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Abstract: This review addresses the physiological role of the kallikrein–kinin system in arteries,
heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these
organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic
studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R),
distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic
interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular
and renal diseases are discussed. This discussion addresses either the activation or inhibition of these
receptors, based on recent clinical and experimental studies.

Keywords: kallikrein; kinins; angiotensin-converting enzyme/kininaseII; kinin receptors; arteries;
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1. Introduction

The plurality of structurally related but molecularly distinct membrane receptors
triggering cellular signaling and physiological action is a feature of several vasomotor
peptide systems, such as renin–angiotensin, kallikrein–kinin and vasopressin. The receptor
responsible for the main physiological action of the peptide was discovered first, and then
other subtypes were identified, through refined pharmacological or genomic studies. The
physiological role of the “secondary” subtypes depends on their distribution and relative
abundance in organs compared to the main receptor and also on coupling to specific
cellular signaling pathways. In the case of the renin–angiotensin system, the AT2 receptor
for angiotensin II mediates vascular effects roughly opposite to those triggered by the AT1
receptor. However, angiotensin II is mainly a vasoconstrictor in physiological condition,
through AT1 receptor activation, and the physiological role of the AT2 receptor remains
incompletely understood [1,2].

For the kallikrein–kinin system, thanks to the work of Domenico Regoli, a second
receptor for kinins was discovered in addition to the main one mediating the endothelial,
epithelial and neuronal action of bradykinin or its human counterpart, lysyl–bradykinin.
This second kinin receptor, paradoxically called B1 (B1R) in nomenclatures, interestingly
has higher affinity for a bradykinin fragment, desArg9-BK, than for native BK. Activation
of the B1 receptor thus depends on the availability of both kinins and carboxypeptidases
hydrolyzing BK and releasing desArg9-BK. Another interesting feature of the B1 receptor
is its absence or low abundance in resting condition but its inducibility in pathological
situations by several physicochemical and biological factors that include hypoxia, ischemia
and hyperglycemia. It was through these peculiar properties that the B1 receptor was
discovered by Regoli and collaborators [3,4]. The main receptor mediating the vasodilator
action of bradykinin, called B2 (B2R), on the other hand, is constitutively synthesized and
present in abundance in the vascular endothelium and other tissues. This receptor binds
bradykinin and lysyl–bradykinin with favorable kinetic properties and has high signaling
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efficacy [4,5]. Both B1R and B2R are structurally related, coded by two, partly homologous
neighboring genes [6]. Coupling to cellular signaling pathways does not seem to differ
significantly between the two receptors, at least in cellular models. However, this remains
to be further studied in pathological conditions where B1R or B2R activation may have
different pathophysiological consequences, as discussed below.

Bradykinin is a potent endothelium activator and vasodilator coupled to nitric ox-
ide synthase (NOS) and nitric oxide, Phospholipase A2 (PLA2) and its products, such as
prostacyclin and hyperpolarizing eicosanoid factors [7]. The activation of NOS and PLA2
by bradykinin in endothelial cells of arteries, including coronary arteries, results in the
production of several chemical and biochemical compounds, nitric oxide, prostacyclin and
other eicosanoids, relaxing by paracrine action vascular smooth muscle cells [8–10]. These
mediators also inhibit, on the endothelial surface and in blood, platelet aggregation. In
addition, bradykinin stimulates the release of plasminogen activator by the endothelium,
thereby promoting fibrinolysis [11]. The role of kinins in thrombosis remains, however,
poorly documented. Genetic and pharmacological studies focused on components of
the kallikrein–kinin system (kallikrein, kinin receptors and angiotensin-converting en-
zyme/kininase II, ACE) have shown that kinins are formed endogenously through the
action of tissue-kallikrein, degraded by ACE, and participate through B2R activation in
arterial physiology, controlling blood flow delivery to organs. In several pathological
situations, such as ischemia or chronic hyperglycemia, kinin actions afford end-organ
protection, especially in the heart and kidney. On the other hand, excess bradykinin in the
circulation, locally or systematically, may become a life-threatening situation, illustrated by
angioedema or endotoxin-shock. This is usually achieved through inappropriate activation
of a latent kinin-forming protease only present in plasma, called plasma (pre)kallikrein.

In line with the “Janus faces” of kinins in disease and their protective or pathogenic
effects, depending mainly on local abundance, pharmacological interventions aimed at
blocking or, inversely, activating kinin receptors have been developed. This review ad-
dresses the physiological or pharmacological agonism and antagonism of kinin receptors,
B1R or B2R, in clinical and experimental diseases.

2. Physiological Role of Endogenously Produced Kinins

Kinins are released from plasma kininogens in the circulation and interstitium of
organs synthesizing kallikrein. Kallikrein-synthesizing organs include large or small
arteries, the heart, the kidney and other exocrine glands, the intestine and the central
nervous system [12,13]. The physiological role of endogenously produced kinins has
been well documented in the cardiovascular system and the kidney, in both mice and
humans [14]. This was achieved through the study of mice or humans genetically deficient
in kallikrein activity or B2 receptor and in animals treated with a B2R antagonist [15–19].

Kinins are not involved in the regulation of systemic blood pressure but participate
in other aspects of arterial physiology, especially flow-mediated vasodilatation, a critical
feature of arterial function, which is endothelium mediated, ensuring the proper delivery
of blood to organs [15,20–22]. In the kidney, kallikrein and/or kinins are also involved
in electrolyte transfer in the distal nephron, where kallikrein is synthesized in epithelial
cells in the connecting tubule [23–26]. The vascular physiological actions of kinins are B2R
mediated [4,27]. The B1R does not seem to play a significant role in cardiovascular and
renal physiology in healthy animals. Some of the renal actions of kallikrein may not be
kinin-mediated [19].

In several experimental pathological situations, deficiency in kallikrein and kinins, or in
B2 receptor aggravates end-organ damage. This has been well established in the settings of
cardiac, renal or peripheral ischemia, and in diabetes. The synthesis of kallikrein and kinin
receptors in heart or kidney is stimulated by ischemia or chronic hyperglycemia [28,29]. Kinins
then exert several B2R-mediated actions affording tissue protection, such as vasodilation
of collateral blood vessels, reduction in oxidative stress and stimulation of post-ischemic
angiogenesis [30–33]. Loss of function studies suggest that, through these actions, kinins
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reduce infarct size in acute cardiac ischemia and, in post-ischemic heart failure, prevent
excess ventricular remodeling, severe hemodynamic failure and death [28,34]. Kinins also
have an organ-protective role in kidney ischemia reperfusion [35]. In peripheral, hindlimb
ischemia, kallikrein and kinins promote vasculogenesis and accelerate the recovery of distal
blood perfusion [32,36]. In the diabetic kidney, kallikrein and kinins reduce hyperglycemic
kidney damage and slow nephropathy progression [14,25].

The effects of kinins in ischemia or diabetes are mainly B2R mediated [18,28], but the
BIR, which is induced in these pathological situations, may also be involved. B1R was
suggested to exert organ-protective actions in the ischemic heart and kidney but not the
brain or intestine [35,37–40]. Interestingly, a deficiency in B2R in insulinoprive diabetic
Akita mice not only aggravates renal damage but also induces a generalized pro-senescent
phenotype [41].

The issues of kinin actions and kinin receptor roles in ischemia and diabetes are further
considered below when discussing gain-of-function studies.

3. Pharmacological Activation of Kinin Receptors
3.1. Kinins as Therapeutic Agents in ACE/Kininase II Inhibitor or Angiotensin II AT1 Receptor
Blocker Treatment

ACE, or kininase II, is the main enzyme inactivating kinins in the circulation [42]. ACE
also activates angiotensin I into angiotensin II. ACE inhibitors were originally designed
for lowering blood pressure in hypertensive subjects by interrupting the renin-angiotensin
system [43]. These inhibitors were subsequently shown to be also very efficient clinically in
several pathological situations where excess vasoconstriction, locally and/or systematically,
is detrimental, such as heart failure or diabetic nephropathy. They were eventually further
shown to prevent major cardiovascular events in high-risk subjects [44].

Both animal and human studies have documented increases in kinin levels in blood
and tissues during ACE inhibitor treatment [45,46]. The role of kinins in the therapeutic
effect of ACE inhibitors has been addressed in numerous studies in genetic animal models
of kallikrein or kinin receptor deficiency and in animals treated concomitantly with a kinin
B2R antagonist. Kinins are not involved in the blood pressure lowering effects of the drugs
in hypertension. This is consistent with these peptides being autacoids produced and
destroyed locally in selective organs rather than systemically acting vascular hormones.
However, studies have consistently shown that the inhibition of kinin formation or action
dramatically reduces or even abolishes the beneficial effect of ACE inhibitors in experi-
mental cardiac ischemia, post-ischemic heart disease and also in peripheral ischemia (for
review [47,48]). Similar observations have been made in experimental diabetic nephropa-
thy, although the role of kinins in the effect of ACE inhibitors may be greatest at the early
stage of the disease [49–53]. These observations should be extrapolated with caution to
human diseases and their treatment but nevertheless support that kinins are involved in
the multiple beneficial effects of ACE inhibitors in the human heart and kidney.

The renin–angiotensin was subsequently targeted by developing orally active an-
giotensin II AT1 receptor blockers (commonly designed as sartans, [54]). These drugs are
also efficient in hypertension, heart failure and diabetic nephropathy. The issue of their
relative efficiency compared to ACE inhibitors has been addressed in clinical trials but
not definitely resolved [55]. Probably, in clinical practice, both classes of drugs can be
considered to be equally efficient in most indications. However, interestingly, sartans do
work, at least in part, through kinin release and B2R activation, like ACE inhibitors but by
a different mechanism. The arterial, cardiac and renal effects of AT1 receptor blockade can
indeed be suppressed by kallikrein or kinin receptor deficiency or pharmacological kinin
B2R blockade. This has been well documented in healthy animals and in experimental car-
diac ischemia or post-ischemic heart failure [56–58]. These observations linking sartans to
kinins, originally made in the kidney, have documented a physiological coupling between
the AT2 receptor for angiotensin II, which is activated during AT1 receptor blockade, and
the kallikrein–kinin system [59]. This coupling involves kallikrein, kinin release and also,
possibly, the direct molecular interaction between AT2 and B2 receptors [56,57,60].
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Overall, the studies with ACE inhibitors or sartans document the therapeutic action
of endogenous kinins in cardiovascular and renal diseases, when the bioavailability of the
peptides is enhanced by the pharmacological stimulation of their production, or diminished
inactivation. These beneficial effects of kinins are B2R mediated. However, during ACE
inhibitor treatment, the interesting observation has been made that the B1R is induced, at
least in the kidney [61]. Molecular mechanisms underlying this induction remain obscure.
However, the consequence is that B1R activation occurs during ACE inhibitor treatment
and may participate, together with B2R activation, in the therapeutic actions of the drug.

While kinins are involved in the therapeutic action of ACE inhibitors and AT1 receptor
blockers, they may also be responsible for some unwanted effects of these drugs, cough and
angioedema [62]. Cough is relatively frequent under ACE inhibitors. It has been attributed
to effects of kinins in the tracheo-bronchial tractus. However, ACE inhibitor-induced
cough is dry and may instead be caused by substance P, another known ACE substrate.
Dry cough is best reproduced experimentally in animals by administering substance P.
However, kinins have been shown to stimulate the release of substance P in tracheal nerves
and may thus be, indirectly, involved in cough [63]. On the other hand, kinins are most
likely involved in angioedema occurring under ACE inhibitors, although the curative
effect of a B2R antagonist has not been consistently observed in all studies in the iatrogenic
contrary to the idiopathic form of the disease (see below).

Inhibitors of the metalloendopeptidase neprilysin have also been developed for the
treatment of heart failure. The rationale for this development was based on the role of
neprilysin in inactivating natriuretic peptides. However, neprilysin is also a secondary kin-
inase in the circulation, and its inhibition increases kinin levels [64]. Neprilysin inhibitors
have been found to be well tolerated but poorly effective in treating heart failure. A mixed
ACE-neprilysin inhibitor, omapatrilat, has been designed and tested in clinical trials but
eventually not approved for clinical use because of its poor tolerance with a high incidence
of angioedema [65]. Recently, a drug mixing an angiotensin II AT1 receptor antagonist
(valsartan) and a neprylisin inhibitor (sacubitril), LCZ696 or Entresto, was found to be very
effective in the treatment of congestive heart failure with reduced ejection fraction [66]. The
drug has received regulatory approval in this indication. Tolerance was acceptable with
an incidence of angioedema not superior to other drugs used in the indication, including
ACE inhibitors [64]. LCZ696 should increase the bioavailability of kinins through both
its angiotensin II AT1 receptor blocking and neprylisin inhibiting actions. However, data
on LCZ696 and kinins are still missing, and the role of kinins in the therapeutic effect of
LCZ696 remains to be investigated.

The concept of kinin receptor activation as a therapy for cardiovascular and renal
diseases was further documented by studying pharmacological agonists of kinin receptors.

3.2. Direct Pharmacological Agonism of Kinin Receptors

For pharmacological agonism of the kallikrein–kinin system, either kallikrein or kinin
receptors can be targeted. Kallikrein cannot be easily used as a therapeutic agent for
pharmacokinetic reasons, although some animal studies have been conducted in diabetes
or cerebrovascular diseases with the native or recombinant enzyme [67]. Kallikrein has
received regulatory approval in China for treating stroke, but its efficacy has not been
documented by appropriately conducted clinical trials. Aliskiren, a compound originally
designed as a renin inhibitor, has been reported to stimulate cardiac kallikrein synthesis in
the rat and reduce ischemia-reperfusion injury through kinin release and B2R activation [68].
However, the drug has additional pharmacological actions.

Kinin receptors have long been targeted with synthetic bradykinin analogs designed
for inhibiting kinin binding and receptor activation. Analogs with agonist rather than
antagonist properties have been identified in the course of this research. Some compounds
were designed by Gobeil, Regoli and collaborators [69,70]. These molecules are pseudo-
peptides that should be administered parenterally. They are selective B1R or B2R, resistant
to peptidases and pharmacodynamically potent.
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The B2R agonist dose-dependently decreases blood pressure in healthy animals after
acute administration but does not retain its hypotensive effect in chronic administration,
most likely because of hemodynamic counter-regulations. The B1R agonist has no effect on
blood pressure [71].

These agonists are useful tools for further documenting the effects of kinins on health
and disease, probing the role of B1R and B2R and documenting the cellular signaling
pathways involved. The agonists have been initially used in animals for enhancing drug
delivery to the brain by opening the blood–brain barrier [72,73]. The compounds have also
been studied in experimental ischemic and diabetic diseases.

In acute cardiac ischemia and ischemia-reperfusion, a B2R agonist given at reperfusion
dramatically (45%) reduces infarct size in non-diabetic mice. A B1R agonist has no effect
despite the synthesis of B1R in the ischemic heart. However, in diabetic animals, the
opposite is observed: the B2R agonist loses its cardio-protective effect, while the B1R
agonist reduces infarct size by 43% [71]. These observations are consistent with B2R
signaling becoming inactive in the diabetic heart and B1R, which is induced in diabetes,
taking over cardio-protective signalization. This signalization involves activation of the
phosphoinositide 3 kinase/Akt pathway, leading to the inhibition of glycogen synthase
kinase-3β, for both B1R and B2R [71] (Figure 1).
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Figure 1. Alternate use of B2R and B1R in cardioprotection in non-diabetic and diabetic mice, re-
spectively, during cardiac ischemia-reperfusion. B1R ago: pharmacological B1R agonist; B2R ago:
pharmacological B2R agonist. G: G proteins; pAkT: phosphoinositide 3 kinase/Akt; pERK1/2: extra-
cellular signal-regulated kinase1/2; pGSK3b: glycogen synthase-kinase3; p is for phosphorylated
forms of the enzymes. Note that B1R but not B2R synthesis increases more than three times in the
diabetic heart. Infarct size-reducing effect is associated with activation of the so-called “Reperfusion
Ischemia Salvage Kinase (RISK)” pathway and inhibition of GSK-3β. Based on data presented in [71].

These, as well as other studies [74], further document, through a gain of function
approach, the cardio-protective effect of kinins in ischemia. They also unravel a peculiar
effect of diabetes on cardiac signaling, switching over cardio-protective signaling from B2R
to B1R. Interestingly, in the diabetic and ischemic mouse heart, the B1R agonist was the
only treatment reducing infarct size, as an ACE inhibitor or ischemic post-conditioning
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was without effect [71]. The mechanism of diabetes effect on the kinin receptor signaling
pathways remains unknown. It may be related to the differential abundance of G proteins
and kinases in the non-diabetic and diabetic heart, but this is speculative.

The substitution of B1R for B2R signaling with similar physiological consequences
has also been observed after B2R gene inactivation in mice. In the absence of B2R, B1R
is induced and takes over kinin signalization, in both arteries and heart [28,75]. The
mechanism of B1R induction after B2R gene inactivation remains unknown. Overall,
these observations document potential redundancy in kinin signalization. Redundancy in
signalization may explain in part the difficulty encountered in delineating the respective
role of each receptor in some pathological situations. Indeed, the issue has generally
been addressed experimentally by inactivating one receptor, B1R or B2R, genetically or
pharmacologically, and assuming that the phenotype observed is solely caused by loss
of function of the targeted receptor. However, compensation by the other receptor, if
occurring, may introduce bias in the interpretation of data.

Another example of the influence of diabetes on kinin signaling and action is brain
ischemia-reperfusion. Both B1R and B2R are synthesized in the ischemic brain. In brain
ischemia-reperfusion, a B2R agonist has deleterious effects, increasing early mortality,
probably through peripheral vascular effects potentiating hemodynamic instability. B1R
activation has no effect on mortality or infarct size. However, in diabetic animals, while
the B2R agonist increases mortality like in non-diabetic animals, the B1R agonist reduces
infarct size and improves neurological deficits [76]. These data should be extrapolated
with caution to human cerebrovascular disease but suggest that kinins can afford brain
protection against ischemia through B1R activation when produced locally but if released
in the circulation aggravate the condition, through peripheral B2R activation.

In peripheral ischemia secondary to femoral artery ligation, a B1R or B2R agonist
administered by osmotic minipumps for two weeks after ligation stimulates post-ischemic
angiogenesis and accelerates distal perfusion recovery [77]. These studies were performed
in diabetic mice because non-diabetic animals quickly recover distal blood perfusion after
femoral artery ligation and are not a good model for studying pro-angiogenic treatments.
On the contrary, diabetic animals have a defect in post-ischemic angiogenesis. Interest-
ingly, either a B1R or B2R agonist corrects this defect, similarly, and restores the defective
angiogenesis in diabetic animals.

Delayed skin wound healing is a complication of peripheral ischemia in human di-
abetes and can lead to the development of foot ulcers. The effect of B1R or B2R receptor
activation on wound healing was studied in (non-ischemic) diabetic or non-diabetic mice.
B1R and B2R mRNAs increase in the diabetic wounded skin. The B2R agonist, adminis-
tered systematically, delays wound healing, probably through both pro-inflammatory and
epithelial antiproliferative actions [78]. On the other hand, an antagonist of B2R, icatibant,
improves wound healing in diabetic animals and thus is a potential treatment for diabetic
foot ulcers. The B1R agonist has no effect, beneficial or detrimental, on the wounded skin,
whether in diabetic or non-diabetic animals.

Kinin receptor agonists must still be studied in kidney diseases, ischemic or diabetic.
This might be rendered difficult by the relative resistance of the mouse kidney to established
nephroprotective treatments, including ACE inhibitors and AT1 receptor blockers.

Overall, while a B2R agonist displayed beneficial effects on the ischemic heart or limb
but detrimental effects on the ischemic brain or wounded skin, a B1R agonist consistently
displayed beneficial effects in the ischemic heart, brain or hindlimb, in diabetic animals.

4. Pharmacological and Genetic Inactivation of Kinin Receptors in Physiology
and Therapeutic

Kinin receptor antagonists have been designed on the basis of the peptide amino-acid
sequence with structural modifications resulting in competitive or mixed-type inhibition of
the binding of the natural ligands [79,80]. These antagonists are pseudopeptides, resistant
to peptidases, administered parenterally. The most widely used B2R antagonist was
HOE 140, or icatibant [80], which was eventually developed clinically in angioedema (see
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below). For B1R antagonism, several compounds with structural analogy to bradykinin
and desArg9-bradykinin were designed [79]. The kinin receptor antagonists were used
in animal studies for probing the physiological role of kinins. The role of kinins and
kinin receptors in diseases was further addressed by studying engineered genetic mouse
models of kallikrein, B1R and/or B2R deficiency, when these animal models became
available [15,17,18,35,81,82].

4.1. Animal Studies

Studies with B2R antagonists and B2R deficient mice helped establishing that in
healthy animals, the cardiovascular actions of kinins are B2 mediated. The B2R was also
found to play a prominent role in experimental cardiac and renal ischemia, although the
B1R may also be involved to some extent, as discussed above.

For the vascular and renal complications of diabetes, evidence for a protective role of
kinins and B2R comes from the observation of aggravated diabetic nephropathy in several
animal models sharing the absence of B2R activation secondary to either inactivation of the
B2R gene or reduced bioavailability of endogenous kinins in tissue kallikrein knock-out
mice [29] or mice expressing three copies of the ACE /kininaseII gene [83]. Only one report
claimed that the deletion of the B2R was protective against diabetic nephropathy [84].
No clear explanation has been obtained for this isolated observation, and a mouse-strain
specific effect has been evoked [85]. Consistent with a protective action of endogenous
kinins and B2R activation in diabetic nephropathy, the beneficial effect of ACE inhibition
is suppressed by a B2R antagonist in mice or rats [52,53]. B1R inhibition has not been
extensively addressed in the diabetic kidney, but some evidence suggests that B1R may
also be involved in nephroprotection [86].

In the diabetic retina, kinin production and B1R activation have been reported as having,
inversely, deleterious edematous consequences prevented by B1R inhibition [87–89].

A peculiar, unexpected effect of B2R inhibition by icatibant is the improvement of
skin wound healing in diabetic mice as discussed above [78]. This may be related in part
to the resynchronization of fibroblast and keratinocyte proliferations, which are altered
by hyperglycemia during skin layer regeneration. The putative clinical application of this
observation is the prevention of foot ulcers in diabetic patients.

4.2. Clinical Studies in Angioedema

Based on the proposed prominent role of kinins in angioedema, the B2R antagonist
Iicatibant was developed for the treatment of this condition. Hereditary angioedema occurs
in subjects with C1 inhibitor protein deficiency or functional abnormality, and in some
instances in subjects carrying defective mutations of Factor XII [90]. Attacks of angioedema
are triggered by unopposed local plasma (pre)kallikrein activation and subsequent kinin
release [91]. These attacks may be severe and, if involving the upper respiratory tract, lethal
by asphyxia. Other vascular permeability mediators, such as activated complement factors,
are also probably involved in angioedema.

Icatibant, administered subcutaneously, was shown in a randomized controlled trial
to have beneficial effect in attacks of angioedema, accelerating recovery [92]. The drug
has subsequently been approved for the treatment of attacks in patients suffering from
hereditary angioedema. Other trials have also supported the benefit of the treatment [93].

However, angioedema can also be acquired and is a well-documented side effect
of ACE/kininase II inhibitor treatment, as mentioned above, occurring rarely but more
frequently in African American subjects. Angioedema was especially frequent in phase III
trials of the mixed ACE/neprilysin inhibitor, omapatrilat. Inhibition of kinin degradation
by ACE/kininase II and also, in the case of omapatrilat, by neprylisin is involved in these
drug-induced angioedemas.

In ACE inhibitor-induced angioedema, a clinical trial and several observational studies
initially suggested the therapeutic activity of icatibant [94], but this was not confirmed in
subsequent randomized trials [95–97]. Difficulties in the conduct of the first trial, timing of
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prescription relative to onset of attack and role of associated symptomatic treatments may
perhaps explain the discrepancy among the trials. A role of B1R in ACE inhibitor-induced
edema could also be hypothesized. This is, however, speculative and not supported by
animal studies or observations made in hereditary angioedema. Finally, ACE substrates
other than kinins may also be involved, but this is equally speculative.

5. Conclusions and Perspectives

Kinins are produced by tissue kallikrein in physiological condition and involved in
arterial and renal function, especially in the control of blood flow delivery to organs. These
physiological actions of kallikrein and kinins have been documented in both mice and
humans and are B2R mediated.

Deficiency in tissue kallikrein and kinins in humans or mice results in minor defective
arterial and renal phenotypes in resting condition [19]. However, in pathological situations,
such as ischemia, diabetes or hypertension, this deficiency has major consequences for
organ damage. Kinins exert cellular actions resulting in endothelium activation, limitation
of oxidative stress and stimulation of angiogenesis that eventually afford end-organ protec-
tion. This has been well documented experimentally in the ischemic and/or diabetic heart
and kidney. On the other hand, excess kinin formation and B2R activation can occur, caused
by inappropriate activation of plasma (pre)kallikrein or pharmacological inactivation of
kininases, and result in angioedema or hypotension. Angioedema attacks can be treated by
pharmacological B2R blockade.

In ischemia and diabetes, kinin release is stimulated and synthesis of B1R and B2R is
induced. The issue of the relative role of B1R and B2R in the effects of kinins on diseases
remains partly unresolved. Large evidence points toward a prominent role of B2R, but
B1R may also be involved. Interestingly, when B2R signaling is inactivated, as occurs, for
example, in the heart in diabetes, B1R synthesis is induced and B1R takes over cardio- or
vasculo-protective signalization. Thus, contrary to other peptide systems, such as the renin–
angiotensin or vasopressin systems, where different receptors mediate distinct peptide
actions, or the adrenomedullin system where cooperation between different receptors is
required for biological activity, the kallikrein–kinin system displays potential physiological
redundancy at the receptor level. A phenomenon of heterodimerization between B2R and
the angiotensin II AT1 or AT2 receptors has been reported, but the physiological importance
of this proposed molecular interaction remains unestablished [60,98].

Given the beneficial actions of kinins in cardiovascular and renal diseases, the phar-
macological activation of kinin receptors has potential therapeutic application. Specific
agonists of either B1R or B2R have been synthesized and tested in experimental diseases,
with favorable effects (Table 1). These studies have provided proof of concept for ther-
apeutic action of pharmacological B1R or B2R activation but should be translated with
caution to human pathological situations. For B2R agonism, unwanted effects, such as
angioedema, might occur, although this could be a matter of potency and dosage. For
B1R agonism, which consistently displayed therapeutic efficacy in the diabetic ischemic
heart, brain or hindlimb, risk of angioedema may be low or absent. The role, if any, of B1R
in angioedema has not been addressed. It is interesting to note that angioedema attacks
are improved by treatment with icatibant, a specific B2R antagonist, which may, inversely,
favor kinin-triggered B1R activation. The administration of a B1R agonist (or as a matter of
fact a B2R agonist) for two weeks in mice at therapeutic dosages did not induce detectable
unwanted effects, including hypotension or edemas [77,78]. These considerations taken
together support the development of B1R agonists for treating diabetic cardiovascular and
renal diseases.
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Table 1. Summary of therapeutic effects of pharmacological B1 or B2 receptor agonists and antagonists in cardiovascu-
lar diseases.

B1R Effects B2R Effects

Agonists

Experimental

B1R agonist reduces heart infarct size in diabetic
mice [71]

B2R agonist acutely but not chronically reduces blood
pressure [71]

B1R agonist enhances peripheral post-ischemic
angiogenesis in diabetic mice [77]

B2R agonist reduces heart infarct size in non-diabetic
mice [71,74]

B1R agonist increases blood–brain barrier
permeability in mice [73]

B2R agonist enhances peripheral post-ischemic
angiogenesis in diabetic mice [77]

B1R agonist reduces brain infarct size in diabetic
mice [76] B2R agonist opens blood brain barrier in mice [72]

Antagonists

Experimental B1R antagonist inhibits retinal inflammation in
diabetic rats [89]

B2R antagonist improves skin wound healing in
diabetic mice [78]

Clinical B2R antagonist accelerates clinical recovery in attacks
of hereditary angioedema [92,93]
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