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In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is
associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes.
Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical
molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency
analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules.
We combine automated image quantification and artificial intelligence to discriminate between primary
fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional
phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed
that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional
aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV
and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in
therapy development for human mitochondrial disorders.

V
irtually every cell contains mitochondria, which are double membrane organelles that play multiple roles
in cell metabolism, signal transduction and ATP generation. Mitochondrial function is sustained by the
action of the oxidative phosphorylation (OXPHOS) system, consisting of four electron transport chain

(ETC) complexes (CI-CIV) and the ATP-generating FoF1-ATPase (CV)1. ETC and CV action is linked via the
highly negative potential (Dy) across the mitochondrial inner membrane (MIM) through chemiosmotic coup-
ling2. Malfunction of the OXPHOS system is observed in many human diseases including metabolic syndromes
such as Leigh syndrome (LS)3–5. At the cellular level mitochondrial dysfunction and alterations in mitochondrial
structure andDy are often paralleled by increased reactive oxygen species (ROS) levels6–9. This suggests that these
aberrations might constitute linked therapeutic targets. In fibroblasts from LS patients with isolated CI deficiency
(OMIM 253010), the a-tocopherol derivative Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic
acid) normalized increased levels of CM-H2DCF (5-(and-6)-chloromethyl-29, 79-dichlorodihydro-fluorescein)
oxidizing ROS10. Trolox treatment also increased the amount/activity of the CI holo complex and improved Ca21-
stimulated mitochondrial ATP production in LS cells10,11. In fibroblasts from a healthy individual (CT) Trolox
stimulated mitochondrial length and degree of branching12. Also studies in other models of mitochondrial disease
highlighted beneficial effects of (mitochondria-targeted) antioxidants13–16. Although the above suggests that
elevated ROS levels might play a pathophysiological role in mitochondrial dysfunction, antioxidant treatment
of ‘‘real’’ mitochondrial disease patients appeared only (transiently) effective in a very limited number of
cases17–19. These negative results raised doubts about the effectiveness of antioxidant treatment in ROS-related
human pathologies20–24.
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The discrepancy between results obtained in model systems and
mitochondrial disease patients is striking and might be explained by
the dual role of ROS as signaling and damaging molecules12,25,26. In
addition, antioxidants can also display pro-oxidant properties depend-
ing on their concentration, physicochemical properties and reaction
environment27–29. Importantly, therapeutic small molecules (including
bioactive antioxidants) generally target multiple effectors thereby
exerting subtle pleiotropic effects (both on- and off-target) at the
cellular level30. This means that simply studying the in vitro potency
and/or performing single-parameter high-throughput image-based
cell screening is of limited use to identify potential drug-like molecules
or understand their mode-of-action. Therefore the rate-of-success
during lead selection and optimization in drug discovery benefits from
multi-parameter phenotypic profiling31.

Here we present an integrated experimental and computational
strategy that is broadly applicable for small molecule profiling and
based on quantifying their phenotypical effects. This approach consists
of: (i) automated calculation of phenotypic ‘‘fingerprints’’ reflecting
mitochondrial morphology and Dy (‘‘morpho-function’’) at the level
of individual mitochondria in single living cells, (ii) using these
morpho-functional fingerprints for supervised machine learning clas-
sification of CT and LS patient cells, (iii) automated evaluation of mor-
pho-functional effects induced by small molecule oxidants in LS patient
cells. In a proof-of-principle study, the above strategy was applied to
evaluate the phenotypic effects of four newly developed Trolox variants
in LS patient cells. This highlighted Trolox ornithylamide hydrochloride
(KH003) as a therapeutically promising Trolox derivative, as confirmed
by independent in vitro and in cellulo analysis. KH003 displayed cellular
ROS scavenging, stimulated CI, CIV and citrate synthase activity. This
suggests that Trolox-derivatives are promising candidates in therapy
development for human mitochondrial disorders.

Results
Mitochondrial morpho-functional fingerprinting of human skin
fibroblasts. An automated approach was developed for phenotypic

analysis of mitochondrial morphology and Dy (‘‘morpho-functional
fingerprinting’’) in primary human skin fibroblasts (Fig. 1). Cells
were stained with TMRM (tetramethyl rhodamine methyl ester), a
mitochondria-specific cation that accumulates in the mitochondrial
matrix in a Dy-dependent manner, and visualized using epifluo-
rescence microscopy (Fig. 1A; yellow boxes). Various quantitative
parameters (Supplementary Table S1) describing mitochondrial mor-
phology and TMRM intensity (‘‘morpho-functional descriptors’’)
were extracted from the microscopy images by applying an auto-
mated image processing and analysis algorithm (Fig. 1A; blue
boxes). This strategy was extensively validated previously in pri-
mary human skin fibroblasts (Supplementary Information). For
every image, 31 descriptors were calculated for each mitochondrial
object. Relative to typical control cells (CT5120), descriptor values in
LS patient cells (P5175) were unaffected (8 descriptors), significantly
increased (2 descriptors) or significantly decreased (21 descriptors;
Supplementary Table S1).

Using mitochondrial morpho-functional fingerprints for supervised
machine learning and cell classification. The dataset of 31 descriptors
was used for training a machine learning algorithm to discriminate
between CT5120 and P5175 cells. In total, 711 images were analyzed
for the CT5120 cell line (containing 187465 mitochondrial objects) and
567 images were analyzed for the P5175 cell line (112615 objects). By
calculating the median value of the 31 descriptors per image, a
morpho-functional ‘‘fingerprint’’ of the P5175 cell line was obtained
(Supplementary Table S1). Using the median value instead of the
average value prevents that outlier values bias the analysis. Next, we
used the multivariate fingerprints to determine whether various
supervised machine learning algorithms were able to reliably
discriminate between CT5120 and P5175 cells (Fig. 1A; green boxes).
For this purpose, the data set for the CT5120 and P5175 cells was
equally divided into a ‘‘training set’’ and a ‘‘test set’’. The training set
was used to ‘‘teach’’ the multivariate machine learning model, after
which the test set was used to assess its classification (predictive)
performance. Crucially, the test images were not used to train the

Figure 1 | Overall strategy for mitochondrial morpho-functional fingerprinting in primary human skin fibroblasts by combined automated image
quantification and artificial intelligence techniques. (A) Schematic depiction of the integrated experimental and computational strategy. Fibroblasts are

stained with the mitochondria-specific cation TMRM and manually imaged by epifluorescence microscopy (yellow boxes: #1-#3). Next, the microscopy

images are processed and the numerical values of 31 descriptors of mitochondrial morphology and membrane potential are extracted at the level of

individual cells (blue boxes: #4-#13). The median value of each descriptor variable was calculated for each microscopy image (blue box: #14) and used for

subsequent machine learning analysis (green boxes: #15-#23; for details see Results). (B) Typical images of a fibroblast from a healthy volunteer (CT5120)

illustrating the various image processing steps in panel A (corresponding blue boxes and numbers).
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machine learning model. To express the classification performance of
the trained machine learning model, a score was used that reflects the
probability that a given image in the test set is correctly classified as a
CT5120 or P5175 cell. The performance of five popular machine
learning algorithms was compared (Supplementary Information):
Logistic Regression (LogReg), Linear Discriminant Analysis (LDA),
Partial Least Squares Discriminant Analysis (PLSDA), Quadratic
Determinant Analysis (QDA) and Support Vector Machines (SVMs).
Best results were obtained with the LogReg and SVM model using
the median per cell data-set (Supplementary Table S2). The LogReg
model was used in the remainder of the study since it is com-
putationally simpler than SVM and easier to interpret. The LogReg
model condenses the total information contained in the 31 des-
criptors into a single parameter: the LogReg score. The latter
represents the probability that a cell is classified as being CT5120
(LogReg value close to 1) or P5175 (LogReg value close to 0). The
LogReg score is displayed against the first principal component
(PC1), which captures the maximal variance in the overall data
(Fig. 2A). This demonstrates that CT5120 and P5175 cells separate
along the LogReg score, whereas no separation is observed along the
PC1 axis, meaning that: (i) the difference in morpho-functional
phenotype between CT5120 and P5175 cells is captured by the
analysis (LogReg) and, (ii) non-supervised machine learning analysis

is not appropriate to detect this difference (PC1). The LogReg model is
designed in such a way that it takes a binary decision (i.e. any image
scoring below 0.5 corresponds to P5175 cells whereas a score above 0.5
corresponds to CT5120 cells), leading to a correct classification rate
(per individual image) of 78% on a blind test set. The corresponding
area under the curve (AUC) of the receiver operator characteristic
(ROC) curve (Fig. 2B), which has as maximal value of 1, equaled
0.85. This value reflects that the ROC-curve is above the line y 5 x,
meaning that the LogReg model has predictive power. These results
demonstrate that the two cell lines display observable differences and
that the LogReg model is able to classify CT5120 and P5175 cells with
78% accuracy (based upon a single image). To further validate this
model, two additional control cell lines from other individuals were
analyzed (CT5118: n 5 79 images, o 5 16860 objects, N 5 3 biological
replicates; CT5119: n 5 109, o 5 31153, N 5 4). The trained LogReg
model also correctly classified these cell lines meaning that the
mitochondrial morpho-functional fingerprint of all three control
cell lines were classified as identical. Next, we estimated the relative
importance of each descriptor in the model, as represented by
the absolute value of the LogReg coefficients (Fig. 2C), using a
backward elimination similar to the Recursive Feature Elimination
(RFE) strategy32. In brief, the least informative descriptor (i.e. the
one with the lowest LogReg coefficient) was removed from the
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Figure 2 | Machine learning classification of control and patient cells. (A) Visualization of the test samples according to the logistic regression scores vs.

the main source of variance in the data (Principal component 1: PC1). Data from individual microscopy images of control cells (CT5120; green dots;

n 5 356 images; N 5 13 days) and patient cells (P5175; red dots; n 5 235 N 5 13) separates along the horizontal axis. A cell image with a logistic

regression (LogReg) score below 0.5 is classified as a P5175 cell. (B) Receiver Operator Curve (ROC) of the LogReg model demonstrating a correct single-

image classification score of 78%. The area under the curve (AUC) of the ROC equaled 0.847. (C) Absolute value of the regression coefficient associated

with the descriptors. This is a measure of the relative importance of each descriptor in the trained LogReg machine learning model. (D) Effect of

Recursive Feature Elimination (RFE) on the classification performance of the LogReg model. Performance dropped when less than 21 descriptors

are used (dotted line). (E) Background-corrected image of a TMRM-stained CT5120 fibroblast (top panel) and magnification of a region-of-interest

(white box). The lower three panels show a ‘‘mitogram’’ depicting all mitochondrial objects in the top panel sorted according to the numerical value

(indicated for typical objects) of the ‘‘Perimeter ratio’’, ‘‘Margination’’ and ‘‘Area on Box’’ descriptor.
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dataset followed by recalculation of the LogReg model. This process
was repeated until all descriptors were deleted from the model. RFE
analysis revealed that at least 21 descriptors need to be included to
conserve the predictive performance of the LogReg model (Fig. 2D).
Three descriptors (‘‘Perimeter Ratio’’, ‘‘Margination’’ and ‘‘Area on
Box’’) ranked highest in the LogReg model (Fig. 2E).

Morpho-functional fingerprinting and machine learning classification
of cells treated with Trolox and newly developed Trolox variants.
In cellular models of CI deficiency (i.e. LS cells) treatment with the
antioxidant Trolox mitigated or fully reversed various cellular aber-
rations (see Introduction). As a proof-of-principle we applied the
above strategy to quantify the effects of Trolox and 4 new Trolox
derivatives (KH001-KH004) in P5175 cells. To this end we modified
the Trolox sidechain and left the antioxidant part of the molecule (i.e.
the HO-group on the chroman ring) intact (Fig. 3A). Cheminfor-
matics analysis predicted that KH001-KH004 display similar physi-
cochemical properties and that KH003 is chemically most similar
to Trolox (Supplementary Figure S1 and Supplementary Table S3).
Morpho-functional fingerprinting revealed that all five antioxidants
reversed the patient phenotype to a variable extent (Fig. 3B and
Supplementary Table S1). To condense this phenotypic information
into a single parameter (LogReg score), images of antioxidant-treated
P5175 cells were classified with the trained LogReg model. Only for
KH003-treated patient cells the LogReg-score was larger than 0.5,
meaning that they were classified as control cells.

In vitro and cellular antioxidant properties of Trolox and newly
developed Trolox variants. As a measure of in vitro antioxidant

capacity, we determined the oxygen radical absorbance capacity
(ORAC) value. This parameter decreased in the order: KH003 .
Trolox . KH001 . KH002 ? KH004. Analysis in LS-patient cells
revealed that all antioxidants (500 mM, 72 h) reduced the increased
levels of CM-H2DCF-oxidizing ROS (Fig. 4A). Trolox and KH004
did not affect the elevated levels of HEt (hydroethidium)-oxidizing
ROS in LS-patient cells (Fig. 4A). These ROS levels were increased in
KH001-treated cells and reduced by KH002 and KH003. None of the
compound treatments affected cell shape or adherence (Fig. 4B;
typical example of KH003-treated LS-patient cells).

Effect of Trolox and newly developed Trolox variants on the
maximal activity of complex I, complex IV and citrate synthase.
We previously demonstrated in CT5120 cells that Trolox treatment
(500 mM, 72 h) increases the maximal biochemical activity (Vmax) of
key mitochondrial enzymes like CI, complex IV (CIV) and citrate
synthase (CS)12. Here we observed that Trolox and its four variants
displayed similar stimulatory effects in CT5120 cells (Fig 4A.).
However in case of LS-patient cells, only Trolox and KH003
stimulated CI, CIV and CS activity. KH001 failed to stimulate CI
activity, KH002 decreased CI, CIV and CS activity, and KH004 failed
to stimulate CIV and CS activity (Fig. 4A).

Discussion
The case study presented here illustrates the potential of phenotypic
screening assisted by objective multivariate statistical methods.
Machine learning techniques are particularly well suited to discrim-
inate between phenotypes that are not easily described by a few
parameters33 and were successfully applied previously for phenotypic
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profiling of drug effects34. The latter study applied a blind approach
combining 11 probes to cover maximally the cellular biology and
simultaneously testing complete dose response. This untargeted
approach was developed in the context of non-specific drug
screening.

For analysis of mitochondrial morphology unsupervised learning
was used to define six morphological phenotypes in CHO cells and
the effects thereupon of caspase inhibition35. Similarly, supervised
learning was used to analyze mitochondrial morphology in BEAS-2B
cells treated with CI and CII inhibitors36 and combined with fuzzy
logic methods to investigate the link between mitochondrial mor-
phology, Dy and Bax activation37. These two last studies use a super-
vised strategy for mitochondrial morphology evaluation based on
three predefined mitochondrial shapes (tubular, donut-shaped or
swollen). This means that training was performed using a set of
manually chosen images, which might introduce an undesirable
selection bias. Our study differs from the above ones since it does
not assume the existence of pre-defined mitochondrial morphology
phenotypes. Moreover, as far as we are aware, supervised machine
learning has not been previously used to evaluate the effects of small
molecule treatment on mitochondrial morphology and Dy in a
human disease model (i.e. LS cells).

To provide numerical data for machine learning, microscopy
images of cells stained with the Dy-sensitive cation TMRM were man-
ually acquired and automatically quantified using a well-established
and extensively validated protocol. For every mitochondrial object
in each microscopy image a set of 31 descriptors was calculated
(‘‘mitochondrial morpho-functional fingerprints’’). Relative to a typ-
ical healthy control cell line (CT5120), typical LS patient cells (P5175)
displayed alterations in 23 out of 31 descriptors. We evaluated various
machine learning models for their ability to correctly classify CT5120
and P5175 cells. Although still supervised, the obtained LogReg model
is based upon two objectively defined groups (i.e. cells were derived
from a distinct healthy subject and an LS patient). A minimum of 21
descriptors was required to maintain the predictive power of the
LogReg model. This means that the changes affecting the morpho-
functional fingerprints can only be considered from a multivariate
point of view. Within the model, three descriptors were of the highest
relative importance: ‘‘Perimeter ratio’’ . ‘‘Margination’’ . ‘‘Area on
box’’. Remarkably, with respect to their average median value, the
first two descriptors were not significantly different between CT5120

and P5175 cells (Supplementary Table S1). This demonstrates that
parameters that appear uninformative using univariate statistics can
be highly relevant in a multivariate analysis, which also considers the
relationship between individual descriptors. Biologically, an increase
in Perimeter ratio and Area on box indicates that mitochondrial
objects and/or (sub)networks become smaller (Fig. 2E). Margina-
tion is an intensity-dependent parameter that reflects the homogen-
eity of the TMRM fluorescence between the center and edge of an
object (Fig. 2E and Supplementary Table S1). This means that mito-
chondrial objects and/or (sub)networks with a high Margination
value display inhomogeneous TMRM fluorescence, compatible with
spatial Dy inhomogeneities.

In a proof-of-principle study, the developed machine learning
strategy was applied to phenotypically classify the effect of the ref-
erence compound Trolox and four newly developed Trolox deriva-
tives (KH001-KH004) in P5175 cells. Trolox is a more water-soluble
variant of the widely used antioxidant a-tocopherol38. Structurally,
Trolox consists of a chroman headgroup and a short side chain
(Fig. 3A). Both Trolox and a-tocopherol exert their antioxidant
activity by reacting with various ROS and lipid hydroperoxyl
(LOO.) radicals via the hydroxyl group at position 639,40. The result-
ing tocopheryl radical is resonance-stabilized and can be converted
back to a-tocopherol by ascorbate leading to formation of an ascor-
byl radical. The latter radical species is regenerated by the glutathione
(GSH) system40. We here designed Trolox variants in such a way that
only its side chain was modified whereas the hydroxyl and the methyl
groups of the chroman ring were left unaltered. By doing so, we
created Trolox variants with different lipophilicity (and thereby
water/lipid solubility, cell partitioning and mitochondriotropic char-
acter), potentially affecting antioxidant potency, ROS specificity and
biodistribution27,41–44. Visual inspection of the morpho-functional
fingerprints reveals that Trolox and its four derivatives all display
mitigating effects (Fig. 3B). However, only KH003-treated cells were
classified as CT5120 cells by the trained machine learning model.
Predictive cheminformatics analysis revealed that KH003 was chem-
ically most similar to Trolox. In vitro ORAC measurements pointed
at KH003 as a slightly more potent antioxidant towards peroxyl
radicals than Trolox. Activity analysis showed that Trolox and
KH003 stimulated the Vmax of key mitochondrial enzymes (CI,
CIV and CS), whereas KH001, KH002, KH004 were less effective.
At the cellular level, Trolox and KH001-KH004 reduced the elevated

Figure 4 | Effect of Trolox and newly developed Trolox variants on ROS levels, ETC enzymatic activity and cell morphology in LS patient cells.
(A) Polar plot summarizing the in vitro peroxyl radical scavenging activity (ORAC), the levels of CM-H2DCF and HEt-oxidizing ROS and the activity of

mitochondrial complex I (CI), complex IV (CIV) and citrate synthase (CS). CM-H2DCF, HEt and activity data were expressed as treated/vehicle

condition (data taken from Supplementary Table S1). Vehicle-treated cells are indicated by a dotted line. (B) Typical microscopy images of LS cells

(P5175) treated with KH003 and stained with the ROS-sensing reporter molecules 5-(and-6)-chloromethyl-29, 79-dichlorodihydro-fluorescein

(CM-H2DCF) and hydroethidium (HEt). A magnification of the region within the white box (left panel) is shown on the right.
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levels of CM-H2DCF oxidizing ROS in various LS patient fibroblasts.
In the same cell lines, Trolox and KH004 did not reduce the increased
level of HEt oxidizing ROS, whereas KH003 reduced HEt oxidation,
and KH001 displayed a pro-oxidant effect. These results demonstrate
that modification of the Trolox side chain alters its ROS-scavenging
properties. Moreover, they support the cheminformatics analysis
and machine learning results by highlighting KH003 as displaying
the most favorable properties at the cellular level. In summary, we
conclude that supervised machine learning is a powerful method to
evaluate small molecule effects on mitochondrial morphology and
Dy. Moreover our results suggest that Trolox-derived antioxidants
are promising candidate molecules in therapy development for
(ROS-related) mitochondrial disorders.

Methods
Cell lines, culture conditions and enzyme activity analysis. Primary human skin
fibroblasts were obtained from healthy individuals (CT5119, CT5118, CT5120) and
various Leigh syndrome (LS) patients (P) with isolated mitochondrial complex I (CI)
deficiency (OMIM 252010) that were previously characterized at the genetic,
biochemical and cellular level45. Cells were cultured under standardized conditions
(see Supplementary Information for details). The activities of CI, complex IV (CIV)
and citrate synthase (CS) were determined in mitochondria-enriched fractions as
previously described46.

Live-cell microscopy. Mitochondrial morphology and membrane potential were
analyzed in cells stained with the fluorescent cation TMRM (tetramethylrhodamine
methyl ester). Cells were visualized using digital imaging microscopy as described in
detail in the Supplementary Information. TMRM was used in non-quenching mode47.
Reactive oxygen species levels were analyzed using the ROS-sensing reporter
molecules 5-(and-6)-chloromethyl-29, 79-dichlorodihydro-fluorescein (CM-
H2DCF) and hydroethidium (HEt), as described in the Supplementary Information.

ORAC assay. The ORAC assay measures the in vitro peroxyl radical scavenging
potential of molecules. The antioxidant Trolox is used as a standard in this assay. For
details see the Supplementary Information.

Synthesis of Trolox derivatives. Detailed information regarding the chemical
synthesis strategy is provided in the patent application (Int. patent appl. no. PCT/
NL2013/050528).

Cheminformatics, data handling, image quantification and machine learning.
Physicochemical parameters were predicted and molecule structures were drawn
using MarvinSketch 6.1.3 software (ChemAxon Ltd., Budapest, Hungary). Image
processing and analysis were performed using Image Pro Premier software (Media
Cybernetics, Inc., Bethesda, MD, USA). Data analysis, statistics and machine learning
algorithms were programmed using custom scripts in MATLAB 6.1 (The Mathworks
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perform hierarchical cluster analysis using average linkage between groups and the
squared Euclidian distance. All data is presented as the mean 6 SEM (standard error
of the mean) unless stated otherwise and statistical significance was evaluated using a
Mann-Whitney U test.
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