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Abstract
Purpose We investigated whether ovarian cancer could alter the genital microbiota in a specific way with clinical values. 
Furthermore, we proposed how such changes could be envisioned in a paradigm of predictive, preventive, and personalized 
medicine (PPPM).
Methods The samples were collected using cotton swabs from the cervical, uterine cavity, fallopian tubes, and ovaries of 
patients subjected to the surgical procedures for the malignant/benign lesions. All samples were then analyzed by metagen-
omic shotgun sequencing. The distribution patterns and characteristics of the microbiota in the reproductive tract of subjects 
were analyzed and were interpreted in relation to the clinical outcomes of the subjects.
Results While the ovarian cancer was able to alter the genital microbiota, the bacteria were the dominant microorganisms in 
all samples across all cohorts in the study (median 99%). The microbiota of the upper female reproductive tract were mainly 
from the cervical, identified by low bacterial biomass and high bacterial diversity. Ovarian cancer had a distinct microbiota 
signature. The tubal ligation affects its microbial distribution. There were no different species on the surface of platinum-
sensitive ovarian tissues compared to samples from platinum-resistant patients.
Conclusion The ovarian cancer–induced changes in microbiota magnify the potential of microbiota as a biotherapeutic modal-
ity in the treatment of ovarian cancer in this study and very likely for several malignancies and other conditions. Our findings 
demonstrated, for the first time, that microbiota could be dissected and applied in more specific fashion based on a predictive, 
preventive, and personalized medicine (PPPM) model in the treatment of ovarian cancer. Utilizing microbiota portfolio in 
a PPPM system in ovarian cancer would provide a unique opportunity to a clinically intelligent and novel approach in the 
treatment of ovarian cancer as well as several other conditions and malignancies.
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Introduction

Ovarian cancer has become the most lethal malignant tumor for 
women [1, 2]. Given its insidious onset and poor response in 
advanced stages to various treatments, the development of a vital 
predictive- and preventive-based strategy is a dire urgency in 
ovarian cancer [1]. Furthermore, heterogeneity of ovarian cancer 
necessitates fostering a system in which individuals could be 
screened for early diagnosis, prevention of advanced stages of 
the disease, and better clinical outcomes. To accomplish such 
predictive and preventive standards, it is required that a “person-
alized” protocol be assembled in which cutting-edge knowledge 
and technologies in basic and clinical sciences be combined and 
executed. In this way, the challenge of heterogenicity in ovarian 
cancer would be converted to a golden opportunity via a “per-
sonalize medicine” paradigm. In such scenario, potential vulner-
able individuals would be categorized based on their genetic and 
biologic background and differences; a tailored preventive and/
or therapeutic strategy, rather than general one, would be deter-
mined for them against ovarian cancer in a personalized manner.

There are few reports on the perspective of using 
“OMICS” in the context of personalized medicine in ovarian 
cancer [3]. Genomics and genetic background play a central 
role in personalization of any care in ovarian cancer. Adopt-
ing next generation sequencing (NGS) has been a central 
piece in exploring novel therapeutic targets in malignancies 
including ovarian cancer [4]. Besides our late discovery of 
the close relationship between gene mutation and occurrence 
of a small portion of ovarian cancers, like BRCA1, BRCA2, 
Pten, and TP53, the most recent and important understand-
ing about the cause of ovarian cancer is the existence of 
some pathogenic substances in the lower reproductive tract. 
These pathogens may play certain cancer-causing effects, 
which explains why ovarian cancer usually starts at the 
tail ends of the fallopian tubes [5–8]. Moreover, tubal liga-
tion and hysterectomy lower the risk of ovarian cancer by 
20 ~ 30% [9]. These clinical observations partly challenge 
the inherent knowledge that the ovarian located in an iso-
lated environment lacks active communication with outside 
for anatomical reasons. This would rationalize exploring a 
new domain of omics, namely, “Microbiom” which magni-
fies the dire need for unraveling the pathogenic or beneficial 
role of microorganisms in ovarian cancer on a personalized 
fashion. Additionally, embracing such novel niche of micro-
biome would be highly helpful in preventive and predictive 
measures regarding ovarian cancer as well as future direction 
of current research concerning women’s health even in more 
general manner beyond ovarian cancer.

Microorganisms, including viruses and bacteria, have 
been suspected of having a role in carcinogenesis for a 
long time [10]. However, as for the upper reproductive 
tract, including the ovarian, the microorganism’s existence 

is difficult to detect, making the analysis of its pathoge-
netic effect even more challenging. A 2016 clinical study 
suggested that the local microbiome of endometrial cancer 
patients disrupted, compared with benign uterine samples 
[11]. Our previous research also found microbial disorders 
in ovarian cancer tissues [6]. Most studies have found that 
from the lower reproductive tract to the upper reproductive 
tract, the microbial biomass is getting less, but the diver-
sity has become richer [12, 13]. However, there still lacks 
substantial evidence to link microbial dysbiosis and ovar-
ian tumorigenesis directly. On the other hand, researchers 
found that certain microbiome could influence the thera-
peutic efficacy of different cancer treatments, including 
chemotherapy and immunotherapy, for various tumor 
types [14, 15]. As for ovarian cancer, it is still unknown 
whether chemotherapy-resistant and chemotherapy-sensi-
tive patients own specific microbial signatures.

Collectively, in this study, we tested our overarching new 
concept that ovarian microbiota could be used as a reliable 
source in a PPPM perspective in fight against ovarian cancer. 
To evaluate such notion, we determined the distribution pat-
tern of ovarian microorganisms and factors which can affect 
their composition and phenotypic features through a well-
designed controlled and systemic clinical study. Our main 
intention through this current study was to introduce the 
powerhouse of ovarian microbiota in the context of PPPM as 
a novel approach to improve and promote the current preven-
tive and therapeutic modalities in the treatment of ovarian 
cancer.

Materials and methods

Patients

This is a prospective study approved by the Review Board of 
Tongji Hospital (Tongji Medical College, Huazhong Univer-
sity of Science and Technology Institutional) [16]. The research 
subjects are divided into two groups of the patients with ovar-
ian cancer (experimental group) and the group of patients with 
benign lesions (control group). While subjects in both groups 
underwent bilateral salpingo-oophorectomy, patients with 
malignant ovarian cancer were subjected to metastasis resection 
and lymph node dissection according to the stage. All subjects 
stop taking antibiotics 2 weeks prior to the surgery. No chemo-
therapy was administered to either group. All patients signed 
the consent form.

Clinical sample collection

A data file of personal information for every subject was 
formed (n = 65, 35 experimental group and 30 control 
group). The data file included the basic clinical information 
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and all follow-up trajectory records. Using cotton swab (CY-
98000PS, Huachenyang Co., LTD, Shenzhen, China), sam-
ples were taken from the surface of cervical (CCT), uterine 
cavity (EMT), fallopian tube (FTT), and ovarian (OCT). 
Samples from physical environment of the surgery room and 
equipments were also taken using cotton swabs to ensure 
that careful, standardized, and appropriate standards were 
rigorously employed during the study. All samples were 
transported temporarily in liquid nitrogen and then trans-
ferred to − 80° freezer for longer term storage.

Metagenomic shotgun sequencing

All samples were prepared for the metagenomic shotgun 
sequencing according to previous protocols [6]. Briefly, 
total genomic DNA was extracted using QIAamp DNA 
Microbiome Kit (Qiagen, USA). After DNA extraction, 
1 µg genomic DNA was randomly fragmented by Cova-
ris, followed by purification by AxyPrep Mag PCR clean-
up kit. The fragmented DNA was selected by Agencourt 
AMPure XP Medium kit to an average size of 200–400 bp. 
The fragments were end-repaired by End Repair Mix and 
purified afterward. The repaired DNAs were combined with 
A-Tailing Mix. Then the Illumina adaptors were ligated to 
the Adenylate 3’Ends DNA and followed by purification. 
The products were selected based on the insert size. Several 
rounds of PCR amplification with PCR Primer Cocktail and 
PCR Master Mix were performed to enrich the Adapter-
ligated DNA fragments. After purification, the library was 
qualified by the Agilent 2100 bioanalyzer (Agilent, USA) 
and ABI StepOnePlus Real-time PCR System. Finally, the 
qualified libraries were sequenced on the Illumina Hiseq 
platform (BGI-Shenzhen, China).

Metagenomic quality control and taxonomic 
profiling

All raw sequenced reads were performed quality-control 
using fastp tool v0.20.1 [17], whereby the adapters were 
automatically detected and trimmed, low complexity reads 
were filtered out, read bases corrected, and the reads with 
length shorter than 36 bp and poor quality (a phred qual-
ity value < 20 for > 40% of the read length) were removed. 
Next, the post-quality-filtered reads were decontaminated 
by performing end-to-end Bowtie-2 v2.3.5.1 alignment in 
“very-sensitive” option against human reference genome 
(GRCh38), phage phiX174 (NC_001422.1), and vector 
sequences (UniVec & UniVec_Core Database) to exclude 
any human/phiX/vector DNA contamination [18]. The 
unmapped reads were extracted and converted to FASTQ 
files by samtools v1.10 [19]. The clean reads were assigned 
to microbial taxa using Kraken2 v2.1.1 with prebuilt k2_
pluspf_2021027 reference database and 0.1 confidence [20]. 

The taxonomic abundances were estimated using Braken 
tool v2.6.2 from Kraken2 outputs [21]. All reads (and taxa) 
from mitochondria and chloroplast as well as non-fungi 
eukaryotes were excluded. Except for alpha-diversity anal-
yses, the microbial taxa that only have less than 0.00001% 
relative abundance in the total dataset or appeared in less 
than 5 samples were further filtered out to eliminate poten-
tially artifactual sequences.

Alpha‑ and beta‑diversity analyses

For taxonomic alpha-diversity, clean reads were rarefied to 
6172 reads per sample. The rarefaction depth corresponded 
to the sample with the lowest count of valid reads. A total 
of four measures of alpha diversity were calculated using R 
package “phyloseq” [22]: observed richness (the total num-
ber of different taxa in a sample), Shannon diversity index 
(accounts for both taxonomic richness and evenness in a 
sample), Inverse Simpson index (an indicator of the richness 
in a sample with uniform evenness), and Chao1 (the total 
richness of a sample). Alpha diversity difference between 
two conditions of patients (B and M) or the comparisons 
among the four different sample sites were performed with 
the Wilcoxon-rank sum test and Dunn’s test of multiple com-
parisons, respectively.

For beta-diversity analyses, the microbial taxa count 
table was centered-log ratio (clr) transformed as described 
by Aitchion to better handle comparisons of composi-
tional data [6, 23]. Principal component analysis (PCA) 
analyses were performed with Euclidean distances of clr-
transformed counts using R package “phyloseq” [22]. Dif-
ferences between microbial communities (sample sites and/
or patients’ conditions) were determined by PERMANOVA 
using the function “adonis2” in the R package “vegan” [24].

Statistical analysis

To find some microbial taxa that generally varied between 
adjacent body sites alongside tractus genitalis, we specifi-
cally extracted samples from all four sites of the same host 
and made taxonomic profiling comparisons between adja-
cent body sites for every subject. To be more precise, for 
every two adjoining sample sites, FTT vs. OCT, we com-
pared the relative abundance of the taxa between samples 
from FTT sites and those from OCT sites of the same sub-
ject. A taxon was considered as a candidate differential 
abundant taxon if the absolute value of log2-transformed 
relative abundance difference >  = 0.5. In addition, if a taxon 
only appeared in one of the adjacent positions and its relative 
abundance was not less than a specified threshold (0.05%), it 
was also considered a candidate differential abundant taxon. 
For these candidate differentials abundant taxa, we consid-
ered a microbial taxon significantly increased (or decreased) 
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only if the taxon was shared at least in 75% of samples in 
that specific group. The significant taxa were individually 
subjected to an unpaired Wilcoxon-rank sum test of all mod-
els from corresponding sample site and condition to fulfill 
the statistical analysis.

Results

General and demographic analysis

Table 1 summarizes the basic information and demographic 
data for all subjects. As shown, there were 35 patients in 
the experimental group, with an average age of 52.7 ± 8.9, 
including 27 serous cell carcinoma, two mucinous carci-
noma, three clear cell carcinoma, and three endometrioid 
carcinoma patients. For 9 cases, the fallopian tube samples 
were unavailable due to tumor invasion; for 1 case, the 
cervix was not taken and the cervical and uterine cavity 
results were not obtained for another subject. There were 
thirty benign cases (control group) with an average age of 
55.1 ± 11.2 in the control group, twenty of which did not 
undergo ovariectomy. Among the malignant cases, eleven 
patients were not ligated, and thirteen were ligated. Plati-
num resistant was defined as relapse 6 months after 1st line 
platinum-based chemotherapy [25]. Eight cases were plati-
num-resistant, and nineteen cases were platinum-sensitive.

General microbial distribution in the paired samples 
of both benign and malignant patients

After quality control and de-host analysis, Kraken2 + PlusPF 
was used for species annotation followed by the seqkit stat 
used to perform a basic analysis. The average read sequence 
length of samples from patients in each state was in the 
range of 61 to 147.3 bp, and the median was in the range of 
103 to 144 bp. The base quality of the read sequence of each 
state sample was acceptable, and the median Q30 ratio was 
above 96% (SuppFig. 1A). The reads of samples of different 
parts could be effectively annotated (SuppFig. 1B and C).

Specific composition of microorganism analysis

Bacteria had the highest proportion (median of 99%) in all sam-
ples compared to the other microorgansms. The ratio of fungi, 
viruses, eukaryotes, and archaea was relatively small, less than 
1% in most samples. At the phylum level, the top 5 relative abun-
dance was Proteobacteria, Firmicutes, Actinobacteria, Bacteroi-
detes, and Tenericutes (SuppFig. 1E). The Proteobacteria phy-
lum had the highest abundance in all samples. The proportion 
of Firmicutes in cervical samples was higher than that of the 
other three parts. The average abundance of Actinobacteria bac-
teria from all malignant patients was higher than that in benign 
patients, especially in the ovarian cases. At the species level, the 
OUTs that appear in at least 10% of the samples were conserved. 
The top 5 were Pseudomonas tolaasii, Klebsiella pneumoniae, 
Salmonella sp., Acinetobacter johnsonii, and Escherichia coli 
(Fig. 1A). Furthermore, species-level alpha-diversity suggested 
no significant differences in microbial diversity of the cervix, 
uterine cavity, and fallopian tube except for ovarian tissues 
(Fig. 1A, SuppFig. 1D).

Migration analysis

To analyze the migration of microorganisms from the 
lower reproductive tract to the upper reproductive tract, 
we conducted a similarity analysis of the adjacent posi-
tions of samples from the four parts. At the phylum level, 
the relative abundance of Firmicutes bacteria in both the 
benign and malignant patients generally decreased from 
CCT to EMT (SuppFig. 2A and B). The relative abun-
dance of Ascomycota bacteria in malignant patients from 
EMT to FTT was both increased, and the difference was 
statistically significant (p < 0.01) (SuppFig. 2C and D). 
The relative abundance of Uroviricota gate in benign 
patients from FTT to OCT generally raised, but the dif-
ference was not statistically significant (SuppFig. 2E and 
F). At the level of CCT-EMT, there were apparent dif-
ferences in the similarity between the two groups 
(Fig. 1B). There was no significant difference in the par-
allel of other parts between the two groups; the relative 

Table 1  Demographic and clinical characteristics of the subjects

Ovarian cancer Noncancerous

Number 35 30
Age, years (mean ± SD) 52.7 ± 8.9 55.1 ± 11.2
Type of tumor (n, %)
  SC 27 -
  CCC 3 -
  EC 3 -
  MC 2 -

TNM stage (n, %)
  I 2 -
  II 3 -
  III 29 -
  IV 1 -

Platinum resistant (n, %)
  Yes 8 -
  No 19 -
  Other 8 -

Tubal ligation (n, %)
  Yes 13 7
  No 11 17
  Other 11 8
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abundance of Brevundimonas sp. DS20 bacteria in group 
B patients generally decreased from CCT to EMT. The 
relative abundance of Brevundimonas mediterranea, 
Brevundimonas sp. scallop, Brevundimonas sp. Bb-A, 
Brevundimonas sp. DS20, Brevundimonas sp. GW460-
12–10-14-LB2, Brevundimonas sp. SGAir0440, and 
Cutibacterium_acness was reduced from CCT to EMT 
in the malignant group (SuppFig. 3A and B). Cutibacte-
rium acnes and Komagataella phaffii generally increased 
in relative abundance from EMT to FTT in patients in 
malignant group (SuppFig. 3C and D). The relative abun-
dance of Cutibacterium acnes in benign patients from 
FTT to OCT had an upward trend (p > 0.05). The rela-
tive abundance of Brucella intermedia in the experiment 
group from FTT to OCT decreased, which had a statisti-
cal significant.

For the sample diversity, the beta diversity analysis indicated 
that there were significant differences in the microbial compo-
sition of patients in different groups (p <  = 0.001) (Fig. 1C). 
For presentation purposes, we performed a Venn diagram 
analysis. The results suggested that the out shared by four parts 
accounted for the majority, indicating that the lower reproduc-
tive tract was the primary source of microorganisms for the 
upper reproductive tract.

The microbial profile within a subject

To exclude the effects of different microbial populations 
between/among subjects, we further analyzed the micro-
bial portfolio of four different sites of single subjects. 
Briefly, we analyzed the relative abundance of microbes 
at the species level of four sites in 10 patients from con-
trol group and 24 subjects from experimental group. The 
samples of these 34 cases were divided into two clusters 
according to the salmonella sp. abundance (> 1%), depend-
ing on the environmental control and sample classification. 
We then analyzed the distribution of Salmonella sp. and 
Pseudomonas Tolaasii in benign and malignant patients 
with the relative abundance of salmonella sp. more than 
1% at any part (CCT, EMT, FTT, or OCT) (Fig. 2A). In 
the control group, the relative abundance of Pseudomonas 
tolaasii gradually decreased as migrated upward from the 
lower reproductive tract to the ovarian tissue. There was a 
similar trend in the malignant samples. Meanwhile, Salmo-
nella sp. gradually enriched among the 4 sites within the 
experimental group. The relative abundance in the uterine 
cavity was significantly higher than that of the lower repro-
ductive tract (cervix) (Fig. 2B). Interestingly, while no dif-
ference of Pseudomonas tolaasii abundance was detected 
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in all samples of both groups, however, Salmonella sp. 
showed an enriched status in both benign and malignant 
uterine cavities with higher level in the ovary of control 
group compared to the subjects in the experimental cohort 
(Fig. 2C). These findings supported the notion that micro-
organisms in ovarian tissues originate from the reproduc-
tive tract. Additionally, these data imply that the migra-
tion of the organisms in the upper reproductive tract of 
the malignant patients was different from those of benign 
controls with noticeable enriched microorganisms.

Malignant ovarian tissue had distinct microbial 
signatures

To clarify the distribution of microorganisms in malignant ovar-
ian tissues, the ovarian samples from both groups were compared 
(34 subjects from experimental group and 10 subjects from con-
trol group). The two groups showed significant differences in the 
distribution of β-diversity (p = 0.001, and p = 0.005) at the genus 

level as well as the species level (Fig. 3A and D). There were 
146 genus-level OTUs in all the ovarian samples. The differen-
tial bacteria enriched on the surface of malignant ovarian tissues 
were Salmonella, Asticcacaulis, Arthrobacter, Lactobacillus, 
Pseudarthrobacter, and Pseudarthrobacter compared to the top 
5 different bacteria enriched on the surface of benign ovarian tis-
sue, Brevundimonas, Ralstonia, Pandoraea, Streptococcus, and 
Corynebacterium (Fig. 3B and C). A total of 329 OTUs at the 
species level, Salmonella sp., Asticcacaulis excentricus, Acineto-
bacter sp. NEB 394, Acinetobacter lwoffii, and Arthrobacter sp. 
FB24, were enriched in malignant tissues. As for control group, 
Brevundimonas sp. Bb-A, Brevundimonas sp. DS20, Ralstonia 
pickettii, Pandoraea pnomenusa, Staphylococcus hominis, Koma-
gataella phaffii, Finegoldia magna, Cutibacterium acnes, Prevo-
tella intermedia, and Agrobacterium tumefaciens were enriched 
(Fig. 3E and F). Notably, Salmonella sp. was the most enriched 
species in malignant tissues, and its relative abundance was also 
the highest in the bacteria. While this study was not geared towards 
the detailed genotyping of every bacterium, however, Salmonella 
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Fig. 2  Signature species within and between individuals. A Species-
level relative abundance community barplot analysis at 4 sites per 
patient. B The relative abundance of Salmonella sp. and P. tolaasii 
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tolaasii in total samples of benign and malignant patients
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typhimurium is reported as one of the major species in ovarian 
cancer [4].

The influence of tubal ligation on the distribution 
of microorganisms on the surface of ovarian cancer 
tissue

A total of 312 OTUs were found between 13 fallopian tube 
ligated patients and 11 non-ligation patients. Although there 
was no statistical difference (p = 0.146), however, the β-diversity 
showed that the two groups share unidentical compositions of 
microorganisms (Fig. 4A). This might be due to the insufficient 
sample numbers. Among the different species, the top 5 most 
enriched bacteria were Arthrobacter sp. J3.40, Arthrobacter sp. 
UKPF54-2, Arthrobacter sp. KBS0702, Arthrobacter sp. FB24, 
and Acinetobacter sp. NEB 394 on the surface of the ovarian 
tissue in the ligated subjects. As for the ovarian tissue of the unli-
gated subjects, the most enriched species were Brevundimonas 

sp. DS20, Ralstonia mannitolilytica, Brevundimonas mediter-
ranea, Gardnerella vaginalis, and Achromobacter xylosoxidans 
(Fig. 4B and C).

Platinum resistance and the microorganism 
distribution of the ovarian cancer tissues

We compared the ovarian tissue surface microbial spe-
cies between 19 postoperative platinum-sensitive and 
eight platinum-resistant patients. On the species level, the 
two groups shared 226 species (Fig. 5A). The β-diversity 
analysis indicated no difference in species between the 
two groups (p = 0.44). The top 5 enrichment in the plat-
inum-resistant group is Pseudomonas_aeruginosa, Ral-
stonia mannitolilytica, Achromobacter xylosoxidans, 
Brevundimonas sp. DS20, and Brevundimonas sp. Bb-A 
(Fig. 5B and C).
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Fig. 3  The distribution of microorganisms on the surface of benign 
and malignant ovarian tissues. A Genus-level beta-diversity analy-
sis between 10 benign ovarian tissues and 34 malignant ones by 
PERMAVONA analysis (p = 0.001). B Differential abundant genus 

between two groups by ANCOM-BC test. C. Relative abundances 
of the differential abundant genus between two groups. D, E, and F 
show species’ signature
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Discussion

In this work, we did the metagenomic analysis using samples 
from subjects with ovarian cancer that migrated from the 
lower reproductive tract (cervix) to the upper reproductive 
tract (uterine cavity, fallopian tube, and ovary). The results 
suggested that bacteria are the most dominant microorgan-
ism in samples within and among the groups. The relative 
abundance of fungi, viruses, archaea, and protists accounted 
for about 1%. In terms of bacteria, there was a distinct low-
biomass microbiota in the upper reproductive tract of malig-
nant ovarian cancer. There was also characteristic microbiota 
distribution on ovarian tissues compared with the control 
group. Meanwhile, there were other varieties among the 
existing colonies based on clinical information as well as 
fallopian tube ligation and platinum resistance.

There have been many studies on the correlation between 
local carcinogenesis and dysbiotic microbiota, pathobionts, 
and/or pathogens in the upper reproductive tract [11, 26–28]. 
Importantly, microbes enriched in tumor pose unexpected 
effects on the therapeutic effect of different cancer treatments 
(including radiotherapy, chemotherapy, and especially immu-
notherapy) [29, 30]. Our previous 16S rRNA sequencing anal-
ysis suggested that there were distinct microbial signatures in 
ovarian cancer tissue as compared to the normal fallopian tube 
tissue [6]. The genomic analysis could be utilized as a bio-
logic powerhouse to tailor a preventive and most importantly 
an individualized strategy against numerous diseases specifi-
cally ovarian cancer in this case for our study. Additionally, the 
genomic analysis not only could provide accurate and more 

effective therapeutic and preventive approaches in ovarian can-
cers, but it also would facilitate the therapeutic modality in a 
cost-effective and less invasive fashion. Therefore, incorpora-
tion of cutting-edge metagenomic analysis similar to what was 
done in this study would be an excellent resource for the impli-
cation of a PPPM-based strategy to achieve a higher standard 
of treatment with improved level of life quality.

Origination and association of ovarian 
microbiota: the footprint of PPPM

In addition to a large number of microorganisms that migrate 
from the lower reproductive tract, our sequencing data dem-
onstrated that the uterine cavity locating the upper reproduc-
tive tract had a large number of microbial populations that 
are different from the lower reproductive tract. It is shown 
that microorganisms in the upper reproductive tract of 
benign and malignant patients mainly come from the lower 
reproductive tract [13]. The abdominal environment and the 
systemic circulatory system may also influence the micro-
biome of the upper reproductive tract [31]. While the upper 
reproductive tract and the lower reproductive tract are linked 
directly, the pathogens in the lower reproductive tract, such 
as the vagina, may migrate to the upper reproductive tract 
and even the pelvic cavity along with the tissue structure 
[32]. Therefore, it is plausible to propose a scenario in which 
through a well-tailored “personalized” modality, specific and 
desired microorganisms could be populated and be colo-
nized in the uterine cavity through the systemic circulation 

Fig. 4  Signature species on 
the surface of ovarian tissues 
between ligation and unligation 
of patients with ovarian cancer. 
A Species-level beta-diversity 
analysis between 13 ligation 
and 11 unligation of patients by 
PERMAVONA analysis (p = 
0.147). B Differential abundant 
species between two groups by 
ANCOM-BC test. C Relative 
abundances of the differential 
abundant species between two 
groups
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and then gradually move upward to the fallopian tubes and 
ovaries. Interestingly, we also did find a few unique taxa that 
were not derived from the reproductive tract on the surface 
of the ovary. Some previous studies reported that intestinal 
microbes could enter the pelvic cavity under certain condi-
tions (intestinal permeability change) and then colonize the 
ovarian tissue [27, 33]. The intestinal microbiota could also 
colonize the lower reproductive tract via the anus and vagina 
and subsequently affect the upper reproductive tract [34]. 
Similarly, blood circulation had been reported as an inde-
pendent way for microorganisms to accumulate in ovarian 
tissue. Collectively, since the primary source of microorgan-
isms is the digestive tract, a specific group of microorgan-
isms could be delivered and/or promoted through a well-
defined and executed personalized process so the host could 
be benefitted by their protective impact as well as predictive 
potential to reduce morbidity in a least non-invasive fashion 
in a clear manifestation of PPPM strategy.

Furthermore, our study found that the bacteria enrichment 
on the ovarian surface of the ligated group differed from that 
of the non-ligated subject but with no significant statistical 
differences which could be due to limited sample size. Sev-
eral studies have reported that tubal ligation can cut off the 
path of upper reproductive tract gynecological microorgan-
isms to the ovary, suggesting that ligation could reduce the 
recurrence of ovarian cancer [35]. This could be well due to 

the possibility that fallopian tube ligation could change the 
blood supply of the ovaries [9] or simply because ligation 
could cut off the structural path of all possible pathogenic 
substances from the vagina.

Compared with benign lesions, the local microenviron-
ment of ovarian cancer did display an obvious microbial sig-
nature. Although it is already reported that host’s response to 
local microbial dysbiosis was crucial to the study of tumori-
genesis [36], however, whether the cancer-associated micro-
biota leads to tumor-permissive microenvironment is still 
unclear. This study suggested that there are enriched patho-
gens, Salmonella, on the surface of multiple ovarian cancer 
tissues. Previous researches have reported that patients with 
Salmonella infection were six times more likely to suffer 
hepatobiliary cancer. Salmonella may participate in many 
pathogenic reactions that promote the occurrence and pro-
gress of cancer [37]. In addition, we also observed a higher 
abundance of Brevundimonas sp. in the control group.

Overall, regardless the causative mechanism, the genomic 
analysis similar to what was done in this study could iden-
tify the beneficial microorganism in the host and provide 
a prescription for populating the microorganisms based on 
personalized needs in a PPPM paradigm. In this way, the 
alteration of microbial portfolio would affect host microen-
vironment which would be affecting homeostasis, suggesting 
a significant clinical value to genomic analysis.

Fig. 5  Signature species on 
the surface of ovarian tissues 
between nineteen postoperative 
platinum-sensitive and eight 
platinum-resistant patients. A 
Species-level beta-diversity 
analysis indicated no differ-
ence in species between the two 
groups. B Differential abundant 
species between two groups by 
ANCOMBC test. C Relative 
abundances of the differential 
abundant species between two 
groups
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Microorganisms associated with treatment 
outcomes

Specific microbial colonies may enhance the therapeutic effect 
during the adjuvant treatment of tumors [14, 15, 38]. Studies of 
intestinal microbiome on affecting the effectiveness of chemo-
therapy drugs, enhancing the response to radiotherapy, and reg-
ulating the immune response of the body have been reported 
successively [39, 40]. The recent advances in the understanding 
of innate immunity and microbiota have ushered in a new era 
in the continued efforts to better understand the treatment and 
prevention of carcinoma [41].

However, evidence regarding the tumor local microbiota 
and their function in manipulating radiotherapy, chemother-
apy, and immunotherapy is still unavailable. On the other hand, 
although the treatment of ovarian cancer has greatly improved 
over the last 50 years, the options for clinicians still limit in 
integrating optimal surgery and systemic therapy (chemother-
apy, targeted therapy, etc.). Thus, the implication of PPPM in 
ovarian cancer is emerging not only as a cutting-edge approach 
in the process of treatment, but also as an effective way in the 
total cancer care. The identification of predictive biomarkers 
and the explication of mechanism of the recurrence and resist-
ance are the cornerstone to further improve treatment effective-
ness and to develop new generation of microbio-bio-treatment 
[42–44]. In this study, we found enriched differential colonies 
on the surface of ovarian cancer tissues in the platinum-resist-
ant group, which indicated that these bacterial groups may 
be the potential targets for improving ovarian cancer thera-
pies after drug resistance. Moreover, the understanding of the 
critical interactions between microbe and the host would help 
researchers utilizing patient responsiveness in the improve-
ment of future therapeutic agents. Importantly, the identifica-
tion of a site-specific microbiome may benefit the prediction 
and prevention of different types of ovarian cancer and it may 
even strengthen the therapeutic effect of the adjuvant treatment 
of cancer [45]. Elucidating these complex host–microbiome 
interactions, including the changes from lower reproductive 
tract to the upper reproductive tract, will translate into inter-
ventions for prevention, diagnosis, and therapeutic effects in a 
personalized fashion, enhancing health outcomes for women 
with ovary cancer.

Finally, several reports have indicated that certain diseases 
and conditions including, not limited to, cancer have specific 
microbiome signature [31, 46]. The cancer-associated alteration 
of microbiome is termed as “oncobiosis” playing a role during 
the initiation and progression of malignancies [31]. Numerous 
studies have proposed several mechanistic scenarios by which 
oncobiosis and the interactions between microbiome and tumors 
may affect the cancer progression and tumor microenvironment 
[31]. Alteration of microbiome may affect the way immune 
components are functioning within and against the tumor. 

Modulation of immune checkpoints and changes in the ratio of 
active effector immune cells versus immuno-regulatory cells are 
some of the examples of how microbiome can affect the tumor 
progression and survival. At metabolic as well as cellular levels 
and histology, changes in microbiome can affect the tumors by 
regulating oxidative stress, enhancing DNA damage, and regu-
lating the epithelial-to-mesenchymal transition conversion, key 
components in cancer development [31].

Limitations

Despite the introduction of several approaches in the treatment 
of ovarian cancer with a PPPM perspective, there were few 
limitations which should be counted and considered during the 
interpretation of our findings. The small sample size and the 
low microbial abundance of the upper reproductive tract were 
among the major limitations. In addition, in light of COVID-
19 pandemic, some patients encountered irregularity in their 
postoperative treatment. Furthermore, this study lacked the 
consideration of the potential effect of cyclic hormones on the 
local microecology of ovarian cancer. Moreover, the control 
group was selected as patients with benign disease, which may 
be slightly differed from the definition of healthy control. Simi-
larly, there was no clinical data on the long-term intake of oral 
contraceptives, so the microbiological composition of subjects 
using the oral contraceptive was not analyzed. Additionally, hav-
ing the phynotypic and genotypic analysis of several members 
of microbiome would have been highly informative, granting 
future investigations.

Conclusions and expert recommendations

We live in a constant symbiosis with thousands of distinct 
bacterial strains that have co-evolved with us. Besides the 
oral-digestive and respiratory tracts, the reproductive sys-
tem is also a major microbial habitat. It is of great signifi-
cance to study the microbial distribution characteristics of 
the reproductive tract for a comprehensive understanding 
of the occurrence of reproductive tract diseases and for a 
precise development of new therapeutic modalities. Most 
importantly, our findings suggest a scenario in which the 
host native powerhouse of microbiota may be used in a 
PPPM paradigm, providing a novel and cutting-edge way 
of treating specifically ovarian cancer and other malignan-
cies in general. One of the major advantages of PPPM is 
the fact that it is highly adaptable to the advanced tech-
nologies in biomedical sciences with high performance. 
Therefore, the PPPM would be a great vehicle to carry 
the production of metagenomic analysis to promote and 
improve diagnosis and prognosis as well as prediction val-
ues in ovarian cancer. Envisioning a personalized medicine 
approach in which by categorizing the patients based on 
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their genomes and molecular profile would revolutionize 
the conventional therapeutic modalities in a most effective, 
inexpensive, and less invasive fashion fulfilling the mis-
sion of PPPM approach.
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