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Analysis of time-to-event data, otherwise known as survival analysis, is a common inves-
tigative tool in ophthalmic research. For example, time-to-event data is useful when
researchers are interested in investigating how long it takes for an ocular condition
to worsen or whether treatment can delay the development of a potentially vision-
threatening complication. Its implementation requires a different set of statistical tools
compared to those required for analyses of other continuous and categorial outcomes.
In this installment of the Focus on Data series, we present an overview of selected
concepts relating to analysis of time-to-event data in eye research. We introduce censor-
ing, model selection, consideration of model assumptions, and best practice for reporting.
We also consider challenges that commonly arise when analyzing time-to-event data in
ophthalmic research, including collection of data from two eyes per person and the pres-
ence of multiple outcomes of interest. The concepts are illustrated using data from the
Laser Intervention in Early Stages of Age-Related Macular Degeneration study and statis-
tical computing code for Stata is provided to demonstrate the application of the statistical
methods to illustrative data.
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F rom understanding the natural history of ophthalmic
conditions to evaluating the effect of interventions on

the time to an outcome in clinical trials, survival analysis
has an important role to play in the acquisition of knowl-
edge in vision science. Also known as time-to-event analy-
sis, this statistical framework is used to measure the asso-
ciation between an exposure or intervention and the rate
of events or length of time until an outcome of interest is
observed.More recently, this approach has also been applied
to measuring distance-to-event. For example, distance of
axon regeneration has been used to compare interventions
following nerve damage.1 In this installment of the Focus
on Data series, we present an overview of the concepts and
best practice for reporting and interpreting the results of
survival analyses in eye research. We start with a descrip-
tion of our illustrative example, taken from the Laser Inter-
vention in Early Stages of Age-Related Macular Degeneration
(LEAD) study. Then we discuss censoring, survival probabil-
ity, and the hazard function. An overview of model selection
will be presented with a focus on the assumptions required
for valid interpretation, before briefly introducing compet-
ing risks and dealing with data from two eyes per person.
These concepts will then be applied to our illustrative data.
A simulated dataset, along with statistical computing code
for Stata, has been provided in the Supplementary Material.

ILLUSTRATIVE EXAMPLE

The LEAD study was a multicenter randomized clinical
trial that investigated the effect of a subthreshold nanosec-

ond retinal laser treatment on the time to development of
late age-related macular degeneration (AMD) among partici-
pants with bilateral large drusen.2 Participants were random-
ized to either laser or sham treatment, which was applied
to only one eye per person every six months for up to 30
months. The outcome of interest was the time to develop late
AMD, either of the atrophic or neovascular type, and both
eyes were assessed for progression every six months up to
36 months. Below, as an illustrative example, we explore the
association between pigmentary abnormalities of the retinal
pigment epithelium (hypopigmentation or hyperpigmenta-
tion) detected on color fundus photography at baseline, and
the time from baseline to the date that late AMD was first
detected. This association was explored among participants
in the sham treatment group only to avoid effect modifica-
tion by the laser intervention.

CENSORING

Although the presence or absence of late AMD is recorded
as a binary variable, the time taken for an eye to progress
from an earlier stage to the late stage of AMD is described
as time-to-event data. Time-at-risk usually begins at random-
ization in clinical trials and at the time of exposure in obser-
vational studies. In observational studies, time of exposure
may be defined as the date of diagnosis or treatment, or at
the baseline visit in a cohort study. Time-at-risk ends when
the outcome is reached or at the time of censoring.

Censoring is common when dealing with time-to-event
data. In the LEAD study, right censoring occurred for
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FIGURE 1. Illustration of time-at-risk. Participants B and E were censored at the end of the study and participants C, D, and F were censored
during the study period. Participant G was not included in the study at all. Participants A, B, D, and G progressed to the outcome of interest
before death; however, the event was recorded during the study only for participant A.

participants who did not progress to late AMD before with-
drawal, loss to follow-up, or the end of the study (partici-
pants B-F in Fig. 1). This is referred to as right-censored data
because only the lower bound of the time-at-risk is known.
Censored participants are still included in the analyses and
are counted among the number of people at risk for the
outcome until the last date that their status is known. This is
in contrast to analyses of binary outcome data observed at
a fixed timepoint (e.g., the proportion of participants with
late AMD at three years). In analyses that do not use time-to-
event data, outcomes from participants who have not expe-
rienced the event of interest before being lost to follow-up
are treated as missing, introducing a potential source of bias.

The LEAD study was also subject to interval censor-
ing. When late AMD was detected, the exact date of onset
was usually not known, other that it occurred between
the previous and current study visits. In the presence of
interval-censored data, the date at which the outcome is
first detected or a date midway between the two study visits
may be treated as the event date (known as right-point and
mid-point imputation, respectively). As with any imputation
method, there is an associated risk of bias. Statistical tech-
niques are available to model this uncertainty when estimat-
ing the survival function but are seldom used.3

Much less common is left censoring, that is, the occur-
rence of the outcome event prior to the start of analysis time.
Left censoring may occur if analysis time is only measured
after an interim event has been observed, for example, in
the case of a delay between assessing participant eligibility
and the date of treatment randomization (when measure-
ment of time-to-event should commence). Left truncation
(i.e., excluding people from enrollment if the outcome event
has already occurred), on the other hand, is more common
in epidemiological research and can result in selection bias.

For valid interpretation of results, either the assumption
that censoring is not related to the outcome (i.e., nonin-
formative censoring) is required, or statistical techniques
should be used to adjust for this association.4 Noninforma-

tive censoring may be a valid assumption among people
who withdraw from a study after moving away from the
study area. However, if people were unable to attend study
visits due to poor vision secondary to the outcome of inter-
est, the assumption of non-informative censoring would not
be valid. It can be difficult to assess whether censoring
caused by loss to follow-up is related to the outcome because
outcome status is usually unknown among participants with
right censoring. It is important to consider this potential
source of bias and whether drop out could be related to
the intervention or exposure of interest.5

SURVIVAL, FAILURE AND HAZARD FUNCTIONS

The survival function models the probability of a person
remaining event free until a given time (see Fig. 2 for two
examples of models with different event time distributions).
The Kaplan-Meier estimator is an example of a nonparamet-
ric approach to estimating the survival function. Nonpara-
metric methods do not require any assumptions to be made
about the changes in the rate of the outcome over time. The
Kaplan-Meier estimate is derived from the number of events
(such as progression to late AMD), the number of people
at risk (i.e., those who had not been censored or reached
the endpoint before that time), and the survival probability
immediately before that time (see Supplementary Material
for formulae). At baseline, time-at-risk equals zero for all
participants and the survival function equals one (because
all participants have not yet experienced the outcome). The
survival function decreases as time progresses and more
participants experience the outcome of interest. The failure
function is equal to one minus the survival function and is
interpreted as the cumulative proportion of participants who
have experienced the outcome.

The hazard function represents the instantaneous risk of
occurrence for the outcome at a given time. It represents
how likely it is that the event occurs in the next instant,
given that it has not occurred up to this point in time. The
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FIGURE 2. Theoretical survival functions and hazard rates from a gamma distribution (A and B) and a Weibull distribution (C and D, scale
parameter = 3) and varying values of the shape parameter. These distributions are equal to the exponential distribution when the shape
parameter is equal to one.

hazard function may decrease over time if events are more
likely to be observed in the initial study period, or increase if
events occur more frequently at the end of the study period.
The ratio of the hazard rate between two groups is known
as the hazard ratio (HR), and this ratio is often of inter-
est in analyses of time-to-event data. The HR describes the
relative increase or decrease in the rate of events in one
group of participants compared to another. An HR >1 indi-
cates a higher rate of events among the intervention group
compared to the reference group, whereas an HR <1 indi-
cates a lower rate of events among the intervention group
compared to the reference group.

The log-rank test is a nonparametric test used to assess
whether Kaplan-Meier survival functions differ between
groups defined by exposure or intervention status. It is based
on the number of outcomes observed in each group and the
number of outcomes expected under the null hypothesis of
no difference.6 The log-rank test is commonly used because
it is easily implemented. However, this test does not provide
an estimate of the magnitude of difference between groups
such as a HR or incidence rate ratio.

COX PROPORTIONAL HAZARDS MODEL

The Cox proportional hazards model is a semiparametric
approach to assessing time-to-event data. The term semi-
parametric refers to the fact that researchers do not need
to make any assumptions about the shape of the underly-
ing hazard function. Estimates of HRs from Cox regression
models are valid under the proportional hazards assump-

tion, as discussed below. Unadjusted Cox regression models
provide similar statistical power to detect an intervention
effect to that of the log-rank test. However, additional power
is obtained when strong predictors of the rate of events are
included as covariates in a Cox model.7 Power is dimin-
ished for Cox regression and the log-rank test if hazards are
nonproportional.

If researchers are only interested in the proportion of
participants who have experienced an event by a given time
and the timing of events is not important (e.g., the propor-
tion of individuals who progressed to late AMD by the end
of the three-year study period), binary outcome data can be
used to compare intervention or exposure groups via estima-
tion of odds ratios, risk ratios, or risk differences. However,
analyses of binary data address different research questions
to analyses of time-to-event data. Therefore, estimates from
analyses of binary data (e.g., odds ratios) cannot be directly
compared to those from time-to-event analyses, such as HRs.
Time-to-event analyses are particularly useful when a similar
proportion of events has been observed in each study group
by the end of the follow-up period, but the events tended to
occur earlier in one group than another.

MODEL COVARIATES

Any model covariates should be selected a priori accord-
ing to biological plausibility, either as confounders of the
exposure-outcome relationship or as strong predictors time
to event.
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Unlike when using linear or logistic regression, time-
varying covariates, i.e., variables with values that change
between visits, can be incorporated into analyses of time-
to-event data using time-dependent (or updated-covariate)
methods.8 It should be noted that joint models of longi-
tudinal and survival data may provide more efficient and
less biased estimates of the effect of an intervention on
time to event in the presence of correlation between the
time-dependent variable and the outcome of interest.9,10

Researchers are urged to seek statistical advice when consid-
ering this approach.

Age is a special type of time-varying covariate. Because
everyone increases in age at the same rate, including base-
line age as a covariate is usually sufficient to adjust for
confounding. Age can also be used as the time scale, rather
than time from baseline visit.11,12 This is particularly useful
in long-term cohort studies with a wide range of ages at
baseline.

ACCELERATED FAILURE-TIME MODELS

Accelerated failure-time (AFT) models use a fully-parametric
approach to assess time-to-event data. These models have
not been as widely used as log-rank or Cox models in the
past because assumptions are required to be made about
the shape of the survival function (i.e., whether the survival
curve approximates a known distribution such as Weibull or
gamma, as seen in Fig. 2). These assumptions can be tested,
as demonstrated in the illustrative example. AFT modes can
be used to estimate the ratio of time to event between expo-
sure groups. A negative time coefficient indicates decreased
time to event (i.e., a higher incidence rate) on average among
the intervention group compared to the reference group,
whereas a positive coefficient indicates the time to event
will be greater (i.e., a lower incidence rate) among interven-
tion group compared to the reference group. Weibull and
exponential models are examples of AFT models, which also
can be used to estimate HRs. A more flexible model, known
as the Royston−Parmar model, has become more common
in recent years and is particularly suited to predicting time
to disease progression.13 AFT models can facilitate estima-
tion of survival times and incidence beyond the range of the
observed study period (whereas Cox models cannot).

ASSESSMENT OF THE PROPORTIONAL HAZARD

ASSUMPTION

For valid interpretation of HRs, it is essential that the propor-
tional hazards assumption is met, i.e., that the relative
difference in the rate of events between categories remains
constant for the entire study duration. Although the hazard
rates may change over time, it is assumed that the HRs do
not.

The proportional hazards assumption should be assessed
following the log-rank test, and for each variable included in
Cox, Weibull and exponential models. A log-log plot (Fig. 3)
can be generated to graphically assess this assumption.
Approximately parallel lines suggest a valid proportional
hazards assumption, whereas lines that converge or diverge
indicate a violation of the assumption. The proportional-
hazards assumption can be assessed statistically (as demon-
strated in the illustrative example). However, this test often
has insufficient statistical power to detect a violation of
the proportional hazards assumption, so graphical methods

FIGURE 3. Graphical assessment (log-log plots) of the proportional-
hazards assumption for pigmentary abnormality status when inves-
tigating time to late age-related macular degeneration among the
sham treatment group from the LEAD study.

to assess proportionality are preferred.14 Small degrees of
nonproportionality will have minimal impact interpretation
of the estimates. However, strategies such as stratification
or inclusion of time-varying coefficients should be consid-
ered in the case of obvious violations of the assumption, for
example, in the case of a delayed treatment effect.

COMPETING RISKS AND RECURRENT EVENTS

Late AMD was defined as the presence of either atrophic or
neovascular AMD in the LEAD study. Detection of atrophy
can be difficult after neovascularization has developed in the
macula, so neovascular AMD is a competing risk for atrophic
AMD. An inferior approach to investigating the effect of an
exposure on the time to atrophic AMD is to censor partici-
pants at the time of neovascular AMD detection. This censor-
ing is informative, that is, the participants who are censored
because of the detection of neovascular AMD are likely to
have poorer ophthalmic health than those who do not have
neovascular AMD, and this is a potential source of bias.
Therefore it is recommended that competing risk regression
be used, although interpretation of HRs from these models
may not be intuitive.15,16 In Fine and Gray’s subdistribution
hazard model,15 participants who experience the compet-
ing event are still counted among those at-risk for the event
of interest, even though these participants can no longer be
observed to experience the event of interest.16 Therefore the
HR from this model is interpreted as the relative difference
in the effect on the cumulative incidence function (or the
event rate for the outcome of interest) between exposure
categories among participants who are either event free or
have experienced the competing event.16

Not all events of interest are terminal and may, in fact,
be recurrent. For example, an eye undergoing treatment for
neovascular AMD may fluctuate between different levels of
visual impairment. The probability of transitioning between
states of visual impairment can be assessed via a multistate
model when each state is distinctly defined.17 Researchers
are urged to seek statistical advice when considering this
approach.
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TABLE. Summary of Indications for Use of Survival Analysis Methods

Approach Method Indication for Use

Non-parametric Number (%) of events All studies
Number (%) of participants lost to

follow-up/withdrawn
All studies

Total and median follow-up time All studies
Incidence rate All studies
Median survival time All studies in which the outcome of interest is observed for more than 50% of the participants
Kaplan-Meier survival or failure

plots
All analyses of categorical exposures
Continuous exposures will need to be categorized before plotting survival or failure functions

Log-rank test When there are no exposure-outcome confounders
The magnitude of the exposure-outcome association does not need to be quantified

Semiparametric Cox regression model To quantify the relative hazard of the event occurring (hazard ratio)
The distribution of event times is not of interest

Fully parametric Accelerated failure-time models
(e.g., Generalized gamma,
Weibull, lognormal,
exponential)

To estimate an acceleration factor rather than a hazard ratio
When the proportional hazards assumption is not valid, or
To extrapolate estimates of survival beyond the study period

Fully or semiparametric Time-varying coefficients The effect of the exposure changes over time (i.e., hazards are non-proportional, e.g., a delayed
treatment response or attenuation of treatment effect over time)

Time-varying covariates The exposure changes over time
Competing risk regression The outcome of interest is not able to be observed after the occurrence of a separate but

related event
Log-log plot To assess the proportional hazards assumption after the log-rank test or Cox, Weibull, or

exponential models
Stratification There is evidence of nonproportional hazards for a model covariate other than the primary

exposure
The magnitude of the covariate-outcome association doesn’t need to be estimated

Shared frailty model There are nonindependent observations (e.g., two eyes from one person)
Joint longitudinal and survival

data
In the presence of a time-dependent variable which is correlated with the event of interest and

the degree of correlation is of interest.
Multistate model A person can transition between more than two states

It is assumed that the future transition only depends on the present state

DATA ON TWO EYES FROM ONE PERSON

For epidemiological studies in which a person-level expo-
sure (such as diet or exercise) is of primary interest, disease
status is often categorized per-person according to the eye
with the most severe disease.18 On the other hand, eye-
specific data on interventions and outcomes may be avail-
able in clinical trials. Collecting data from two eyes per
person may be less resource intensive than collecting data on
one eye per person with double the number of participants.
However, given the likely similarity between the two eyes of
one person, data from these two eyes (which share the same
environment and genes) may not contribute as much statisti-
cal information as would two eyes from two separate people.
The methods so far presented provide valid estimates and
confidence intervals under the assumption that the outcome
from each eye is independent. In the presence of correlated
outcomes (i.e., outcomes from two eyes of the same person),
these methods are likely to provide confidence intervals that
are narrower than they should be. Methods for analyzing
data with clustered observations (e.g., eyes within people
or patients within hospitals) include the use of shared frailty
models and the use of robust (sandwich) standard errors to
account for this clustering.19 The correlation between clus-
tered individuals is modeled when shared frailty models are
applied. When clustering is accounted for using robust stan-
dard errors, the estimates will be the same as those from the
equivalent model fitted with regular standard errors, but the
confidence intervals and P values will change.

REPORTING

Methods for handling censored observations, assessment
of model fit and model assumptions should always be

described. It is important to report the number of people
who were lost to follow-up, dropped out or died during the
study so readers can consider the potential for bias asso-
ciated with censoring. The time-to-event summary statis-
tics that we recommend reporting are listed in the Table.
Time-at-risk is rarely distributed symmetrically around the
mean, so the median (i.e., the time required for the outcome
to be observed for half the participants) is often used as
a summary measure. Incidence rates and HRs should be
reported with 95% confidence intervals (CI) to allow read-
ers to assess the precision of the estimates. When graph-
ing survival or failure plots, it is good practice to include a
risk table that gives the number of people or eyes at risk at
selected timepoints below the plot and to plot confidence
intervals around each curve (as seen in Fig. 4). Compli-
ance with reporting guidelines such as STROBE (obser-
vational studies), CONSORT (trials), and ARRIVE (animal
research) is recommended to facilitate transparent and
reproducible research, regardless of the statistical approach
used.20–22

EXAMPLE FROM THE LEAD STUDY

There were 145 participants randomized to the sham treat-
ment group in the LEAD study (77% female, age at baseline
51-89 years). Definite retinal pigmentary abnormalities were
detected in the study eye among 51 (35%) of these partic-
ipants at baseline (see Supplementary Table S4 for partici-
pant characteristics by exposure status). Twelve participants
(8%) were lost to follow-up and were censored at the last
study visit they attended (n = 6, 6% with no/questionable
pigmentary abnormalities; n = 6, 12% with definite abnor-
malities). Participants were followed for a total of 384 years
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FIGURE 4. (A) Survival function for study eyes in the sham treatment arm of the LEAD trial. (B) Failure function by pigmentary abnormality
status. The functions derived using the Kaplan-Meier estimator at each timepoint. The shaded area represents the 95% CI.

and there were 25 study eyes which progressed to late AMD
during the study period (n = 6, 6% with no/questionable
pigmentary abnormalities; n = 19, 37% with definite abnor-
malities), resulting in an incidence rate of 6.5 events per 100
person-years, 95% CI 4.4, 9.6). Median survival time could
not be reported because only 17% of study eyes progressed
to late AMD during the study period.

Sex, age, and smoking status at baseline were hypothe-
sized to be predictors time to late AMD and chosen as model
covariates a priori. The estimated HR for baseline pigmen-
tary abnormality status among study eyes from the covariate-
adjusted Cox model was 8.86 (95% CI 3.48, 22.59). This is
interpreted as an 8.9-fold increase in the rate of progres-
sion to late AMD for eyes with pigmentary abnormalities
compared to those without (see Fig. 4B). Assessment of the
log-log plot (Fig. 3) suggests that there was no major viola-
tion of the proportional hazards assumption for this variable
(proportional hazards test of Schoenfeld residuals: P = 0.978
for pigmentary abnormality status, p-value between 0.301
and 0.767 for covariates).

AFT models were then explored to investigate whether
a better fit to the observed data could be obtained. First,
a generalized gamma model was fit. Statistical tests of the
model parameters implied that a more parsimonious model
could provide sufficient fit (i.e., tests of κ = 0 for lognor-
mal, κ = 1 for Weibull, κ = 1 and ln [σ ] = 0 for exponential
distributions, see values in Supplementary Table S7). Among
each of the models (including the Cox model), the Weibull
model provided the best fit as indicated by Akaike’s infor-
mation criterion and the Bayesian information criterion (see
values in Supplementary Table S8). The covariate-adjusted
HR for pigmentary abnormalities derived from the Weibull
model was estimated to be 9.39 (95% CI 3.67, 24.00). This
is greater than the estimate from the Cox model presented
above. However, in the presence of smaller effect sizes, esti-
mates are expected to be similar between Cox and Weibull

models. The exponentiated time metric coefficient (e−1.35)
was 0.26 (95% CI 0.13, 0.53) which is interpreted as a 74%
decrease in the time to late AMD among those with pigmen-
tary abnormalities compared to those without. The shape
parameter was greater than one, indicating that the hazard
of progressing to late AMD increased with time from base-
line. Estimates from this model suggest it would take 13.7
years for 50% of the participants without pigmentary abnor-
malities to progress to late AMD (median survival time, 95%
CI 3.1, 24.3 years), whereas it would only take 3.9 years for
50% of the participants with pigmentary abnormalities to
progress (95% CI 2.5, 5.3).

After including fellow eyes, pigmentary abnormalities
were detected at baseline in 88 out of 290 eyes in the
sham treatment group (30%). Thirty-one of these eyes (35%)
progressed to late AMD prior to the end of the study
compared to 12 (6%) of the 202 eyes without pigmentary
abnormalities. The adjusted HR for pigmentary abnormali-
ties estimated via a Weibull model including two eyes per
participant with shared frailty by person was 8.73 (95% CI
4.13, 18.46).

Of the 25 study eyes that developed late AMD, 20 (80%)
had the atrophic type and 5 (20%) had neovascular AMD.
The rate of progression to atrophic AMD among those who
were event free or had progressed to neovascular AMD was
estimated via competing risk regression to be more than
15 times greater for those with pigmentary abnormalities
compared to those without (adjusted HR 15.26, 95% CI 4.31,
54.04). As a comparison, the adjusted subdistribution HR for
neovascular AMD was 1.52, 95% CI 0.26, 9.01.

CONCLUSIONS

Time-to-event analyses should be considered for longitu-
dinal studies in which actual, or even approximate, event
times can be recorded. As with any statistical analysis,
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attention should be paid to the assumptions required for
valid inference, and all relevant information should be
reported to allow readers to assess potential sources of bias.
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