
Background
The health of populations in developed countries has 
never been better. Within the past century, the life 
expectancy of humans has increased from 40 years to 74 
years. Correspondingly, the public health burden has 
shifted from infectious diseases to autoimmune diseases 
[1] and to diseases associated with lifestyle and aging, 
such as diabetes, cardiovascular disease, cancer and 
Alzheimer’s disease (AD).

AD is the most common form of dementia. Because 
age is a major risk factor of AD, the prevalence of this 
incurable, degenerative and terminal disease is expected 
to rise dramatically over the next decades. It is estimated 
there will be over 80 million AD patients by 2050 [2-4]. 
Given the change in demographic structure and the rise 
of life expectancy in developing countries, AD is likely to 
have a major socioeconomic impact.

The progression of AD is gradual, with the subclinical 
stage of illness believed to span several decades [5,6]. The 
pre-dementia stage, also termed mild cognitive 
impairment (MCI), is characterized by subtle symptoms 
that may affect complex daily activities. These include 
memory loss, impairment of semantic memory and 
problems with executive functions, such as attentiveness, 
planning, flexibility and abstract thinking [6]. MCI is 
considered as a transition phase between normal aging 
and AD. MCI confers an increased risk of developing AD 
[7], although the state is heterogeneous with several 
possible outcomes, including even improvement back to 
normal cognition [8].

Despite there being no currently available therapy to 
prevent AD, early disease detection would still be of 
utmost importance for delaying the onset of the disease 
with pharmacological treatment and/or lifestyle changes, 
assessing the efficacy of potential AD therapeutic agents, 
or monitoring disease progression more closely using 
medical imaging. Recent research has thus concentrated 
on obtaining biomarkers to identify features that 
differentiate between the individuals with MCI who will 
develop AD (progressive MCI) and individuals with 
stable MCI and healthy elderly people.
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it is expected that their integration will improve early 
detection as well as our understanding of the disease.
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Towards molecular markers of AD
AD is characterized by deposition of amyloid β (Aβ) in 
the extracellular space. Given that the allele ε4 of the 
apolipoprotein E gene (APOE4), the major genetic risk 
factor of AD [9], leads to excess Ab accumulation before 
the first symptoms of AD [10], it was believed that Aβ 
also has a pathogenic role [11]. However, it was later 
shown that Aβ accumulation in plaques is insufficient to 
cause the neuronal cell death observed in AD, and that 
neuronal protein tau is essential for neurodegeneration in 
AD [12,13].

The 40- or 42-peptide amyloid β (Aβ1-40/42), total tau and 
tau phosphorylated at Thr181 (P-tau181P), all of which can 
be measured from cerebrospinal fluid (CSF), are well 
established markers of AD [14]. A recent study [15] used 
an unsupervised mixture modeling approach, indepen-
dent of AD diagnosis, to identify a molecular signature 
derived from a mixture of Aβ1-42 and P-tau181P that was 
associated with AD. The AD signature identified subjects 
who progress from MCI to AD with high sensitivity and 
was surprisingly also present in a third of cognitively 
normal subjects, suggesting that AD pathology may 
occur earlier than previously thought.

CSF has severe drawbacks for routine diagnosis 
because of the invasiveness and potential side effects of 
sample collection. However, attempts to use Aβ or tau as 
measured from plasma as potential predictive markers of 
AD have so far not been successful [16-18]. Among the 
available non-invasive techniques, brain imaging methods, 
such as magnetic resonance imaging or positron emission 
tomography, can identify cerebral pathologies specifically 
associated with early progression to AD [18,19]. At 
present, it is unclear how atrophy in the hippocampus 
and hypometabolism in the inferior parietal lobules, as 
observed in these studies, relate to the disease 
pathophysiology and the existing CSF-derived markers.

High-throughput strategies to identify novel 
blood-based biomarkers
The ‘omics’ revolution has given us the tools needed for a 
discovery-driven strategy to identify new molecular 
biomarkers from biofluids, cells or tissues. Lessons have 
been learned about the statistical and study design 
precautions needed when applying such strategies of 
measuring large numbers of molecular components 
[20,21]. The major advantage of high-throughput 
approaches over more targeted hypothesis-driven 
strategies is their capacity to collect large amounts of 
information about a specific phenotype or disease 
condition in an unbiased manner.

Recent quantitative analysis of 120 plasma proteins [22] 
identified 18 signaling proteins as potential predictive 
biomarker candidates, which were mainly associated 
with reduced hematopoiesis and inflammation during 

presymptomatic AD. In a subsequent larger serum 
proteomics study by another research team [23], a 
multiplex protein immunoassay was used to classify AD 
and controls with high sensitivity and specificity. Notably, 
the overlap of the marker proteins between the two 
studies was minimal, and neither of the studies [22,23] 
were validated in an independent cohort. Blood 
mononuclear cells have also been considered as a 
potential source of biomarkers. Preliminary studies using 
transcriptional and microRNA profiling in AD patients 
and healthy controls suggest that a distinct AD-
associated expression signature can be identified [24,25]. 
The major changes in blood mononuclear cells include 
diminished expression of genes involved in cytoskeletal 
maintenance, DNA repair and redox homeostasis.

Profiling of small molecules (metabolites) is also a 
promising way to search for new AD biomarkers. 
Concentration changes of specific groups of circulating 
metabolites may be sensitive to pathogenically relevant 
factors, such as genetic variation, diet, age or gut 
microbiota [26-29]. The study of high-dimensional 
chemical signatures as obtained by metabolomics may 
therefore be a powerful tool for characterization of 
complex phenotypes affected by both genetic and 
environmental factors [30]. No metabolic markers have 
been reported so far for AD, but several projects aiming 
to discover serum-derived metabolic markers are 
ongoing, including HUSERMET [31] and PredictAD [32].

Towards systems medicine in AD
Large amounts of information gathered by various high-
throughput technologies come at a price. The data, 
usually corresponding to different aspects of disease 
pathology, need to be integrated in a meaningful way. 
Such data integration does not encompass only 
informatics and statistics; for example, it includes the 
development of tools not only for storing and mining the 
data, but also modeling of the data in the context of 
disease pathophysiology. In AD, the adoption of a 
systems approach is particularly challenging since even at 
the molecular level the disease pathogenesis is highly 
complex, covering multiple spatial and temporal scales. 
As discussed below, this complexity demands that studies 
look beyond the pathways.

The genetics of late-onset AD is complex, although 
several of the common risk alleles other than APOE are 
involved in production, aggregation and removal of Aβ 
[33]. Several of the associated single nucleotide 
polymorphisms produce a synonymous codon change; 
that is, without any change in the corresponding protein 
sequence [33,34]. Such synonymous codon changes may 
not affect gene expression but can affect protein folding 
and thus the structure and function of the protein [35] by 
affecting translational accuracy or co-translational 
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folding and thus formation and stabilization of protein 
secondary structure [36].

The importance of understanding the structural and 
spatial context of AD-associated proteins and peptides is 
underlined by recent studies of truncated Aβ fragments 
(Aβ17-40/42 [37] and Aβ11-40/42 [38]), which are nonamyloido-
genic and thus were believed to be harmless bystanders 
in amyloid plaques found in AD. Molecular dynamics 
simulations of truncated Aβ peptides, followed up by 
functional studies, suggest that these peptides are mobile 
in biological membranes and may dynamically form ion 
channels [39]. Such ion channels may be toxic, as they 
affect the uptake of ions such as calcium into the cells. 
The reason that they can appear with aging, in some 
individuals, remains to be established. One possible 
explanation is the varying composition of neuronal lipid 
membranes, specifically plasmalogens, ether phospho-
lipids that are enriched in polyunsaturated fatty acids and 
are abundant in brain [40,41]. Plasmalogens affect 
membrane fluidity and protein mobility [40,42] and they 
are found to be diminished in early AD [43-45] and in 
normal aging [46]. In addition, plasmalogens, via their 
vinyl-ether bond, act as endogenous antioxidants to 
protect cells from reactive oxygen species, and 
their reduction in AD is thus in line with the hypothesis 
implicating the role of oxidative stress in AD pathogenesis 
[47]. Taking these results together, one would expect 
that  age-related and disease-related changes in 
membrane lipid composition would also affect the 
mobility of Aβ peptides, including dynamics of their 
self-assembly.

Lipidomics tools are now available for detailed studies 
of molecular lipids in cells and biofluids [48]. Molecular 
profiling, combined with biophysical modeling of 
membrane systems – for example, to study β-sheet self 
assembly [49,50], lipid membranes [51] or lipoproteins 
[52] – thus offer an opportunity to link the molecular 
pathway changes with cell- and tissue-level physiology 
and structure. This may not only lead to new concepts in 
disease pathogenesis, but also suggest new diagnostic 
and therapeutic avenues.

Bioinformatics tools enabling a systems medicine 
approach to AD
Many tools are available for mining of heterogeneous 
biological data, although the focus of such tools and the 
challenges being addressed by them have largely been in 
the domains of molecular interactions and biological 
pathways [53]. There is still a gap between the molecular 
representations of disease-related processes and the 
clinical disease. In this context, the measurement of traits 
that are modulated but not encoded by the DNA 
sequence, commonly referred to as intermediate 
phenotypes [54], may be of particular interest. These 
intermediate phenotypes not only include biochemical, 
genomic or functional traits, as discussed above, but also 
an individual’s microbial (gut microflora) and social 
traits. The bioinformatic strategies to manage the 
disease-associated genetic, molecular and phenotypic 
data would thus aim to link the biological networks with 
specific intermediate phenotypes relevant to clinical 
disease by using a suite of models (Figure 1). The models, 

Figure 1. A conceptual bioinformatic framework for enabling biomarker discovery and diagnosis in Alzheimer’s disease. The biophysical, 
biochemical and statistical models are used to integrate information from intermediate phenotypes, such as those obtained from magnetic 
resonance imaging (MRI) or from serum metabolomics, with the molecular networks. The models relate changes in specific components of the 
networks with the specific changes in measured intermediate phenotypes (red and blue lines, respectively). These models then inform biomarker 
discovery and thus diagnosis because they can be used to predict clinical phenotypes from intermediate phenotypes and biomarkers.
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which could be, for example, biophysical or statistical, as 
described above, together with the intermediate 
phenotype data, could be used for discovery of new 
biomarkers of pathophysiological relevance.

Intermediate phenotypes, such as brain image data or 
serum metabolomic profiles, may also facilitate linking of 
the findings from experimental disease models with 
clinical phenotypes. This is particularly relevant for 
diseases in which animal models are difficult to validate, 
such as in diseases of the central nervous system. One 
recent example is a metabolomic study of Huntington’s 
disease [55], for which early disease markers were sought 
in patients and a transgenic mouse model. Clear 
differences in metabolic profiles between transgenic mice 
and wild-type littermates were observed, with a trend for 

similar differences between human patients and control 
subjects. The data thus raise the prospect of a robust 

molecular definition of progression of Huntington’s 
disease before symptom onset and, if validated in a 
genuinely prospective manner, these biomarker 

trajectories could facilitate the development of useful 
therapies for this disease. A similar strategy could also be 
useful in the studies involving transgenic mouse models 
of AD [56].

Conclusions
The pathogenesis of AD is complex and there is a strong 
case for integrating information across multiple physio-
logical levels, from molecular profiling (metabolomics, 
lipidomics, proteomics and transcriptomics) and brain 
imaging to cognitive assessments. The adoption of a 
systems approach to study AD will demand integration of 
heterogeneous data (such as molecular and image data) 
and studies of disease-associated molecules and their 
assemblies beyond the pathway-centric view. To address 
data integration, sophisticated approaches are needed to 
segment the image data [57] and study their dependencies 
on molecular changes in the same subjects. To take 
studies beyond pathways, computational models are 
needed to study AD-associated molecules and their 
interactions in the spatial and temporal context. Given 
that data acquired at different levels may carry 
complementary information about early AD pathology, it 
is expected that their integration will improve early 
detection as well as our understanding of the disease.

Abbreviations
Aβ, amyloid β; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MCI, mild 
cognitive impairment.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MO conceived and wrote the manuscript. JL and HS critically reviewed the 
manuscript and contributed to its writing.

Author information
MO is a Research Professor of systems biology and bioinformatics. His main 
research areas are metabolomic applications in biomedical research and 
integrative bioinformatics. He coordinates the European project ETHERPATHS 
[58], which aims to understand how diet modulates lipid homeostasis, 
specifically ether lipid metabolism. JL is senior research scientist in data 
mining. His main research interests are in medical image analysis and decision 
support systems. He is currently coordinating the European project PredictAD 
[32] aiming to find efficient biomarkers and their combinations for allowing 
objective and efficient diagnostics in AD. HS is a Professor of neurology. Her 
main research field is Alzheimer’s disease, specifically genetic and life style risk 
factors, biomarkers and magnetic resonance imaging. She is a partner in EU 
projects PredictAD and LIPIDIDIET.

Acknowledgements
This work was funded under the 7th Framework Programme by the European 
Commission: EU-FP7-ICT-224328-PredictAD (From patient data to personalized 
healthcare in Alzheimer’s disease; PredictAD; to MO, JL and HS) and EU-FP7-
KBBE-222639-ETHERPATHS (Characterization and modeling of dietary effects 
mediated by gut microbiota on lipid metabolism; ETHERPATHS; to MO).

Author details
1VTT Technical Research Centre of Finland, Espoo, FI-02044 VTT, Finland. 
2VTT Technical Research Centre of Finland, Tampere, FI-33101, Finland. 
3Department of Neurology, Kuopio University Hospital and University of 
Eastern Finland, Kuopio, FI-70211, Finland

Published: 15 November 2010

References
1. Bach J-F: The effect of infections on susceptibility to autoimmune and 

allergic diseases. N Engl J Med 2002, 347:911-920.
2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM: Forecasting the 

global burden of Alzheimer’s disease. Alzheimers Dement 2007, 3:186-191.
3. Qiu C, De Ronchi D, Fratiglioni L: The epidemiology of the dementias: an 

update. Curr Opin Psychiatry 2007, 20:380-385.
4. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, 

Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, 
Scazufca M: Global prevalence of dementia: a Delphi consensus study. 
Lancet 2005, 366:2112-2117.

5. Forstl H, Kurz A: Clinical features of Alzheimer’s disease. Eur Arch Psychiatry 
Clin Neurosci 1999, 249:288-290.

6. Backman L, Jones S, Berger AK, Laukka EJ, Small BJ: Multiple cognitive deficits 
during the transition to Alzheimer’s disease. J Intern Med 2004, 256:195-204.

7. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST: 
Practice parameter: early detection of dementia: mild cognitive 
impairment (an evidence-based review). Report of the Quality Standards 
Subcommittee of the American Academy of Neurology. Neurology 2001, 
56:1133-1142.

8. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, 
Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, 
Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B: Mild 
cognitive impairment. Lancet 2006, 367:1262-1270.

9. Laws SM, Hone E, Gandy S, Martins RN: Expanding the association between 
the APOE gene and the risk of Alzheimer’s disease: possible roles for APOE 
promoter polymorphisms and alterations in APOE transcription. 
J Neurochem 2003, 84:1215-1236.

10. Polvikoski T, Sulkava R, Haltia M, Kainulainen K, Vuorio A, Verkkoniemi A, 
Niinisto L, Halonen P, Kontula K: Apolipoprotein E, dementia, and cortical 
deposition of beta-amyloid protein. N Engl J Med 1995, 333:1242-1247.

11. Hardy JA, Higgins GA: Alzheimer’s disease: the amyloid cascade hypothesis. 
Science 1992, 256:184-185.

12. Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A: Tau is essential to 
beta-amyloid-induced neurotoxicity. Proc Natl Acad Sci USA 2002, 
99:6364-6369.

13. Mudher A, Lovestone S: Alzheimer’s disease-do tauists and baptists finally 
shake hands? Trends Neurosci 2002, 25:22-26.

14. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M, 
Herukka SK, van der Flier WM, Blankenstein MA, Ewers M, Rich K, Kaiser E, 
Verbeek M, Tsolaki M, Mulugeta E, Rosen E, Aarsland D, Visser PJ, Schroder J, 
Marcusson J, de Leon M, Hampel H, Scheltens P, Pirttila T, Wallin A, Jonhagen 

Orešič et al. Genome Medicine 2010, 2:83 
http://genomemedicine.com/content/2/11/83

Page 4 of 5



ME, Minthon L, Winblad B, Blennow K: CSF biomarkers and incipient 
Alzheimer disease in patients with mild cognitive impairment. JAMA 2009, 
302:385-393.

15. De Meyer G, Shapiro F, Vanderstichele H, Vanmechelen E, Engelborghs S, 
De Deyn PP, Coart E, Hansson O, Minthon L, Zetterberg H, Blennow K, Shaw L, 
Trojanowski JQ, for the Alzheimer’s Disease Neuroimaging Initiative: 
Diagnosis-independent Alzheimer disease biomarker signature in 
cognitively normal elderly people. Arch Neurol 2010, 67:949-956.

16. Marksteiner J, Hinterhuber H, Humpel C: Cerebrospinal fluid biomarkers for 
diagnosis of Alzheimer’s disease: beta-amyloid(1-42), tau, phospho-
tau-181 and total protein. Drugs Today (Barc) 2007, 43:423-431.

17. Borroni B, Di Luca M, Padovani A: Predicting Alzheimer dementia in mild 
cognitive impairment patients. Are biomarkers useful? Eur J Pharmacol 2006, 
545:73-80.

18. Tarawneh R, Holtzman DM: Biomarkers in translational research of 
Alzheimer’s disease. Neuropharmacology 2010, 59:310-322.

19. Schroeter ML, Stein T, Maslowski N, Neumann J: Neural correlates of 
Alzheimer’s disease and mild cognitive impairment: a systematic and 
quantitative meta-analysis involving 1351 patients. Neuroimage 2009, 
47:1196-1206.

20. Ransohoff DF: Rules of evidence for cancer molecular-marker discovery and 
validation. Nat Rev Cancer 2004, 4:309-314.

21. Ransohoff DF: Bias as a threat to the validity of cancer molecular-marker 
research. Nat Rev Cancer 2005, 5:142-149.

22. Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, 
Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA, Leszek J, Miller BL, 
Minthon L, Quinn JF, Rabinovici GD, Robinson WH, Sabbagh MN, So YT, Sparks 
DL, Tabaton M, Tinklenberg J, Yesavage JA, Tibshirani R, Wyss-Coray T: 
Classification and prediction of clinical Alzheimer’s diagnosis based on 
plasma signaling proteins. Nat Med 2007, 13:1359-1362.

23. O’Bryant SE, Xiao G, Barber R, Reisch J, Doody R, Fairchild T, Adams P, Waring S, 
Diaz-Arrastia R: A serum protein-based algorithm for the detection of 
Alzheimer disease. Arch Neurol 2010, 67:1077-1081.

24. Schipper HM, Maes OC, Chertkow HM, Wang E: MicroRNA expression in 
Alzheimer blood mononuclear cells. Gene Regul Syst Bio 2007, 1:263-274.

25. Maes OC, Xu S, Yu B, Chertkow HM, Wang E, Schipper HM: Transcriptional 
profiling of Alzheimer blood mononuclear cells by microarray. Neurobiol 
Aging 2007, 28:1795-1809.

26. Lenz EM, Bright J, Wilson ID, Hughes A, Morrisson J, Lindberg H, Lockton A: 
Metabonomics, dietary influences and cultural differences: a 1H NMR-
based study of urine samples obtained from healthy British and Swedish 
subjects. J Pharm Biomed Anal 2004, 36:841-849.

27. Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu PV, Yetukuri L, Islam S, 
Felin J, Perkins R, Boren J, Oresic M, Backhed F: The gut microbiota modulates 
host energy and lipid metabolism in mice. J Lipid Res 2010, 51:1101-1112.

28. Nikkilä J, Sysi-Aho M, Ermolov A, Seppänen-Laakso T, Simell O, Kaski S, Oresic 
M: Gender dependent progression of systemic metabolic states in early 
childhood. Mol Syst Biol 2008, 4:197.

29. Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, 
Kastenmuller G, Kato BS, Mewes H-W, Meitinger T, de Angelis MH, Kronenberg 
F, Soranzo N, Wichmann H-E, Spector TD, Adamski J, Suhre K: A genome-wide 
perspective of genetic variation in human metabolism. Nat Genet 2010, 
42:137-141.

30. Oresic M, Vidal-Puig A, Hänninen V: Metabolomic approaches to phenotype 
characterization and applications to complex diseases. Expert Rev Mol Diagn 
2006, 6:575-585.

31. HUSERMET: Human Serum Metabolome in Health and Disease 
[http://www.husermet.org/]

32. PredictAD [http://www.predictad.eu/]
33. Bertram L, Tanzi RE: Thirty years of Alzheimer’s disease genetics: the 

implications of systematic meta-analyses. Nat Rev Neurosci 2008, 9:768-778.
34. De Ferrari GV, Papassotiropoulos A, Biechele T, Wavrant De-Vrieze F, Avila ME, 

Major MB, Myers A, Saez K, Henriquez JP, Zhao A, Wollmer MA, Nitsch RM, Hock 
C, Morris CM, Hardy J, Moon RT: Common genetic variation within the low-
density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s 
disease. Proc Natl Acad Sci USA 2007, 104:9434-9439.

35. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, 
Gottesman MM: A “silent” polymorphism in the MDR1 gene changes 
substrate specificity. Science 2007, 315:525-528.

36. Oresic M, Shalloway D: Specific correlations between relative synonymous 
codon usage and protein secondary structure. J Mol Biol 1998, 281:31-48.

37. Selkoe DJ: Cell biology of protein misfolding: the examples of Alzheimer’s 
and Parkinson’s diseases. Nat Cell Biol 2004, 6:1054-1061.

38. Thinakaran G, Koo EH: Amyloid precursor protein trafficking, processing, 
and function. J Biol Chem 2008, 283:29615-29619.

39. Jang H, Arce FT, Ramachandran S, Capone R, Azimova R, Kagan BL, Nussinov R, 
Lal R: Truncated beta-amyloid peptide channels provide an alternative 
mechanism for Alzheimer’s Disease and Down syndrome. Proc Natl Acad Sci 
USA 2010, 107:6538-6543.

40. Brites P, Waterham HR, Wanders RJA: Functions and biosynthesis of 
plasmalo gens in health and disease. Biochim Biophys Acta 2004, 
1636:219-231.

41. Farooqu AA, Horrocks LA: Plasmalogens, phospholipase A2, and 
docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 2001, 16:263-
272; discussion 279-284.

42. Nagan N, Zoeller RA: Plasmalogens: biosynthesis and functions. Prog Lipid 
Res 2001, 40:199-229.

43. Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PW, Heath D, 
Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, 
Kamino K, Morihara T, Takeda M, Wood PL: Peripheral ethanolamine 
plasmalogen deficiency: a logical causative factor in Alzheimer’s disease 
and dementia. J Lipid Res 2007, 48:2485-2498.

44. Han X, Holtzman DM, McKeel DW Jr: Plasmalogen deficiency in early 
Alzheimer’s disease subjects and in animal models: molecular 
characterization using electrospray ionization mass spectrometry. 
J Neurochem 2001, 77:1168-1180.

45. Farooqui AA, Rapoport SI, Horrocks LA: Membrane phospholipid alterations 
in Alzheimer’s disease: deficiency of ethanolamine plasmalogens. 
Neurochem Res 1997, 22:523-527.

46. Maeba R, Maeda T, Kinoshita M, Takao K, Takenaka H, Kusano J, Yoshimura N, 
Takeoka Y, Yasuda D, Okazaki T, Teramoto T: Plasmalogens in human serum 
positively correlate with high-density lipoprotein and decrease with aging. 
J Atheroscler Thromb 2007, 14:12-18.

47. Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X: 
Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 2008, 
5:525-532.

48. Oresic M, Hanninen VA, Vidal-Puig A: Lipidomics: a new window to 
biomedical frontiers. Trends Biotechnol 2008, 26:647-652.

49. Miller Y, Ma B, Nussinov R: Polymorphism in Alzheimer Abeta amyloid 
organization reflects conformational selection in a rugged energy 
landscape. Chem Rev 2010, 110:4820-4838.

50. Yu X, Wang J, Yang JC, Wang Q, Cheng SZ, Nussinov R, Zheng J: Atomic-scale 
simulations confirm that soluble beta-sheet-rich peptide self-assemblies 
provide amyloid mimics presenting similar conformational properties. 
Biophys J 2010, 98:27-36.

51. Niemelä PS, Ollila S, Hyvönen MT, Karttunen M, Vattulainen I: Assessing the 
nature of lipid raft membranes. PLoS Comput Biol 2007, 3:e34.

52. Yetukuri L, Söderlund S, Koivuniemi A, Seppänen-Laakso T, Niemelä PS, 
Hyvönen M, Taskinen MR, Vattulainen I, Jauhiainen M, Oresic M: Composition 
and lipid spatial distribution of HDL particles in subjects with low and high 
HDL-cholesterol. J Lipid Res 2010, 51:2341-2351.

53. Searls DB: Data integration: challenges for drug discovery. Nat Rev Drug 
Discov 2005, 4:45-58.

54. Meyer-Lindenberg A, Weinberger DR: Intermediate phenotypes and genetic 
mechanisms of psychiatric disorders. Nat Rev Neurosci 2006, 7:818-827.

55. Underwood BR, Broadhurst D, Dunn WB, Ellis DI, Michell AW, Vacher C, 
Mosedale DE, Kell DB, Barker RA, Grainger DJ, Rubinsztein DC: Huntington 
disease patients and transgenic mice have similar pro-catabolic serum 
metabolite profiles. Brain 2006, 129:877-886.

56. Götz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, Kurosinski P, Chen 
F: Transgenic animal models of Alzheimer’s disease and related disorders: 
histopathology, behavior and therapy. Mol Psychiatry 2004, 9:664-683.

57. Lotjonen JM, Wolz R, Koikkalainen JR, Thurfjell L, Waldemar G, Soininen H, 
Rueckert D: Fast and robust multi-atlas segmentation of brain magnetic 
resonance images. Neuroimage 2010, 49:2352-2365.

58. ETHERPATHS [http://www.etherpaths.org].

Orešič et al. Genome Medicine 2010, 2:83 
http://genomemedicine.com/content/2/11/83

doi:10.1186/gm204
Cite this article as: Orešič M, et al.: Systems medicine and the integration 
of bioinformatic tools for the diagnosis of Alzheimer’s disease. Genome 
Medicine 2010, 2:83.

Page 5 of 5


