
Genome Biology 2003, 4:227

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Minireview
The fitness costs to plants of resistance to pathogens
Jeremy J Burdon and Peter H Thrall

Address: Division of Plant Industry, CSIRO, PO Box 1600, Canberra, ACT 2601, Australia. 

Correspondence: Jeremy J Burdon. E-mail: jeremy.burdon@csiro.au

Abstract

It has long been predicted that genes giving resistance to pathogens impose a cost on the fitness
of plants. A new study has shown this to be true for one resistance gene in Arabidopsis. This raises
intriguing theoretical and practical questions about how generally the results apply and how such
costs are controlled in plants carrying resistance genes to several different pathogens. 
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In plant-pathogen interactions, there are two broad types of

genetically determined resistance to infection in host plants:

quantitative (representing the combined effect of many

minor genes), and qualitative resistance, which is controlled

by major genes (single genes with large effects). Beginning

with Harold Flor’s elegant work in the 1940s and 1950s, it

has been repeatedly shown that in systems characterized by

qualitative host resistance, the associated pathogens have

corresponding major genes that determine virulence (the

ability to infect a given host genotype). As a consequence,

such systems are typically referred to as ‘gene-for-gene’

interactions. The central assumption is that each resistance

(R) gene in the host interacts specifically with a correspond-

ing avirulence (Av) gene in the parasite, with resistance

being dominant to susceptibility and avirulence dominant to

virulence [1,2]. For resistance to occur, both genes for resis-

tance in the host, as well as the corresponding Av genes in

the pathogen, must be present. Ever since Flor first outlined

the gene-for-gene hypothesis, the evolutionary outcome of

these reciprocal interactions between pathogens and their

host plants has attracted considerable theoretical attention.

Mathematical modeling has been an important tool for devel-

oping a better understanding of the factors that influence the

evolution of host resistance and pathogen virulence. From the

late 1950s onwards, the gene-for-gene hypothesis stimulated a

series of deterministic models exploring how the frequencies

of R and Av genes change over time in plant populations

[3-5]. For simplicity, these models assumed infinitely large

populations with global, rather than distance-dependent, host

and pathogen dispersal (i.e. no spatial structure). Of particu-

lar interest were the conditions under which pathogen ‘super-

races’ (strains that could overcome all R genes present in a

host population) might evolve in mixtures of plant varieties

like those used in agriculture [6-8]. 

A consistent feature of all these single population gene-for-

gene models has been the assumption that there are repro-

ductive fitness costs associated with host resistance and

pathogen virulence genes. In these models, this is a require-

ment for maintaining persistent polymorphisms in resistance

and virulence genes, as are typically observed in nature [9].

Without such costs, selection in these models results in the

evolution of ever-increasing virulence in the pathogen, and a

corresponding increase in host resistance. Once a pathogen

isolate evolves that can overcome all resistance genes in the

host population, however, resistance becomes selectively

neutral (i.e. there is no advantage to having such genes) and

drifts to fixation, while in the pathogen population the ‘super-

race’ moves to total domination. 

Other recent models that use an alternative ‘matching allele’

formulation allow the long-term persistence of polymor-

phisms without costs [10]. In this type of model, successful

infection of a given host individual by a pathogen requires an

exact match between their respective resistance and viru-

lence genotypes. This formulation automatically results in

cycling of R and Av gene frequencies in the population, as



there is strong selection against the most frequent alleles of

each type of gene. As there is little empirical support for this

alternative genetic scenario, however, the significance of

such models for understanding the evolutionary dynamics of

plant-pathogen interactions is unclear. 

Measuring fitness costs
Despite the controversy about whether fitness costs of resis-

tance are necessary for the maintenance of resistance and

avirulence gene polymorphisms, many attempts have been

made to measure resistance and/or virulence costs. Nearly

all the comparisons that have been made between resistant

and susceptible or virulent and avirulent lines of host and

pathogen, respectively, leave open the strong possibility that,

individually, the results observed may be generated by

pleiotropic effects of other linked genes [11]. When consid-

ered in a meta-analysis, however, approximately half of 88

studies gleaned from the herbivore-plant, pathogen-plant

and herbicide literature showed some evidence of lower

fitness associated with resistance [12]. The question of

fitness costs associated with virulence and resistance has

thus continued to remain contentious. 

A seminal article by Tian et al. [13] has now produced con-

vincing evidence that at least one resistance gene with a

major phenotypic effect of the type typically associated with

the gene-for-gene hypothesis imposes a fitness penalty

on Arabidopsis thaliana. By inserting the RPM1 gene -

encoding resistance to the bacterial pathogen Pseudomonas

syringae - between two lox sites in a susceptible ecotype

(variety) of A. thaliana, and subsequently inducing recombi-

national excision of the RPM1 gene, these authors [13] con-

structed a series of four independent pairs of truly isogenic

lines that differed solely by the presence or absence of RPM1

[13]. Using a variety of checks, the ‘normal’ functioning of

the RPM1+ gene was then confirmed, as was the insertion of

the transgene into a non-coding region of the genome. The

impact of the presence of RPM1 was then determined by

growing the four matching RPM1+ and RPM1- lines in a

replicated field trial. Plants carrying the resistance gene had

a lower shoot biomass and fewer siliques (seed pods) and,

most significantly, showed an average decrease in seed pro-

duction of 9% relative to the matching susceptible RPM1-

lines [13].

Attempts to measure fitness costs associated with pathogen

virulence have had a history of uneven success, but a recent

study of the fecundity of a range of isolates of the rust

pathogen Melampsora lini taken from natural populations

of its host Linum marginale (native Australian flax) [14]

found that the number of M. lini spores produced by individ-

ual pustules on the plant was negatively correlated with the

virulence of the pathogen, suggesting that increased viru-

lence lowered spore production. Of particular interest was

the finding that such a cost could at least partly account for

the patterns of virulence observed in natural populations of

M. lini and L. marginale: pathogens that are broadly viru-

lent (that is, that can infect hosts with various different R

genes) are dominant in host populations that are highly

resistant, whereas avirulent pathogens are more frequent in

susceptible host populations. In combination, these two

studies [13,14] provide the best existing evidence for the

occurrence of fitness costs. 

The consequences of fitness costs
The documentation of a fitness cost of resistance that can

clearly be attributed to the resistance gene RPM1 itself [13]

raises significant research opportunities and questions. One is

whether fitness costs are associated with all resistance genes,

and if so, whether the magnitude of the cost differs between

different resistance genes. Flowing from this is the equally

important question (particularly from the point of view of the

practical use of resistance genes) of how fitness costs associ-

ated with different resistance genes interact with each other.

A common feature of most of the host-pathogen associations

studied in detail is that, as has been documented in Ara-

bidopsis, many different resistance genes or alleles can be

found. In natural situations, individual host plants may

often carry one or two R genes against a given pathogen

species. In addition, though, the same individual may carry

many more resistance genes, corresponding to the range of

pathogens typically confronted by that plant species. If each

of these alleles carries a fitness cost, how are resistance/sus-

ceptibility polymorphisms maintained in environments in

which epidemics of disease are typically patchy in space and

time and in which a plant population may therefore not

encounter a particular pathogen for many generations [9]?

This question is thrown into particularly sharp focus in agri-

cultural situations, in which plant breeders routinely use

major resistance genes to protect crops but rarely, if ever,

deliberately remove resistances that cease to be effective as

the pathogen evolves in response to their use. Indeed, in

many modern wheat varieties, as many as four to six differ-

ent genes for resistance to stem rust (Puccinia graminis f.sp.

tritici) are present, with at best only one or two providing

effective resistance against the current pathogen population

[15]. At the same time, these varieties also typically carry

resistance genes that are effective against other rusts (such

as leaf rust, P. triticina or stripe rust, P. striiformis), not to

mention a range of other pathogens for which major resis-

tance genes exist (such as powdery mildew, Blumeria

graminis and loose smut, Ustilago nuda).

In such situations, the fitness costs, if they were to exist for

each gene, clearly cannot operate in a simple additive or

multiplicative fashion. Even taken only additively, the costs

suggested by the Tian et al. study in Arabidopsis [13] rapidly

become prohibitive. This paradox was recognized by these

authors [13], who noted the possibility that because of its
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ancient history [16], the RPM1 gene may not be typical of the

large numbers of resistance gene loci that are spread across

the Arabidopsis genome. The ancient RPM1 polymorphism

consists of either the active gene or a complete gene deletion

[16], whereas most resistance polymorphisms involve consid-

erably smaller changes. Even if fitness costs were closer to the

mean 3.5% measured in a broad review of the literature [12],

however, rather than the 9% found by Tian et al. [13], they

would still be highly visible to plant breeders attempting to

combine multiple resistances against one or more pathogens. 

Solving this riddle will lead to a significant improvement in

our understanding of the evolutionary processes involved in

the interplay of host resistance and pathogen virulence

genes. Clearly, a first step in this process is to measure the

fitness costs associated with a range of genes conferring

resistance to other pathogens in Arabidopsis and other host

species. In essence, we now need to know how representa-

tive the RPM1 gene is and how fitness costs associated with

different resistance genes are combined. If the RPM1 effect

is an exception, then how - in biochemical terms - it con-

tributes to loss of fitness remains an interesting question. 

In a somewhat ironic development, the predictions of the

early deterministic models that were one of the main driving

forces behind the search for evidence of fitness costs have

now been shown to reflect an unrealistic view of the world.

Indeed, when evolutionary interactions are considered in a

spatially realistic context (for example, meta-populations

comprising multiple interacting populations and distance-

dependent dispersal), theoretical work involving simulation

models has shown that genetic polymorphisms in either host

resistance or pathogen virulence genes can persist without

the necessity of assuming differential fitness effects [17,18].

In general, it may well be that the occurrence of fitness costs

simply reinforces the patterns of host and pathogen variation

that are a consequence of host-pathogen interactions occur-

ring in spatially and temporally heterogeneous environments. 

Regardless of how the question of costs in host-pathogen

interactions is ultimately resolved, the Tian et al. study [13]

provides an elegant demonstration of just how the enormous

power of genetic engineering is starting to open up a new

level of sophistication in the type and precision of the ques-

tions that can be asked in developmental and evolutionary

biology, ecology and plant breeding.
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