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ABSTRACT

It is well documented that adult neural stem cells (NSCs) residing in the subventricular zone
(SVZ) and the subgranular zone (SGZ) are induced to proliferate and differentiate into new neu-
rons after injury such as stroke and hypoxia. However, the role of injury-related cues in driving
this process and the means by which they communicate with NSCs remains largely unknown.
Recently, the coupling of neurogenesis and angiogenesis and the extensive close contact
between vascular cells and other niche cells, known as the neurovascular unit (NVU), has
attracted interest. Further facilitating communication between blood and NSCs is a permeable
blood-brain-barrier (BBB) present in most niches, making vascular cells a potential conduit
between systemic signals, such as vascular endothelial growth factor (VEGF), and NSCs in the
niche, which could play an important role in regulating neurogenesis. We show that the leaky
BBB in stem cell niches of the intact and stroke brain can respond to circulating VEGF165 to drive
induction of the Notch ligand DLL4 (one of the most important cues in angiogenesis) in endothe-
lial cells (ECs), pericytes, and further induce significant proliferation and neurogenesis of stem
cells. STEM CELLS 2019;37:395–406

SIGNIFICANCE STATEMENT

The leaky blood-brain barrier in niches of the intact and stroke brain can respond to circulating
VEGF165 to drive neural stem cells (NSCs) activation and neurogenesis. Vascular endothelial
growth factor (VEGF165) induces expression of the Notch ligand DLL4 in endothelial cells,
pericytes, after stroke or oxygen-glucose deprivation. The enhanced DLL4-Notch signaling and
crosstalk between vasculature cells and NSCs regulate the activities of NSCs when triggered by
systemic stroke-induced factors.

INTRODUCTION

Understanding the mechanisms that drive the
restorative process in the brain is critical to the
discovery of ways to therapeutically enhance it
after injury or disease. Although the role of
endogenous stem cells in this process has not
been fully elucidated, it is now well documen-
ted that adult neural stem cells (NSCs) residing
in the subventricular zone (SVZ) of the lateral
ventricle and the subgranular zone (SGZ) of the
hippocampus are induced to proliferate and dif-
ferentiate into new neurons after injury such as
stroke [1–10]. In the last decade, a growing lit-
erature indicates that brain niches are far more
extensive than once thought. Thus, in addition
to the SVZ and SGZ, midline ventricular struc-
tures known as circumventricular organs (CVOs)
and sites along the third ventricle (3 V) wall and

fourth (4 V) ventricle recesses also have been

found to contain pockets of NSCs. Importantly,

in all these niche sites, stem cell proliferation is

dramatically upregulated and NSC differentia-

tion is shifted toward a neuronal fate after

experimental stroke from middle cerebral

artery occlusion (MCAO) [11–13].
However, the role of injury-related cues in

driving this process and the means by which

they communicate with NSCs remains largely

unknown. As signals must travel long distances

from the infarct to reach far-off niches, a sys-

temic route seems both plausible and likely. One

of the unique structural traits of stem cell niches

is the extensive and close contact between vas-

cular cells and niche cells [14, 15]. This arrange-

ment makes vascular cells a potential conduit

between systemic signals and NSCs and may play
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important role in regulating neurogenesis. And indeed, the cross-
talk between these two cell types, endothelial cells (ECs) and
NSCs, via Jagged-dependent Notch signaling is now beginning to
emerge as an important avenue for maintaining NSC quiescence
[16]. Also, as shown in other important work [17], vascular cells
(i.e., ECs and pericytes) from non-neurogenic cortex as well as
from the SVZ were able to promote NSC proliferation and neuro-
genesis in vitro, indicating the crucial regulation of NSC activity
by vascular cells even in non-neurogenic regions under certain cir-
cumstances. Thus, the regulation of NSC activity in the adult brain
is highly complex and well-regulated in order to maintain NSC qui-
escence, proliferation, and differentiation, especially after injury.

Furthermore, facilitating communication between blood
and NSCs is a permeable blood-brain barrier (BBB) found in
most (i.e., SVZ and CVOs) but not all (exception = SGZ) niches
[13]. Because of this unique penetrability not found elsewhere
in the brain, most niches are well positioned to respond to the
ever-changing composition of blood in order to sustain homeo-
static functions. Moreover, after stroke, the BBB becomes fur-
ther disrupted. In our earlier studies, this enhanced leakiness
has been positively correlated with increased stem cell prolif-
eration and neurogenesis in the SVZ and CVOs after stroke
[13, 18]. More recently, we showed that even the SGZ whose
BBB is not porous in the normal brain becomes leaky after
MCAO [19]. The heightened permeability in brain niches may
increase niche access to systemic factors especially after stroke
and/or facilitate greater contact between NSCs and cells of the
BBB (i.e., ECs, pericytes, and astrocytes), all of which could be
potentially important for signaling stem cell activities.

Although local hypoxic and tissue-secreted factors in the
niche have been widely studied as triggers for stem cell prolif-
eration in normal and injured brains [4, 20–35], only a few
reports have shown a role for circulating factors regulating
downstream stem cell responses and those do not offer an
underlying pathway/mechanism [36–38]. It is well established
that after stroke, the levels of circulating growth factors and
cytokines rise dramatically in blood [23–26, 39–59]. One partic-
ularly important factor is vascular endothelial growth factor
(VEGF), which is associated with enhanced angiogenesis and
neurogenesis in the ischemic brain [23, 24, 39, 60–63].

Systemic factors such as VEGF-A, VEGF-C ,and other fac-
tors, working directly through their receptors, are known to
affect either ECs to increase angiogenesis or NSCs to increase
neurogenesis [16, 32, 39, 64–84]. However, no one has hereto-
fore postulated and shown that circulating factors, facilitated
by the leaky BBB in the niche, can induce the cross communi-
cation between these systems (from EC to NSC or from NSC to
EC). Supporting this notion is the tight coupling of angiogene-
sis and neurogenesis [85] and the discovery that direct cell-cell
contact between EC and NSC is essential for maintenance of
stem identity in NSCs [16]. However, the underlying mecha-
nism has not been delineated. In both EC:EC or NSC:NSC com-
munication, Notch signaling has been implicated as the
downstream mediator. Moreover, the established role of VEGF-
DLL4 signaling in angiogenesis could likewise be pivotal in NSC
activity regulation as well. Therefore, in this study, we exam-
ined whether the leaky BBB in niches of the intact and stroke
brain can respond to circulating VEGF165 to drive induction of
the Notch ligand DLL4 in ECs and pericytes and whether these
changes lead to enhanced Notch binding/signaling in stem cells
causing a rise in proliferation and neurogenesis.

MATERIALS AND METHODS

Animals, Antibodies and Reagents

Adult male Sprague-Dawley rats, adult male CD-1 mice, and adult
male C57/BL mice were used in our experiments. All procedures
in this study were carried out in accordance with the recommen-
dations in the Guide for the Care and Use of Laboratory Animals
of the National Institutes of Health. The protocol was approved
by the International Animal Care and Use Committee of the
Thomas Jefferson University. For antibodies and reagents, please
see Supporting Information Material and Methods.

Cell Culture

Cultures of bEnd.3 cell line (ATCC, Virginia, USA) were used for
VEGF165 treatment assay and oxygen-glucose deprivation (OGD)
assay. The culture was maintained in high-glucose Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal calf serum
at 37�C in a humidified atmosphere of 95% air and 5% CO2.

In Vitro VEGF165 Treatment

During VEGF165 treatment, bEnd.3 ECs were grown with
100 ng/ml VEGF165 in low growth factor (0.1% fetal bovine
serum [FBS]) or serum containing media (10% FBS) compared
to the respective control groups. For details, please see Sup-
porting Information Material and Methods.

OGD and Hypoxia

Cell cultures were then washed twice with Hanks’ balanced
saline solution and OGD media (glucose and phenol red-free
DMEM was deoxygenated by gassing with 95% nitrogen and 5%
CO2 for 15 minutes) as described before [86] and in Supporting
Information Material and Methods. The time points used in the
experiments were selected based on our unpublished empirical
data and the literature [87, 88] and MCAO procedure.

In Vivo VEGF165 Infusion and Bromodeoxyuridine
Administration

In adult male rats or mice, recombinant VEGF165 or VEGF165-
biotin were infused intravenously via femoral vein. Briefly, the
femoral vein was catheterized and connected to a micro-
osmotic pump (for dosage and timing, please see details below
in groups 6–7).

Focal Ischemic Stroke Model: MCAO

Adult male Sprague-Dawley rats weighing 275–300 g and adult
male C57/BL mice weighing 25 g were used, and MCAO was
performed as described in Supporting Information Material
and Methods.

Behavioral Tests

To evaluate neurological function, all rats were subjected to a
battery of tests at postoperative 24 hours, 3 days, 7 days, and
14 days as described in Supporting Information Material and
Methods.

Animal Treatment Protocol and Bromodeoxyuridine
Administration

Animals were divided into seven different groups according to
the experiments. For more details, please see Supporting Infor-
mation Material and Methods.
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Immunostaining

Animals were perfused with cold (4�C) paraformaldehyde
(4%). The brains were then processed as described in Support-
ing Information Material and Methods.

Transmission Electron Microscopy

Rats received MCAO and their controls were prepared for elec-
tron microscopy (EM) as described in Supporting Information
Material and Methods.

RNA Isolation and cDNA Synthesis

Rat brain tissue was harvested for Reverse transcription poly-
merase chain reaction (PCR) as described in Supporting Infor-
mation Material and Methods.

Real-Time PCR Analysis

Real-time PCR was carried out as described in Supporting
Information Material and Methods.

Quantitative Analysis

Quantitative analysis was carried out as described in Support-
ing Information Material and Methods.

Statistical Analysis

All data are presented as the mean � SEM. Statistical analysis
of cell counts was performed using Student’s t test or the one-
way analysis of variance followed by post hoc Bonferroni test.
A p value <.05 was considered significant.

RESULTS

Leaky BBB in SVZ and Median Eminence in Normal
Brain

Earlier studies indicated that the SVZ and CVO niches in the nor-
mal brain are highly vascularized regions containing leaky capil-
laries associated with a permeable BBB not seen elsewhere in the
brain [13, 14]. In the current study, we used electron microscopy
to further examine the BBB in blood vessels of the SVZ and a CVO
niche, the median eminence (ME). We found that tight junctions,
part of the essential components of an intact BBB, were often-
times lacking between ECs in vessels of the SVZ (Fig. 1C, 1D) as
compared to the non-niche brain region of the striatum
(Fig. 1A, 1B). In the ME, we observed capillaries with many small
fenestrations that connected by a thin diaphragmatic layer to sep-
arate blood from brain (Fig. 1E, 1F). These observations are con-
sistent with a leaky BBB that is unique to brain niches.

Stroke Increases BBB Leakiness in Brain Stem Cell
Niches

In order to assess the integrity of the BBB in the niche after stroke,
we examined both BBB permeability and ultrastructure in the
SVZ. Although the SVZ in the normal brain is permeable to small
molecules such as peripherally infused sodium fluorescein (376D)
[13, 14], in these experiments on the MCAO brain, we tested BBB
leakage of larger molecules such as 40 kDa FITC-dextran. To do so,
40 kDa FITC-dextran was infused into the femoral vein 1 day after
MCAO and allowed to circulate for 10 minutes. Under fluorescent
microscopy, we observed FITC-dextran extravasated from blood
vessels near the SVZ and distributed into the surrounding

parenchyma (Fig. 2A, 2B). To further investigate the leakiness of
the BBB around the niches to VEGF, 0.5 mg/kg biotinylated
VEGF165 was infused via the femoral vein after MCAO. We visual-
ized greater leakage of VEGF165-biotin into the parenchyma from
vessels in the infarct penumbra and around the SVZ after MCAO
than in control brains (Fig. 2C–2E). Negative results from the con-
trol group are not shown here.

Similarly, transmission electron microscopy analysis showed
increased numbers of pinocytotic vesicles (AKA vesiculovesicles
or vesiculo-vacuolar organelles [VVOs]) in ECs of SVZ capillaries
72–96 hours after MCAO (Fig. 2H–2J) compared to ECs of SVZ
capillaries in the intact brain (Fig. 2F, 2G). As VVOs are highly
associated with a state of hyperpermeability, these results com-
bined with those of VEGF165-biotin permeability indicate that
stroke increases BBB leakiness in the SVZ niche.

Elevated Systemic VEGF Mimics Stroke to Induce
Neurogenesis

After stroke, the levels of circulating growth factors and cytokines
rise dramatically in blood [23–26, 39–59]. One critically important
factor is VEGF165 which significantly rises in the blood and brain
after stroke. As we found that the BBB in niches is highly

Figure 1. Electron micrograph of blood-brain barrier (BBB) in
normal brain. (A, B): Note evidence of an intact BBB in blood ves-
sels (VL), including TJ between ECs (rectangle in A at higher power
in B) and apposing PERI n. (C, D): Note lack of TJs between ECs in
the SVZ niche (see arrow J, rectangle in C at higher power in D)
and their proximity to other niche cells, including the slow cycling
stem cells or B cells (recognized by dense bodies in the cytoplasm:
arrowhead in C, and EPs. (E, F): Circumventricular organ niche ME
with fenestrated capillaries. Scale bars: 2 μm in A, 4 μm in C, and
1 μm in E. Abbreviations: EC, endothelial cell; EP, ependymal cell;
ME, median eminence; PERI n, pericyte nucleus; SVZ, subventricu-
lar zone; TJ, tight junction; VL, vessel lumen.
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permeable to FITC-dextran40, the size of VEGF165 (dimer: 39 kDa)
after stroke, these substances may have relatively unrestricted
access to niche cells, including those at a great distance from the
infarct. Indeed, we found a transient rise in VEGF levels in the
infarcted side of the brain (Supporting Information Fig. S1). In an
effort to understand how circulating VEGF mediates its effects, we
next determined whether ECs in niche blood vessels express vas-
cular endothelial growth factor receptor 2 (VEGFR2), the main
receptor mediating VEGF-A effects. We found that RECA-1+ ECs in
the SVZ and ME (Fig. 3A, 3B) labeled for the VEGFR2 receptor are
consistent with their ability to bind and respond to circulating
VEGF in normal stem cell niches. Although in normal brain, SVZ
NSCs do not express VEGFR2 in vivo [89, 90], this phenotype may
change after injury. We did not find that VEGFR2 was expressed
by Nestin+ NSCs after we stained post-MCAO brain sections
(Supporting Information Fig. S2).

In order to directly test whether amplification of circulating
VEGF can mimic stroke and induce NSC proliferation and neuro-
genesis in the niche, we continually infused 1 mg/kg VEGF165,
the predominant VEGF isoform, or normal saline into 9-week-
old CD-1 mice via the femoral vein connected to an ALZET
micro-osmotic pump for 3 days. All mice were administered bro-
modeoxyuridine (BrdU) as described in Materials and Methods
section to assess cell proliferation in the SVZ and SGZ niches.
We found a significant increase in the number of BrdU-labeled
cells in the SVZ as compared to the saline group (p < .05; Fig. 3C,
3D, 3G) 14 days after the initiation of VEGF treatment. The vast
majority of these BrdU+ cells were Nestin (a marker of NSC) pos-
itive, indicating that VEGF165 infusion, similar to MCAO,
enhances proliferation in the SVZ 14 days later. In contrast, in
the SGZ, the only known brain stem cell niche without a leaky
BBB, there was no obvious difference in the numbers of BrdU+
cells found between VEGF165 and saline groups (Fig. 3I).

To assess the level of neurogenesis, we next labeled brain
sections for DCX, a marker for neuroblasts. We found that there
were more DCX+ cells 14 days after VEGF165 infusion in the SVZ
(p < .05; Fig. 3H), indicating enhanced neurogenesis after
VEGF165 infusion. Again, there was no significant difference in
the numbers of DCX+ cells in SGZ in the VEGF165 infusion group
compared to the saline infusion group (Fig. 3J). In order to
assess angiogenesis after VEGF infusion, collagen IV was used
for staining. No obvious differences in vessels were noted in
SVZ and adjacent striatum between saline and VEGF infusion
groups (Fig. 3E, 3F). This could be because of overall low con-
centrations of VEGF in the relative large peripheral blood pool.

VEGF Increases the Notch Ligand DLL4 in Cells of the
Vasculature

Once bound, the VEGFR2 receptor is known to activate down-
stream Notch signaling through DLL4 ligand-dependent and
-independent pathways [62, 83, 91]. Therefore, in our next
study, we tested whether VEGF and DLL4 levels rose in the
brain in a coordinated fashion after stroke. We found that
indeed the rise in VEGF levels in the infarcted hemisphere
(Supporting Information Fig. S1) was temporally correlated with
a significant but transient increase in DLL4 mRNA levels at
24 hours not seen at 3, 7, and 14 days after MCAO (Fig. 4A).

Similarly, elevating the levels of VEGF or causing hypoxia
increased the mRNA levels of DLL4 in ECs in culture (Fig. 4B–4D).
We found that the addition of 100 ng/ml recombinant murine
VEGF165 to a low growth factor media (Fig. 4D) significantly
induced DLL4 mRNA levels 6.5 fold in bEnd.3 ECs in culture. As
the rapid upregulation of VEGF expression in ECs after hypoxia
has been extensively investigated and reported in the past
[87, 88, 92], we did not repeat the same experiments to measure

Figure 2. Niches are hyperpermeable after MCAO. (A, B): Forty kilodaltons FITC-dextran extravasation from blood vessels adjacent to SVZ
1 day after MCAO. Low (A) and high (B) power views of SVZ. (C–E): Biotinylated rVEGF leakage into the parenchyma (P, arrows in C and arrow-
heads at high power in D and E) from vessels near SVZ after MCAO. (F–I): Electron micrograph of niche vasculature in control (F, G) and after
MCAO (H, I) brains. Note intact blood-brain barrier in blood vessels (VL) without evidence of vesiculo-vacuolar organelles (VVOs). Note greater
numbers of VVOs after MCAO in low (H) and high (I) power. Pinocytotic vesicle containing ECs of SVZ capillaries were also quantified in (J). Rect-
angles shown in left column at low power and right column in higher power. Data are expressed as mean � SEM; *p < .05. Scale bars: 2 μm.
Abbreviations: A, type A cells or neuroblasts; B, type B cells; EC, endothelial cell; EP, ependymal cell; MCAO, middle cerebral artery occlusion;
SVZ, subventricular zone; VEGF, vascular endothelial growth factor; VL, vessel lumen.

©2018 The Authors. STEM CELLS published by

Wiley Periodicals, Inc. on behalf of AlphaMed Press 2018

STEM CELLS

398 Systemic VEGF Drives Brain Neurogenesis via DLL4



VEGF levels after hypoxia. We exposed the bEnd.3 EC cells to
hypoxia which should induce the upregulation of VEGF accord-
ing to those reports. When bEnd.3 cells were subjected to OGD
for 2.5 hours followed by continued hypoxic conditions (i.e., 5%
O2) for 24 or 48 hours, there was a significant 2.5 fold and 5.5
fold, respective, increase in DLL4 mRNA levels (p < .01; Fig. 4B),

mimicking the significant rise of DLL4 levels in the infarcted brain
after MCAO (Fig. 4A).

Upregulated DLL4 in Cells of Vasculature Leads to
Increased Notch Signaling in NSCs

To further investigate in which cells DLL4 expression level
increased after stroke, we examined blood vessels in the SVZ
niche and nearby penumbra area and found that DLL4 coloca-
lized with laminin+ blood vessels (Fig. 5A1–5A4), CD31+ ECs
(Fig. 5B1–5B4), and PDGFRβ+ pericytes (Fig. 5C1–5C4). As micro-
glia activation is prominent after stroke, we also stained IB4+

Figure 3. Increase in neural stem cell proliferation and neurogenesis in the SVZ but not SGZ with VEGF infusion in vivo. (A, B): confocal
images of blood vessels showed RECA-1+ ECs colabeled with VEGFR2 in SVZ and ME. After continuous VEGF165 infusion, neural stem cell
proliferation (BrdU+) and neurogenesis (DCX+) were found increased in the SVZ (C, D, G, H), but not in the SGZ (I, J). Meanwhile, angio-
genesis after VEGF infusion was examined and collagen IV was used to reveal angiogenesis in mouse brain. (E, F): No obvious differences
in vessels were noted in SVZ and adjacent striatum between saline and VEGF infusion groups. Data are expressed as mean � SEM;
*p < .05. Scale bars: 20 μm in a and B, 100 μm in E and F. Abbreviations: BrdU, bromodeoxyuridine; DAPI, 40,6-diamidino-2-phenylindole;
LV, lateral ventricle; ME, median eminence; SGZ, subgranular zone; SVZ, subventricular zone; VEGF, vascular endothelial growth factor;
VEGFR, vascular endothelial growth factor receptor.
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microglia but observed almost no colabeling of DLL4+ cells and
IB4+ microglia (Fig. 5D1–5D4). In control group, DLL4 staining
was found very low in vascular cells (data not shown). Thus, sev-
eral cell types present in the vasculature, including ECs and peri-
cytes, express higher levels of the Notch ligand DLL4 after stroke.

Next, we assessed the temporal change and pattern of
DLL4 expression in the SVZ region. In control rats, a limited
number of Notch receptor intracellular domain positive (acti-
vated intracellular domain of the Notch receptor) (NICD+) cells
were found in the SVZ with low DLL4 level (Fig. 6A). On days
3 and 7, after MCAO, DLL4 expression in the SVZ was much
higher than other selected time points and by day 14 post-
MCAO, few NICD-labeled cells were found in the SVZ
(Fig. 6B–6F). Notably, NICD+ cells could be found next to
DLL4+ cells (Fig. 6A–6E). Thus, the temporal change of DLL4
protein level is partially consistent with the changes of mRNA
levels, particularly when the lag in protein translation is taken
into consideration. Another important stem cell niche in brain,
the ME, showed intense staining of DLL4 in the control and
MCAO groups, with no evident difference among the groups
(Supporting Information Fig. S3).

We also stained the sections for Jagged1, another important
Notch ligand in angiogenesis. In control rats, there was weak
staining of Jagged1, mainly in the ependymal cells which
increased from day 3 to day 7. Most interestingly, Jagged1 expres-
sion is exclusively limited to the ependymal cells as compared

with DLL4 expression in the SVZ on day 3 after MCAO (Supporting
Information Fig. S4).

Concomitant with the initiation of Notch signaling in vascular
cells, we found that adjacent BrdU+ cells expressed the activated
NICD (Fig. 6). Many NICD+ cells also colabeled for BrdU (Fig. 6G–6I;
arrows) as might be expected in proliferating BrdU+ cells in the
niche after stroke. Once the cascade was initiated, NSCs further
signaled neighboring NSCs through subsequent DLL4/NICD signal-
ing to proliferate (Fig. 6J–6L) and differentiate into new neurons.

We further examined the lineage of the activated NICD/
BrdU cells. Indeed, some triple labeled Nestin/NICD/BrdU cells
and EGFR/NICD/BrdU cells were found in SVZ (Fig. 7A–7E and
Supporting Information Fig. S5). Because of the timeframe
required for NSC differentiation into neuroblasts, we examined
SVZ after 14 days of MCAO. Some DCX+ neuroblasts adjacent to
the SVZ were found colabeled with NICD, indicative of their
downstream participation in the signaling pathway (Fig. 7F). As
the importance of the communication of vasculature and stem
cells in brain stem cell niches has been extensively evaluated
recently, we used collagen IV to examine the angiogenesis after
stroke and found in infarction sites. Active angiogenesis was
found from day 1 to 14 days after MCAO, peaking on day 7 (Sup-
porting Information Fig. S6). All these data demonstrate that the
cells of the vasculature working through Notch signaling regu-
late the activities of NSCs in the niche to drive neurogenesis.

Figure 4. Exogenous VEGF or OGD increase DLL4 expression in endothelial cells (ECs) in culture or brain after MCAO. (A): DLL4 levels
are increased in infarcted hemisphere compared to normal brain 1 day after MCAO. Levels return to baseline by 3–14 days post-MCAO.
(B): DLL4 expression in ECs under OGD conditions for 24 or 48 hours as compared to normal conditions. (C, D): DLL4 expression in bEnd.3
ECs grown with 100 ng/ml VEGF in complete serum containing media (C) or low growth factor media (D) was compared to untreated cul-
tures. Data are expressed as mean � SEM; *p < .05, **p < .01. Abbreviations: MCAO, middle cerebral artery occlusion; OGD, oxygen–
glucose deprivation; VEGF, vascular endothelial growth factor.
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DISCUSSION

The term “vascular niche” was first coined to reflect the fact that
NSCs proliferate and differentiate into neurons immediately adja-
cent to the vasculature of normal or injured brain [14, 15, 93–96].
However, the fundamental importance of this relationship and the
mechanisms/signaling pathways underlying it remained an enigma.
The findings of this study demonstrate that stem cell niches such as
the SVZ and CVOs are unique in the intact brain insomuch as the
BBB is both structurally and functionally incomplete. Structurally,
the absence of glial end feet or pericytes on blood vessels in the
niche allows stem cells and their processes to directly abut ECs and
other cells of the vasculature, a configuration not seen elsewhere in
the brain [14, 94, 96]. Additionally, niche blood vessels are charac-
terized by an absence of the usual tight junctions seen between
ECs [14]. Moreover, in the case of one of the CVO niches, the ME,
capillaries are fenestrated where parenchyma is partitioned from
blood by a mere membrane. At the functional level, these unique

morphological features are consistent with a leaky BBB, allowing
stem cells unfettered access to circulating factors normally pre-
vented entrance into the CNS [54–57]. The one exception is the
SGZ, which unlike other brain niches does not lie adjacent to a ven-
tricle and does not possess a leaky BBB in the normal brain.

Stroke notoriously causes further disruption in BBB integ-
rity, especially in the region of the infarction [97]. Based on
the results from other groups [96, 98, 99] as well as regarding
ours angiogenesis and neurogenesis, the observed dynamic
changes in neurogenesis and angiogenesis are closely correlated.
Similarly, our previous studies showed that the BBB in all stem
cell niches also becomes more porous after stroke [13]. As infarc-
tion does not cause direct damage to niches, particularly SGZ in
MCAO model which is far from the infarct, this effect is likely
mediated by circulating factors leaking through the BBB [19].
That cells of the SGZ niche are capable of responding to circulat-
ing factors is further suggested by the presence of fine NSC pro-
cesses which ensheath local vessels [58, 59]. Moreover, in the

Figure 5. DLL4 is upregulated in vascular cells after stroke. DLL4 signals were found in laminin+ vessels (A1–A4) or CD31 vessels/endo-
thelial cells (ECs) (B1–B4) (arrowheads: DLL4+ ECs) or PDGFRβ+ pericytes (C1–C4) (arrowheads: DLL4+ pericytes) but not in IB4+ microglia
(D1–D4) (arrowheads: DLL4− microglia). Colabeled cells (arrowheads) are enlarged and shown in right column. Scale bars: 10 μm. Abbre-
viation: DAPI, 40,6-diamidino-2-phenylindole.
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current study, we observed pinocytotic vesicles in niche ECs at
the EM level, reflecting a state of hyperpermeability soon after
MCAO. This heightened permeability was further substantiated
by the leakage of FITC-dextran (40 kDa) from SVZ blood vessels
into brain parenchyma 1 day after stroke.

A further consequence of stroke is a dramatic change in the
composition of the blood, particularly with respect to circulating

growth factors and cytokines [23–26, 39–59]. One critically
important growth factor is VEGF which rises significantly
in blood after MCAO [24]. As we show that the BBB is perme-
able to substances the size of VEGF (39 kDa) after stroke, it is
not surprising then that we found a transient but significant
spike in VEGF levels in the infarcted hemisphere 1 day
after MCAO.

Figure 6. The activated NICD and DLL4 signals are increased in BrdU+ dividing neural stem cells of the subventricular zone (SVZ) after stroke.
Temporal changes of DLL4 and activated Notch1 (NICD) expression in the SVZ. (A): In control rat, limited NICD+ cells were detected in the SVZ.
Notably, one NICD+ cell (asterisk) was found next to a DLL4+ cell (arrow). (B–D): From day 1 to day 7, post-MCAO, more NICD+ cells were found
in the SVZ, and some NICD+ cells (asterisks) were next to DLL4+ cells (arrows). (E): By day 14 post-MCAO, few NICD-labeled cells were found in
the SVZ. (F): On day 3 and day 7, after MCAO, DLL4 expression in the SVZ was much higher than other selected time points by the quantifica-
tion of relative fluorescence intensity. (G–I): Some BrdU+ cells colabeled with NICD (arrows). (J–L): At the same time point, BrdU+ cells (arrows)
were found adjacent to DLL4+ cells (asterisks) in the SVZ. Data are expressed as mean � SEM; *p < .05, **p < .01. Scale bars: 10 μm. Abbrevia-
tions: BrdU, bromodeoxyuridine; DAPI, 40,6-diamidino-2-phenylindole; LV, lateral ventricle; MCAO, middle cerebral artery occlusion; NICD, notch
receptor intracellular domain.
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Until the current study, almost nothing was known about
downstream consequences of increasing circulating VEGF and
its leakage into the permeable stem cell niche. While a plethora
of previous studies have shown that upregulation of VEGF sig-
naling is associated with enhanced brain angiogenesis and neu-
rogenesis, most of these effects were attributed to cues
secreted locally by cells in the niche [23, 32, 39, 60, 61]. In addi-
tion to the local cues, we show here that the continual in vivo
infusion of exogenous VEGF165 into the peripheral circulation
also leads to increased NSC proliferation and neuronal differen-
tiation in the intact SVZ. We further show that blood vessels in
the SVZ contain ECs which label for the VEGFR2 receptor, con-
sistent with an ability to bind and respond to circulating VEGF.
Consistent with previous reports [89, 90], VEGFR2 is not readily
expressed by NSCs in the SVZ in vivo in normal animals. More-
over, further examination of VEGFR2 in brain sections from
MCAO groups from day 1 to day 14 did not support the notion

of upregulation of VEGFR2 expression on NSCs after MCAO.
Taken together, these results indicate that circulating VEGF165
may have a limited direct effect on NSCs without the presence
of its major receptor, VEGFR2. In contrast, the SGZ does not
respond to infused VEGF165 with enhanced neurogenesis, likely
as a result of its impermeable BBB. However, after stroke, our
previous studies show that even the BBB in SGZ which is not
directly damaged by MCAO becomes leaky to circulating factors
and induces stem cell proliferation and differentiation [19].
Together, these results suggest that amplified systemic VEGF is
capable of driving stem cell activities in niches lacking a com-
plete BBB in a fashion analogous to stroke where NSCs access
to increased circulating levels of VEGF through a compromised
BBB impacts neurogenesis.

The molecular mechanism via which amplified systemic VEGF
mediates these profound effects on the stem cell niche is not yet
understood. Once VEGF binds its receptor, it is known to activate

Figure 7. Subventricular zone (SVZ) neural stem cell activation and proliferation by using Notch signaling after stroke. (A): In control
group, the NICD staining was relatively low, with some dividing NSCs (Nestin+ and BrdU+) in the SVZ. (B–D): After MCAO, more nestin+
NSCs were triple labeled with activated Notch1, NICD, and cell proliferation maker, BrdU. (E): On day 14, post-MCAO, few NICD+
Nestin+ BrdU+ triple labeled NSCs were found in the SVZ. (F): After 14 days, post-MCAO, some DCX+ neuroblasts were found cola-
beled with NICD in SVZ (arrows). Scale bars: 10 μm. (G): Proposed schematic picture of circulating VEGF and DLL4 pathway in the
stem cell niche. Direct (VEGF to NSC) or indirect (VEGF to vasculature cell or astrocytes to NSC) routes are involved in regulation of
NSC activity by circulating factors via compromised blood-brain barrier function in the already leaky stem cell niche. Noticeably in the
highlighted box, systemic factors such as VEGF induce expression of the Notch ligand DLL4 on EC (here as an example for indirect
pathway) through the VEGFR, and activation of subsequent DLL4-Notch signaling pathway from EC to NSC. Abbreviations: BrdU, bro-
modeoxyuridine; DAPI, 40,6-diamidino-2-phenylindole; EC, endothelial cell; LV, lateral ventricle; MCAO, middle cerebral artery occlusion;
NICD, notch receptor intracellular domain; NSC, neural stem cell; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial
growth factor receptor.
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downstream Notch signaling through DLL4 ligand-dependent and
-independent pathways in cells [16, 62, 64–68, 78–84]. It is not clear
in these studies that in which cells the increase in DLL4 was taking
place. Likewise, we found a parallel and concurrent rise in VEGF
levels and DLL4 expression, both at the transcriptional (mRNA levels
in brain tissue) and protein (DLL4 immunostaining in ECs, pericytes)
levels after stroke. However, a similar DLL4 upregulation was
observed when ECs were grown in vitro in media containing high
VEGF levels or when cells were grown under conditions that mimic
stroke (OGD). Although we do not know whether this latter effect
is also mediated by VEGF, it raises the possibility that ECs intrinsi-
cally increase VEGF signaling after stroke to produce autocrine or
paracrine effects on DLL4 expression. Indeed, there are many previ-
ous reports that support this possibility [24, 60, 61, 88, 100]. Taken
together, these findings suggest that both hypoxia in stroke and the
increased levels of circulating VEGF caused by stroke dramatically
amplify DLL4 signaling in cells of the vasculature by VEGFR even in
the intact BBB. However, the leaky BBB after stroke most likely pro-
vides better access for sampling of those factors by pericytes, astro-
cytes, and NSCs. Interestingly, the ME, a circumventricular stem cell
niche, has very high DLL4 expression even under normal conditions,
suggesting a continual activation of Notch signaling in the ME
because of its higher permeability (via fenestrated capillaries) com-
pared to the SVZ. Concomitant with the initiation of Notch signaling
in ECs (and pericytes) in the niche, we found that adjacent NSCs
expressed the activated NICD. Further staining of brain sections
with DLL4 and NICD revealed NICD+ cells oftentimes adjacent to
DLL4+ cells in the SVZ, suggesting that cell-cell contact may be criti-
cal in the activation of the DLL4-Notch signaling pathway. These
data indicate that the cells of the vasculature working through
Notch signaling regulate the activities of NSCs in the niche to
drive neurogenesis and the leaky BBB facilitates and augments
these processes. Indeed, research now shows that dynamic oscil-
lation in Hes1 expression in neural progenitors plays a critical
role in maintenance of neural progenitors by mutual activation
of Notch signaling [101]. Further study of activation of DLL4
Notch signaling pathway among stem cell themselves is war-
ranted to better understand the types of cells involved and their
distinctive functions and regulation in this process. One possibil-
ity raised by our studies is that the transient increase of VEGF
binding to VEGFR2+ vascular cells initiates subsequent events,
the subsequent neurogenesis is then fine-tuned at their own
pace, wherein stem cell oscillation plays a more important role.
To reveal the lineage of the activated NICD/BrdU cells, we found
some triple labeled Nestin/NICD/BrdU cells and EGFR/NICD/
BrdU cells in SVZ. These data suggest that Notch signaling
pathway is activated in those neural progenitors which are
undergoing active neurogenesis and that the activated Notch sig-
naling pathway may be required in neuronal differentiation as
indicated by NICD+/DCX+ neuroblasts.

Of further potential significance is a recent study showing
that another Notch ligand, Jagged1, is important in maintaining
stem cell quiescence in the SVZ [16]. Intriguingly, in angiogenesis,
Notch ligands DLL4 and Jagged1 have opposing effects [102].
According to our results, the Jagged1 immunostaining is exclu-
sively found in ependymal cells, indicating the distinctive function
compared to DLL4 which is mainly expressed in the SVZ region.
The role of these ligands in neurogenesis and whether Jagged1
and DLL4 play a similar reciprocal role in regulating NSC quies-
cence and activation respectively remains to be determined.

CONCLUSION

In summary, the findings of the present study establish that
stroke, which further compromises BBB function in the already
leaky stem cell niche, enhances access to systemic factors, includ-
ing high levels of VEGF. Working through the VEGFR2 found on
ECs (and pericytes), the growth factor induces expression of the
Notch ligand DLL4, a finding mirrored in culture and in vivo by
exogenous VEGF or stroke/OGD (schematic pathway highlighted
in the box of Fig. 7). Because of the intimate contact that uniquely
exists between cells of the vasculature and NSCs in brain niches,
this up-surge in DLL4 leads to enhanced Notch signaling in neigh-
boring stem cells, inducing their proliferation and differentiation
into neurons. This is the first demonstration that cells of the vas-
culature can regulate the activities of stem cells in brain niches
when triggered by systemic stroke-induced factors.
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