaches Type I error
rate and power were severely affected by different test statistics
but virtually unaffected by the normalization used [25].
Therefore, in what follows, we use RPKM for multivariate self-
contained GSA approaches. VOOM normalization is used for all
GSA approaches initially developed for microarrays. Gene-level
GSA as well as competitive GSA approaches developed specific-
ally for RNA-seq are used with the approach-specific normaliza-
tion (for more detailed description of the normalization
methods see Supplementary File 1).

Figure 1. Schematic overview illustrating the breakup of the GSA methods that can be adapted from microarrays practice to fit RNA-seq data (boxes with dots) as well

as those specifically designed for RNA-seq (boxes with diagonal stripes) based on the different null hypotheses they test.
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Self-contained gene-level tests for GSA
Gene-level GSA tests that combine genes P-values

One way of designing a GSA test is to combine univariate statis-
tics for individual genes into a single test score [19, 24]. There
are two popular univariate tests specifically developed for RNA-
seq data that rely on NB model for read counts: edgeR [8] and
DESeq [9]. Both tests do not require RNA-seq counts normaliza-
tion and adjust only for differing library sizes between samples
automatically. In the context of microarray data, Empirical
Bayes method (eBayes [12]) correctly identifies hypervariable
genes and can be adapted for RNA-seq data through VOOM nor-
malization [11]. In what follows, we briefly reiterate the conclu-
sions from our comparative power and Type I rate analyses of
different gene-level GSA tests [25]. Our major conclusion was
that, when applied correctly, the gene-level test does not, per se,
influence the performance of a gene-level GSA approach as
much as the procedure used to combine univariate statistics
into a single test score does [25].

The first gene-level GSA approach for RNA-seq data was sug-
gested by Fridley et al. [46]. As a gene-level test, the authors [46]
selected edgeR. For every gene set, edgeR-generated genes’ P-val-
ues were combined into a single test P-value using Gamma
Method (GM) [46]. GM is based on summing the transformed
gene-level P-values using an inverse gamma cumulative distribu-
tion function. The statistical significance of the combined P-val-
ues was estimated from the null distribution obtained by subject
sampling [46]. There are many other well-known methods to
combine P-values, e.g. the Fisher [47] or Stouffer [48] methods (FM
and SM in what follows). We have shown that gene-level GSA
tests that use GM for combining P-values had the highest power
and Type I error rate on simulated and real data [25]. In turn, tests
with SM had the smallest power and the smallest Type I error
rates, while the results for tests with FM were intermediate [25].
If one would like to design a gene-level GSA test for RNA-seq data
and combine test-generated P-values into a single gene set P-
value, the safest option would be to use FM. In this review, gene-
level tests for GSA are represented by edgeR, DESeq and eBayes
in combination with FM (for more detailed description of the
methods for combining P-values see Supplementary File 1).

Gene-level GSA test that combines statistics (SAM-GS)

In the analysis of microarrays, shrinking the standard error of a test
statistic (e.g. a t-test) in testing DE of individual genes improves the
power of the test. Several shrinkage approaches at the level of indi-
vidual genes were suggested, including the Significance Analysis of
Microarrays (SAM) test [49], the regularized t-test [50] and the mod-
erated t-test [51]. In particular, an extension of SAM test to GSA
(SAM-GS) was suggested [39] and has been demonstrated to outper-
form several conventional self-contained tests and even the ori-
ginal competitive GSEA approach [21, 39, 52].

SAM-GS can be applied to RNA-seq count data by using the
VOOM normalization [11] before the test to find the log-scale
counts per million (CPM) of the raw counts normalized for
library sizes. The test statistic is the L2-norm of the moderated
t-statistics for the gene expressions:

TSAM�GS ¼
Xp

i¼1

 
Xi � Yi

si þ s0

!2

where Xi and Yi are respectively the mean expression levels for
gene i under phenotypes X and Y, si is a pooled standard

deviation over the samples in the two phenotype, s0 is a small
positive constant to adjust for small variability and p is the
number of genes in the gene set.

Self-contained multivariate tests for GSA
Multivariate generalization of the KS test

The multivariate generalization of the KS test suggested by
Friedman and Rafsky [53] that we adapted for GSA [24] is based
on the Minimum Spanning Tree (MST) ranking. The multivari-
ate generalization of KS ranks multivariate observations based
on their MST. The purpose of MST ranking is to obtain the
strong relation between observation differences in ranks and
their distances in Rp. Multivariate KS tests the hypothesis that
there is no difference in mean vectors for a gene set between
two phenotypes (H0: lx ¼ ly) [53] (for more detailed description
see Supplementary File 1).

N-statistic

Based on their high power and popularity, we consider two
other multivariate test statistics. N-statistic [54, 55] tests the
most general hypothesis H: Fx¼ Fy against a two-sided alterna-
tive Fx= Fy:

Nn1n2 ¼
n1n2

n1 þ n2

1
n1n2

Xn1

i¼1

Xn2

j¼1

L Xi;Yj
� �

� 1
2n2

1

Xn1

i¼1

Xn2

j¼1

L Xi;Xj
� �

� 1
2n2

2

Xn1

i¼1

Xn2

j¼1

L Yi;Yj
� �

2
666664

3
777775

1=2

Here we consider only L X;Yð Þ ¼ X� Y, the Euclidian distance
in Rp.

ROAST

In the context of microarray data, a parametric multivariate
rotation gene set test (ROAST) has become popular for the self-
contained GSA approaches [56]. ROAST uses the framework of
linear models and tests whether for all genes in a set, a particu-
lar contrast of the coefficients is nonzero [56]. It can account for
correlations between genes and has the flexibility of using dif-
ferent alternative hypotheses, testing whether the direction of
changes for a gene in a set is ‘up’, ‘down’ or ‘mixed’ (up or
down) [56]. For all comparisons implemented here, the ‘mixed’
hypothesis was selected. Using ROAST with RNA-seq count
data requires proper normalization. The VOOM normalization
[11] was proposed specifically for this purpose where log CPM,
normalized for library size are used. In addition to counts nor-
malization, VOOM calculates associated precision weights,
which can be incorporated into the linear modeling process
within ROAST to eliminate the mean-variance trend in the nor-
malized counts [11].

Supervised competitive tests for GSA
ROMER

The first competitive GSA test for microarray data analysis
(GSEA [14]) was developed a decade ago. The original GSEA was
sensitive to the gene set size and the influence of other gene
sets [57], so it was subsequently upgraded into GSEA-P that
used a correlation-weighted KS statistic, an improved enrich-
ment normalization and an FDR-based estimate of significance
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[34, 40]. For the sake of simplicity, we will only consider the
GSEA version implemented in ‘limma’ function ROMER (the ro-
tation testing using mean ranks) [18]. ROMER is a parametric
method developed originally for microarray data and uses the
framework of linear models [11] and rotations instead of permu-
tations (see [56] for more detail). In contrast to ROAST, the
‘limma’ implementation of ROMER does not incorporate the
weights estimated by VOOM into the linear modeling process to
account for the mean-variance trend in the data.

SeqGSEA

The SeqGSEA method was proposed with the aim of integrating
the DE and DS analyses from RNA-seq count data with competi-
tive GSEA [38]. The analysis of DE is divided into two parts: DE
analysis using gene read counts and DS analysis based on sub-
exon counts. Sub-exon counts are defined as nonoverlapping
exon fragments. The read counts are modeled using NB distri-
bution. Gene read counts are defined by summing up the read
counts of all sub-exons in a gene. DE scores are defined from
gene read counts and DS scores are defined from sub-exon read
counts as an average value across all sub-exon in a gene [38].
After the estimation of DE and DS scores, they can be combined
together into an integrated gene score (using linear combination
or rank-based strategy) that reflects the abundance differences
between two phenotypes [38]. However, because we are inter-
ested in DE analysis only, we followed the exemplified pipeline
for such analysis as suggested in the Bioconductor SeqGSEA
package vignette [58].

Unsupervised competetive tests for GSA

The goal of unsupervised competitive approaches is to charac-
terize the degree of expression enrichment of a gene set in each
sample within a given data set [41]. The term ‘competitive’ is
reminiscent of the way the enrichment score is calculated: as a
function of gene expression inside and outside the gene set.

Gene set variation analysis

Gene set variation analysis (GSVA) can be applied to microarray
expression values or RNA-seq counts. Depending on the data
type, expression values (counts) are first transformed using a
Gaussian (or discrete Poisson) kernel into expression-level stat-
istics [30]. The sample-wise enrichment score for a gene set is
calculated using KS like random walk statistic. An enrichment
statistic (GSVA score) can be calculated as its maximum devi-
ation from zero over all genes (similar to the original GSEA) or
as the difference between the largest positive and negative devi-
ations from zero (see [30] for more details).

Single sample extension of GSEA

The difference between GSVA and single sample extension of
GSEA (ssGSEA) stems from the way an enrichment score is cal-
culated. In ssGSEA the enrichment score for a gene set under
one sample is calculated as a sum of the differences between
two weighted empirical cumulative distribution functions of
gene expressions inside and outside the set [41]. The approach,
together with GSVA, is implemented in the Bioconductor GSVA
package [30].

Simulated and real data sets
Nigerian data set

To evaluate the performance of different approaches on real
data, we used a subset of the Pickrell et al. [59] data set of
sequenced cDNA libraries generated from 69 lymphoblastoid
cell lines that were derived from Yoruban Nigerian individuals.
The Nigerian data set was selected for its balanced samples and
adequate sample size. Among available samples, only 58 unre-
lated individuals were considered (29 males and 29 females) (a
more detailed description of the preprocessing steps of the
Nigerian data set is provided in Supplementary File 1).

Simulation setup

Simulated data were used to estimate Type I error rate and
power. We model the count for gene i in sample j by a random
variable Yij with NB distribution

Yij � NB mean ¼ lij; var ¼ lijð1þ lijuijÞ
� �

¼ NB lij;uij

� �

where lij and uij are respectively the mean count and dispersion
parameter of gene i in sample j. For each gene in a gene set,
a vector of mean count, dispersion and gene length information
ðli;ui; LiÞ is randomly picked from a pool of vectors derived from
the processed Nigerian data set. Dispersion parameters for indi-
vidual genes were estimated using the Bioconductor edgeR pack-
age [8] (for more detailed description of the simulation setup
see Supplementary File 1).

Molecular signature database

We used the C2 group of gene sets from the molecular signature
database (MSigDB) 4.0 [60]. These gene sets (4722) were collected
from various sources such as online pathway databases (KEGG,
GO, Biocarta, Reactome), publications in PubMed and expert
knowledge. The list of gene sets was downloaded and accessed
in R using the Bioconductor GSEABase package.

Performance evaluation
Type I error rate (simulated data)

Random counts following the NB distribution were generated
using the pool of parameter vectors obtained earlier from the
Nigerian data set. To simulate the null hypothesis H0: F ¼ G, we
generated a data set consisting of N samples (equally separated
into two phenotypes) and 1000 gene sets of equal size (p).
Hence, we have a data set of N samples and 1000� p genes. The
randomly selected parameter vector ðli;ui; LiÞ is used to gener-
ate NB counts for gene i for all the samples in the data set. To
examine the effects of sample size and gene set size, we esti-
mated the Type I error rate under different parameter settings
for all statistical methods. We chose p2{16, 60, 100} and N2{10,
20, 40, 60}. Type I error rate for a statistical test is calculated as
the proportion of gene sets detected by the test. The results
were averaged over 10 generated data sets to obtain more stable
results.

Power (simulated data)

In real data, DE gene set may include genes that are up-
regulated, down-regulated, similarly expressed between two
phenotypes, with variable fold change. In addition, competitive
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GSA approaches study the enrichment of a gene set in a large
number of genes that form multiple gene sets. Other gene sets
may influence the power of competitive tests to some (un-
known) degree. Therefore, to mimic real data as closely as pos-
sible, three simulation parameters were introduced: b, the
proportion of gene sets in the data set that have truly DE genes;
c, the percentage of genes, truly DE in each gene set and FC, the
fold change in gene counts between two phenotypes. We con-
sider b 2 {0.05, 0.25} and c 2 {0.125, 0.25, 0.5}. For the parameter
FC, the values are in the range [1.2, 3]. To represent two biolo-
gical conditions with different outcomes, two groups with equal
sample size, N/2 (N¼ 20 and N¼ 40), were considered. For each
group, S¼ 1000 nonoverlapping gene sets, each constructed
from p random realizations of NB distribution, were formed.
Relatively small (p¼ 16) and large (p¼ 100) gene set sizes were
chosen. The power for all methods was estimated by testing the
hypothesis H0: lx ¼ ly (or H0: FC ¼ 1) against an alternative H1:
lx 6¼ ly (or H1: FC 6¼ 1) for all gene sets. For each of the (1-b)S
non-DE gene sets, p random realizations of NBðli;uiÞ were
sampled, where 1� i� p under both phenotypes. For each of the
bS gene sets that have truly DE genes, p/2 random realizations
of NBðli;uiÞ and NBðFC li;uiÞ were sampled, under phenotype 1
and phenotype 2 for 1� i� cp/2. Also p/2 random realizations of
NBðFC li;uiÞ and NBðli;uiÞwere sampled under phenotype 1 and
phenotype 2 for (cp/2)þ 1� i� cp. In this way, half of the cp DE
genes in each gene set were up-regulated and half were down-
regulated between the two phenotypes.

Robustness to samples size and heterogeneity
(the Nigerian data set)

Because there is no ‘gold standard’ set of pathways that are
truly DE (or significantly enriched) for male and female samples
supported with high experimental evidence, we created a
‘surrogate’ gold standard set using the procedure suggested in
[28, 37] and the full data set (N¼ 58). A total of 3890 C2 gene sets
containing 11 903 unique annotated genes in 58 samples (29
males and 29 females) were analyzed. Gene sets detected using
the full data set are considered ‘true positives’ GSTP(N) (at the
significance level a¼ 0.05) and undetected sets are ‘true nega-
tives’, GSTN(N). For four different sample sizes, n¼ {48, 38, 28, 18},
B¼ 100 subsets were constructed by subsampling without re-
placement. Each subset consists of two balanced parts that
were obtained by subsampling without replacement from male
and female samples separately. All statistical methods were
applied to these subsets, and the detected C2 gene sets were
compared with GSTP(N) and GSTN(N). The rate at which a statis-
tical method detects gene set i from the list GSTP(N) in B subsets
with sample size n and a statistical significance level a was esti-
mated as

m i;nð Þ ¼ 1
B

XB

j¼1

I Pj
iðnÞ < a j i 2 GSTPðNÞ

h i

where Pj
iðnÞ is the estimated P-value for gene set i from the list

GSTP(N) in subset j with sample size n. To find the true-positive
rate (TPR) of detecting arbitrary gene sets from list GSTP(N) when
subsets of the full data set with sample size n were used, m(i,n)
was averaged over all members of GSTP(N)

TPR nð Þ ¼ 1
jGSTPðNÞj

XjGSTPðNÞj

i¼1

mði;nÞ

This measure provides an estimate for the probability to detect
gene sets from list GSTP(N) when subsets of sample size n are
used, which correspond to the power or sensitivity of the statis-
tical method. Similarly, the false-positive rate (FPR) or Type I
error rate of a statistical method in detecting gene set i from the
list GSTN(N) in B subsets with sample size n and a statistical sig-
nificance level a was estimated as

e i;nð Þ ¼ 1
B

XB

j¼1

I Pj
iðnÞ < a j i 2 GSTNðNÞ

h i

and the FPR of detecting arbitrary gene sets from list GSTN(N)
when subsets of sample size n were used was averaged over all
members of GSTN(N):

FPR nð Þ ¼ 1
jGSTNðNÞj

XjGSTNðNÞj

i¼1

eði;nÞ

Owing to the fact that the lists GSTP(N) and GSTN(N) do not ne-
cessarily contain true references, the estimated TPR and FPR
here assess the robustness of the methods with respect to the
sample size rather than representing true values for the meth-
ods [61].

To examine the robustness of different GSA approaches to
samples heterogeneity, we constructed B¼ 100 subsets for four
different sample sizes n¼ {48, 38, 28, 18} and cumulatively quan-
tified the proportion of common gene sets detected in b or less
subsets (b 2 [1,B]). First, each detected gene set could be detected
in b subsets out of all B subsets. The entire range [1,B] was div-
ided into B bins and we calculated the count in bin k (sk) as the
number of gene sets commonly detected in k subsets. The re-
sulting bins formed a histogram that illustrated the frequency
of commonly detecting gene sets in subsets. Second, we defined
the cumulative common detection per subset (CCDS) as the pro-
portion of gene sets commonly detected in b or less subsets out
of a total of B subsets

CCDS bð Þ ¼ 1
Q

Xb

k¼1

k sk

where Q is the sum of the numbers of detected gene sets in all B
subsets and b¼ 1, 2, . . . , B. Normalizing by the method-specific
Q scales the CCDS values of all methods between 0 and 1.
Plotting CCDS(b) versus b provided comparable nondecreasing
curves, which assess the robustness of different methods to
samples heterogeneity between subsets. To illustrate this ap-
proach, Figure 2 shows the histograms and the corresponding
CCDS curves obtained by following our procedure for the de-
tected C2 gene sets by N-statistic (Figure 2A and C) and GSVA
(Figure 2B and D) in 100 subsets of the Nigerian data set (with
sample size 28). Owing to samples heterogeneity between sub-
sets, many gene sets were commonly detected in only few sub-
sets. This corresponds to the rapid rise in CCDS(b) at low b
(Figure 2A and B). However, while 114 gene sets were commonly
detected in all 100 subsets by N-statistic (Figure 2A), only 2 were
detected by GSVA (Figure 2B). In fact, among the 26 844 gene
sets detected by N-statistic in all 100 subsets, 43.5% of them
were commonly detected in 95% of all subsets (Figure 2C). This
ratio falls drastically to 2.7% of the 14 492 detected gene sets by
GSVA in all 100 subsets (Figure 2D). This example demonstrates
that N-statistic is more robust to samples heterogeneity, as
compared with GSVA. Also, it exemplifies the basis for
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comparing the CCDS(b) curve patterns: (i) for a method robust to
samples heterogeneity, CCDS(b) is relatively low for small b and
shows an abrupt rapid rise at high values of b (rise owing to
gene sets commonly detected in most subsets); (ii) for a method
sensitive to samples heterogeneity, CCDS(b) increases rapidly
and flattens at low b, indicating that no gene sets were com-
monly detected in the majority of subsets. The CCDS curves for
different statistical methods using subsets of the Nigerian data
set with different sample sizes are presented in the Results
Section.

Results
Type I error rate (simulated data)

Table 1 presents the estimates of the attained significant levels
for all GSA tests considered (a¼ 0.05). Overall, multivariate self-
contained tests control Type I rather well except KS (high Type I
error rate for small sample size). For gene-level GSA approaches,
where P-values are combined using FM, edgeR shows the high-
est Type I error, followed by DESeq and eBayes. The smallest
sample size (five by five groups) does not influence Type I error
rate in the case of eBayes, but edgeR and DESeq Type I error
rates are affected. This could be attributed to eBayes’s conserva-
tive empirical approach, which shrinks sample variance

estimates toward a pooled estimate, resulting in more stable in-
ference when the number of samples is small [61]. All competi-
tive GSA approaches provide Type I error rates estimates near
nominal a¼ 0.05, except SeqGSEA where Type I error rate in-
creases with the sample size (see the Discussion section for a
plausible explanation).

Power (simulated data)

Figure 3 presents the power estimates when H1: lx 6¼ ly is true
(N¼ 20, p¼ 16). The power estimates for N¼ 20, p¼ 100
(Supplementary File 2: Figure S1), N¼ 40, p¼ 16 (Supplementary
File 2: Figure S2) and N¼ 40, p¼ 100 (Supplementary File 2:
Figure S3) confirm the pattern presented in Figure 3. Overall,
self-contained methods have higher power than competitive
methods, and because they test a hypothesis about single gene
set, they are not affected by the proportion of gene sets in the
data set that have truly DE genes (b parameter). Gene-level GSA
approaches have slightly higher power than the other self-con-
tained methods, followed closely by ROAST, N-statistic and
SAM-GS, while KS has the lowest power among all self-con-
tained methods. SeqGSEA was designed specifically for count
data and it shows higher power than all other competitive
methods under all settings. ROMER has relatively low power at
c¼ 0.125 but its power increases drastically at higher c values,

Figure 2. Illustrative histograms and corresponding CCDS curves obtained using commonly detected C2 gene sets at a significance level of 0.05 in 100 subsets of the

Nigerian data set with sample size 28. (A) Histogram of the number of commonly detected C2 gene sets by N-statistic in b subsets out of 100; (B) histogram of the num-

ber of commonly detected C2 gene sets by GSVA in b subsets out of 100; (C) CCDS curve showing the CCDS for N-statistic; (D) CCDS curve showing the CCDS for GSVA.
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indicating it relies significantly on the proportion of DE genes in a
gene set. Competitive methods are generally affected by adding
more genes to the data set where adding non-DE genes enhances
their power [37]. Conversely, adding DE genes may decrease it.
This explains why higher b yields slightly lower power for ROMER
especially when c¼ 0.5 (Figure 3).

Surprisingly, unsupervised methods have low power under
all settings (almost no power for GSVA). The unexpected behav-
ior of the unsupervised methods can be explained by the sam-
ple-wise ranking they perform to calculate the enrichment
scores for gene sets. To illustrate our point, consider two hypo-
thetical cases of expression patterns in a gene set. In the first

Table 1. Type I error rates for different methods,a ¼ 0.05

Method placement Self. N-statistic SAM-GS KS ROAST
Comp. SeqGSEA GSVA ssGSEA ROMER
Comb. edgeR_FM DESeq_FM eBayes_FM -

p¼ 16 p¼ 60 p¼ 100

N
¼

10

Self. 0.049 0.044 0.084 0.043 0.048 0.045 0.081 0.042 0.048 0.045 0.081 0.041
Comp. 0.025 0.042 0.042 0.047 0.017 0.047 0.050 0.050 0.013 0.045 0.046 0.047
Comb. 0.088 0.077 0.047 – 0.127 0.111 0.042 – 0.159 0.137 0.044 –

N
¼

20

Self. 0.052 0.046 0.090 0.044 0.055 0.050 0.090 0.047 0.051 0.055 0.086 0.050
Comp. 0.040 0.047 0.045 0.051 0.038 0.041 0.047 0.054 0.037 0.050 0.050 0.053
Comb. 0.072 0.063 0.048 – 0.100 0.079 0.051 – 0.114 0.083 0.054 –

N
¼

40

Self. 0.054 0.054 0.070 0.051 0.047 0.047 0.066 0.044 0.050 0.053 0.068 0.055
Comp. 0.051 0.044 0.051 0.050 0.057 0.048 0.046 0.045 0.060 0.049 0.053 0.052
Comb. 0.066 0.058 0.051 – 0.077 0.062 0.047 – 0.088 0.068 0.055 –

N
¼

60

Self. 0.051 0.051 0.058 0.052 0.046 0.047 0.054 0.048 0.049 0.054 0.059 0.054
Comp. 0.060 0.046 0.051 0.051 0.061 0.051 0.045 0.049 0.066 0.047 0.045 0.050
Comb. 0.065 0.055 0.052 – 0.063 0.056 0.046 – 0.079 0.065 0.055 –

Figure 3. The power of different tests to detect differences between two groups of samples when the alternative hypothesis (H1) holds true with different settings (val-

ues of b, c and FC). The gene set size is p¼16 and the sample size in each group is N/2 (N¼20). (A) b¼0.05, c¼0.125; (B) b¼0.05, c¼ 0.25; (C) b¼0.05, c¼0.5; (D) b¼0.25,

c¼0.125; (E) b¼0.25, c¼0.25; (F) b¼0.25, c¼0.5. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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case, all DE genes in a gene set are up-regulated in phenotype 1
compared with phenotype 2. These genes group closely at the
top of the ranking table for the samples under phenotype 1. The
same genes have dispersed ranks for the samples under pheno-
type 2. This case yields high gene set enrichment score for the
samples under phenotype 1 but not under phenotype 2; hence,
high power is expected. Consider the second case where DE
genes in a gene set are equally divided into up-regulated genes
between phenotype 1 and phenotype 2. While the up-regulated
genes in phenotype 1 group closely at the top of the ranking
table for the samples under phenotype 1, the up-regulated
genes in phenotype 2 group closely at the top of the ranking
table for the samples under phenotype 2. This case yields high
(however, lower than the first case) gene set enrichment score
for the samples under both phenotypes; hence, low power is ex-
pected. To confirm the intuitive explanation, we implemented
simulation study for two aforementioned cases. The power of
both GSVA and ssGSEA is much higher when all the DE genes
are up-regulated in one phenotype (see Supplementary File 2:
Figure S4). Because in real data we rarely see only up-regulated
or only down-regulated genes (gene sets), the power of super-
vised competitive methods is expected to be consistently low
for real expression data. It should be noted that the authors of
the ssGSEA method expected their enrichment score to be
slightly more robust and more sensitive to differences in the
tails of the distributions compared with the KS like statistic [41].
Our simulation results confirm this expectation.

Robustness to samples sizes and heterogeneity (the
Nigerian data set)

Figure 4 shows the estimated TPR, FPR and the number of de-
tected gene sets by different GSA approaches when 100 subsets,
composed of subsamples from the full Nigerian data set, are con-
sidered (see the Methods Section for details). As expected, TPR de-
creases as the sample size decreases (Figure 4A). Multivariate
self-contained tests (except KS) always have the highest TPR
(Figure 4A), closely followed by the self-contained gene-level
tests. Among competitive tests, TPR of ssGSEA and SeqGSA is less
dependent on the sample size as compared with GSVA and
ROMER. As the number of samples decreases, FPR slowly in-
creases (Figure 4B), and the number of detected gene sets remains
almost unchanged (Figure 4C, except KS and SeqGSEA).

Figure 5 shows the CCDS(b) curves for different GSA
approaches when 100 subsets, composed of subsamples from the
full Nigerian data set, are considered. Again, with the exclusion of
KS, multivariate self-contained tests show the highest robustness

to samples heterogeneity, followed by the self-contained gene-
level tests and the competitive tests. For example, at the sample
size 48 (Figure 5A), about 50% of the gene sets detected by N-statis-
tic, SAM-GS or ROAST in all 100 subsets were found in about 75%
of all subsets. This proportion was reduced to 25% and 10% for
egdeR_FM and ROMER, respectively. SeqGSEA persistently detects
the highest number of gene sets (Figure 4C), with random overlaps
between subsets, resulting in linear-like CCDF(b) curve for large
sample sizes (48 and 38). CCDF(b) for SeqGSEA moves closer to the
curves of other competitive methods for small sample sizes (28
and 18). GSVA and ROMER demonstrate the lowest robustness
overall. Robustness of all methods decreases as the sample size
decreases at a different rate, with N-statistic and SAM-GS being
the most robust tests.

The analysis of the Nigerian data set

We used the C2 gene sets to quantitatively characterize differ-
ent GSA approaches based on: (i) a number of detected gene
sets; (ii) the average number of genes in detected gene sets
(gene set size); (iii) the proportion of DE genes in detected gene
sets; and (iv) the average gene length in detected gene sets.
These measures aim to highlight approaches that (i) detect too
many gene sets that are not detected by the majority of other
methods; (ii) detect gene sets with fewer or more genes com-
pared with other methods (have gene set size bias); (iii) detect
gene sets with larger or smaller proportion of DE genes com-
pared with other methods (more or less sensitive); (iv) detect
gene sets with higher or lower average gene length compared
with other methods (have gene length bias).

Generally, self-contained methods show the highest overlap
among detected DE gene sets. N-statistic, SAM-GS, KS and
ROAST detect 227, 274, 260 and 202 gene sets at a significance
level a¼ 0.05, where 105 gene sets are detected by all
approaches (Supplementary File 2: Figure S5B). edgeR_FM,
DESeq_FM and eBayes_FM detect 153, 160 and 135 gene sets,
with an overlap of 94 gene sets (Supplementary File 2: Figure
S5A). On the other hand, SeqGSEA, GSVA, ssGSEA and ROMER
detect 1447, 113, 174 and 304 gene sets, with only 18 gene sets
detected by all competitive approaches (Supplementary File 2:
Figure S5C). Not surprisingly, only four gene sets are simultan-
eously detected by self-contained (N-statistic, ROAST and
eBayes_FM) and competitive (ROMER and GSVA) approaches
(Supplementary File 2: Figure S5D).

Figure 6 presents a dendrogram showing the similarity be-
tween different GSA approaches in terms of detected C2 gene
sets. Self-contained and competitive tests are well separated

Figure 4. The estimated TPR (A), FPR (B) and the number of detected gene sets (C) by different GSA approaches. For each sample size, the results are averaged over 100

subsets composed of subsamples from the full Nigerian data set. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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because self-contained methods detect more gene sets in com-
mon than competitive methods. Figure 6 clearly demonstrates
that the performance of various GSA methods depends on the
statistical hypothesis they test, regardless of whether a method
was developed for microarrays or RNA-seq data.

Figure 7 shows boxplots for the number of genes, the propor-
tion of DE genes and the average gene length in significantly DE
C2 gene sets (among 3890 C2 gene sets, a¼ 0.05) found by differ-
ent GSA approaches. The DE genes in each gene sets were de-
tected with the empirical Bayes test (‘limma’ package [18]). The
significance of the pair-wise differences between different GSA
approaches (Figure 7) was evaluated using Wilcoxon’s test
(Supplementary File 1: Tables S2–S4). Wilcoxon’s test (at a

significance level a< 0.05) shows the following trends (Figure 7):
(i) GSVA, ssGSEA and gene-level self-contained GSA tests detect
gene sets with smaller average size as compared with all other
methods; KS detects gene sets with smaller average size, as
compared with other multivariate self-contained methods,
SeqGSEA and ROMER; and SeqGSEA detects gene sets with
larger average size, as compared with KS, GSVA, ssGSEA and
gene-level self-contained methods; (ii) gene-level self-contained
GSA methods detect gene sets with higher average proportion
of DE genes, as compared with other methods; KS and SeqGSEA
detect gene sets with lower average proportion of DE genes, as
compared with other methods; and ssGSEA detects gene sets
with lower average proportion of DE genes, as compared with
SAM-GS, ROAST and, marginally, to KS and GSVA; (3) ROMER de-
tects gene sets with significantly higher average gene length, as
compared with all other methods, and both GSVA and ssGSEA
detect gene sets with lower average gene length, as compared
with other methods (respectively with low and marginal signifi-
cance). These observations are summarized in Table 2.

Discussion

A variety of GSA approaches for the analysis of microarray data
has been developed. In this review, we evaluated the perform-
ance of several statistically different GSA tests (Figure 1) that

Figure 5. CCDS curves for different GSA approaches when 100 subsets composed of subsamples from the full Nigerian data set (58 samples) are considered with differ-

ent sample sizes. (A) Sample size¼48; (B) sample size¼38; (C) sample size¼28; (D) sample size¼18. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.

Figure 6. A dendrogram showing the similarity between different GSA

approaches in terms of detected C2 gene sets at a significance level of 0.05.
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can be used on RNA-seq counts data. We compared the follow-
ing approaches: two nonparametric (N-statistic and KS) and one
parametric (ROAST) multivariate self-contained tests; self-con-
tained gene-level methods that (i) use RNA-seq-specific univari-
ate tests (edgeR and DESeq) or microarray-specific test (eBayes)
to combine gene-specific P-values into a single gene set P-value
using FM or (ii) combine gene-specific moderated t-statistics in
a gene set statistic using L2-norm (SAM-GS), two unsupervised
competitive methods (GSVA and ssGSEA) and two supervised
competitive methods (SeqGSEA and ROMER). All approaches
were evaluated on simulated and real data (the Nigerian data
set), and the significance levels for nonparametric tests were
estimated from sample permutations (rotations for ROAST and
ROMER).

We found that for simulated and real data N-statistic, SAM-
GS and ROAST (multivariate self-contained methods, with the
exclusion of KS) have Type I error rates near nominal a, have
high power, are the most robust to the small sample sizes and
samples heterogeneity (with minor decrease in performance for
ROAST when the sample size is the smallest), have no biases in

the lists of detected gene sets and detect many gene sets in
common. Because ROAST and SAM-GS use moderated t-statis-
tics to analyze log-scale CPM normalized counts, while N-statis-
tic uses a different statistic to analyze log-scale RPKM
normalized counts, ROAST and SAM-GS detect more gene sets
in common than N-statistic (Figure 6). The KS test is the only
multivariate graph-based method that ranks samples according
to the structure of the MST rather than using the differences be-
tween samples in Rp directly. Although such approach offers the
benefit of testing a specific alternative hypothesis [24], some-
times smaller differences in Rp result in larger changes in the
structure of the MST and hence the ranks of the samples, as
they depend on the tree traversal. This effect is further aggra-
vated when the sample size is small and there are fewer verti-
ces to form a tree. It makes KS more sensitive to the small
sample sizes and samples heterogeneity, as compared with
other multivariate methods (Figure 5). Figure 4c illustrates the
sensitivity of KS to the sample size clearly: the number of KS-
detected gene sets abruptly increases when 18 samples (nine
males and nine females) are used. Consequently, FPR abruptly

Figure 7. Boxplots comparing (A) the number of genes in gene sets (gene set size), (B) the proportion of DE genes in gene sets and (C) the average gene length per gene

set in detected C2 gene sets (among 3890 C2 gene sets, a¼0.05) found by different GSA approaches. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.

Table 2. Summary of significant biases among methods

Parameter Higher than others Lower than others

Number of detected gene sets SeqGSEA None
Average gene set size 1. SegGSEA (compared with KS, GSVA, ssGSEA

and gene-level self-contained methods).
1. KS, GSVA and ssGSEA.
2. Gene-level self-contained methods.

Average %DE genes 1. Gene-level self-contained methods. 1. KS and SeqGSEA.
2. ssGSEA (compared with SAM-GS and ROAST

and marginally with KS and GSVA).
Average gene length 1. ROMER 1. GSVA (moderate significance) and ssGSEA

(marginal significance).
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increases at the same point (Figure 4B). These observations are
in agreement with the results obtained from simulated data in
Table 1.

Among various approaches for combining P-values, FM com-
bines P-values using the logarithm scale. In this way, extremely
small P-values contribute more in a gene set statistic than large
P-values do. Tests with FM would call a gene set DE if and only
if most of the genes in a gene set have small P-values [25]. Gene
sets with a large number of genes (large size) will be called DE
less frequently than smaller gene sets because, by pure chance
alone, smaller gene sets have higher probability of containing
higher proportions of DE genes with extremely small P-values
than larger gene sets (Supplementary File 2: Figure S6). This ef-
fect is further exacerbated by the fact that many gene sets in
real data sets are composed of moderately or highly correlated
genes that can be DE. These properties of FM coupled with
biases in real data explain why gene-level GSA methods tend to
detect gene sets with smaller number of genes and larger pro-
portions of DE genes, compared with other methods in real
data.

Overall, our comparative performance analyses have shown
that competitive GSA approaches have less power, are highly
sensitive to small sample sizes and samples heterogeneity,
have tiny overlap in detected gene sets and are prone to various
biases in the detected gene sets as compared with the self-
contained methods. These differences stem from the difference
in the hypothesis tested and the tests implementation. In par-
ticular, the gene ranking step in all competitive methods con-
tributes to the sensitivity to samples heterogeneity and biases
in detected gene sets, and in the case of unsupervised methods,
allows the balance of up- and down-regulated genes in gene
sets affect their power. This step also contributes to the positive
correlation of Type I error rate and the number of non-DE genes
[37] and the negative correlation of power and the number of DE
genes (this study) in the data. While in general it is well known
that the power of competitive tests is lower than the power of
self-contained tests [19, 33, 39], there is no study presenting
simulation scenario adequately addressing various biological
parameters influencing the power of competitive and self-
contained tests in the same settings.

Unsupervised competitive methods detect gene sets in the
Nigerian data set with (i) fewer genes (Figure 7A) and (ii) smaller
average gene length (Figure 7C) than other methods. The first
bias can be explained by the sensitivity of these methods to the
balance between up- and down-regulated genes in tested gene
sets (Supplementary File 2: Figure S4). Small gene sets have
higher probability of large imbalance between up- and down-
regulated genes than large gene sets. Supplementary Figure S7
demonstrates this fact using C2 gene sets. The second bias can
be explained by the specific normalization method used with
unsupervised tests where distinct gene expression profiles are
brought to a common scale using a discrete Poisson kernel (for
RNA-seq data) without taking the differences in gene lengths
into consideration. The counts of each gene are proportional to
both gene abundance (molar concentration) and gene length as
longer genes are expected to produce more reads in the
sequencing process. Ignoring the differences in gene lengths
allows shortest genes higher weights relative to the longest
ones in the following sample-wise ranking step and causes the
gene sets with short genes to be enriched slightly higher, and
hence detected more.

ROMER analyzes VOOM-normalized data (log-scale CPM) and
detects gene sets associated with any contrast in a linear model.
The VOOM procedure calculates associated precision (inverse of

variance) weights, which are used to account for the fact that
log fold changes from genes with large counts have lower vari-
ance on the logarithm scale [41]. While package ‘limma’ incorp-
orates these weights into its empirical Bayes pipeline within
ROAST, it does not offer the same option for ROMER. ROMER
ranks genes based on a moderated t-statistic, which normalizes
the log fold change by the estimated variance plus some small
positive constant. Ignoring the mean-variance trend by ROMER
leads to inflated estimates of the moderated t-statistic for genes
with larger counts relative to genes with lower counts. Because
longer genes produce more reads in the sequencing process and
hence larger counts, their corresponding moderated t-statistics
are inflated and rank high relative to shorter genes.
Consequently, gene sets with longer genes have high summar-
ized enrichment scores (mean ranks) and are found by ROMER
to be DE more frequently. This explains why ROMER detects
gene sets with longer average gene length compared with all
other methods (Figure 7C and Supplementary File 1: Table S4).

SeqGSEA detects surprisingly large numbers of gene sets in
the Nigerian data set and is the most different from all the other
GSA approaches (Figure 6). In addition, SeqGSEA has the highest
FPR among all other methods (Figure 4B). The large number of
detected gene sets by SeqGSEA affects the CCDS curve in Figure
5, which shows a linear-like pattern for sample sizes 48 and 38,
and becomes slightly closer to the curves of other methods for
sample sizes 28 and 18, when much less gene sets are detected
(Figure 4C). These patterns collectively suggest that SeqGSEA is
overlay liberal; however, such behavior was not observed with
simulated data. We hypothesize that the distinct behavior of
SeqGSEA can be attributed to the absence of proper normaliza-
tion for the data before the ranking step. Other competitive tests
do normalize the data before the analysis: both GSVA and
ssGSEA use an expression-level statistic to bring expression
profiles to a common scale, while ROMER uses the log-scale
CPM normalization for RNA-seq counts. Both approaches shrink
the dynamic range of possible gene expressions and allow
smaller differences between values. Conversely, SeqGSEA uses
the NB distribution to model the counts at the gene level and
ranks genes based on the mean square differences between the
estimated concentrations in two phenotypes normalized by the
sum of their variances [38] (see Supplementary File 1 for more
details). Because genes vary severely in their abundance levels
(up to a few orders of magnitude), ranking them based on this
statistic is unfair and makes the enrichment score highly sensi-
tive to the few highly expressed genes in a set. The excessive
sensitivity of SeqGSEA can be observed in Figure 7B where a sig-
nificantly smaller proportion of DE genes is required to detect a
gene set by SeqGSEA compared with other methods. In addition,
the estimated variances used in the denominator of the ranking
statistic are inversely proportional to the number of samples
under each phenotype. When the sample size is large, the esti-
mated variances are relatively small and the ranking statistic is
generally larger for all genes, yielding larger differences and
more significant enrichment scores. This argument is sup-
ported by the observed pattern in Table 1 where Type I error
rate increases with the sample size. The increase in the number
of detected C2 gene sets when more samples are included
(Figure 4C) also supports this argument. Type I error rates in
Table 1 and the power in Figure 3 were estimated based on
simulated NB counts with parameters obtained from the
Nigerian data set, and identical parameters were used for both
phenotypes (see Methods). The simulated gene counts are
smoothed versions of their real counterparts and lack over-
dispersion and heterogeneity usually found in real data sets.
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Since 
to 


This explains why the estimates of Type I error rate for
SeqGSEA were not as large as the real data set produced.
However, simulated data served its purpose of providing the
flexibility to assess each method under different settings.

Conclusions

In the ongoing transition from microarrays to RNA-seq (it ap-
pears that RNA-seq will reach the current number of arrays in
GEO in 2021 [62]), it is important to know that GSA approaches
developed for microarrays are equally applicable to RNA-seq
data if proper normalization has been performed. The major dif-
ference between various GSA approaches, developed for micro-
arrays or RNA-seq data remains in the null hypothesis they test
and is unaffected by the data type being used. This observation
is not new (e.g. [16, 22]); however, for the first time it is now also
demonstrated with RNA-seq data. An important conclusion
from our work that was overlooked in all former studies is that
competitive GSA approaches are not robust to the samples’ het-
erogeneity. This means that the reproducibility of the gene sets
found using competitive GSA approaches is expected to be low.
This fact also contributes to the tiny overlap between gene sets
found simultaneously by competitive and self-contained GSA
tests. We found that, in general, the power of competitive meth-
ods depends on the number of DE genes in the data, and the
power of unsupervised competitive methods in particular is
influenced by the balance of up- and down-regulated genes in
tested gene sets, making these methods sensitive to different
gene set biases. To summarize, the best performing GSA
approaches in terms of the control of the Type I error rate,
power, robustness to the samples size and heterogeneity are
self-contained multivariate tests such as N-statistic, ROAST and
the univariate SAM-GS test that combines moderated t-tests in
a single gene set test statistic using L2 norm. These tests are
easily adapted for RNA-seq data using RPKM (N-statistic) and
VOOM (ROAST, SAM-GS) normalizations.

Key Points

• In this article, we compare the performance of the few
GSA approaches that can be adapted from microarrays
practice to fit RNA-seq data as well as those specific-
ally designed for RNA-seq. We consider GSA
approaches that cover intrinsically statistically differ-
ent (in terms of null hypotheses) tests.

• GSA approaches developed for microarrays are equally
applicable to RNA-seq data if proper normalization
has been performed.

• Self-contained GSA tests (N-statistic, ROAST and SAM-
GS) perform better than competitive supervised and
unsupervised approaches (ROMER, Seq-GSEA, GSVA,
ssGSEA).

• Competitive supervised and unsupervised approaches
have gene set specific biases, less power and are more
sensitive to the samples heterogeneity than self-con-
tained methods, facts that have been overlooked
before.

Supplementary Data

Supplementary files are available online at http://bib.
oxfordjournals.org/.
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