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Abstract

Structural durability of screw-cement-retained implant-supported zirconia-based restora-

tions is an important factor in choosing the best type of restoration for clinical use. This study

aimed to evaluate the effects of thermocycling on the fracture resistance of different types of

screw-cement-retained implant-supported zirconia-based restoration. Two experimental

groups (monolithic zirconia and porcelain-veneered zirconia) and a control group of porce-

lain-fused-to-metal restorations were fabricated via CAD-CAM (n = 14 per group). Half of

the specimens of each group (n = 7) were subjected to 10000 thermal cycles. The compres-

sive force was applied and the force leading to fracture was measured by using a Universal

Testing Machine. The fractured modes were classified under a scanning electron micro-

scope. The data were analyzed through two-way ANOVA, one-way ANOVA, and indepen-

dent samples t-test (α = 0.05). Among the non-thermocycled subgroups, the monolithic

zirconia specimens were significantly more fracture-resistant than the porcelain-veneered

zirconia and porcelain-fused-to-metal groups (P<0.05); but it was not the same with aging

(P>0.05). Thermocycling decreased the fracture resistance of all groups; however, the dif-

ference was not statistically significant (P<0.05). The monolithic zirconia presented higher

fracture resistance than the bilayered restorations for screw-cement retained implant-sup-

ported restorations. Thermocycling decreased the fracture resistance of all types of restora-

tions insignificantly which can be clinically important.

1. Introduction

The durability of screw-cemented implant-supported restorations is critical for the long-term

success of these restorations [1]. Implant-supported restorations can be fixed by cement- or

screw-retaining restorations on the implant abutments. Cemented restorations do not inter-

fere with occlusion or esthetics as they do not require an access hole; however, their removal
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and cleaning can be challenging. Screw-retained restorations are esthetically poor and proba-

ble of screw loosening, but they are retrievable and have better marginal fit [2]. To benefit

from the advantages of both types, cement-screw-retained restorations or “combination

implant crowns” were introduced by McGlumphy in 1992 [3, 4].

Zirconium dioxide (zirconia) based restorations have superb biocompatibility and favor-

able mechanical properties and are widely used in restorative materials, implant abutments,

and frameworks for implant-supported restorations [1, 5]. Although zirconia restorations

have shown promising survival rates, fracture of veneering porcelain occurs frequently [6–8].

Monolithic zirconia restorations were found to be excellent to prevent veneering porcelain

fracture in the short-term clinical evaluations [9, 10].

Hussein et al. [11] reported that the preparation of the screw access channel did not affect

the fatigue loads of zirconia crowns. Malpartida-Carrillo et al. [12] reported that cement and

combined cement- and screw-retained metal-ceramic molar restorations had comparable frac-

ture resistance with 15˚-angulated abutments. On the contrary, Mallmann et al. [13] found

that screw-retained zirconia-based implant-supported fixed dental prostheses were less frac-

ture-resistant than cement-retained prostheses. They also concluded that zirconia-based resto-

rations were more fracture-resistant than metal-based restorations. Moreover, another study

showed that preparing a screw access hole in cement-retained implant-supported zirconia-

based crown resulted in decreased fracture resistance of the restoration and adding a ledge in

the zirconia framework around the access hole might increase the fracture resistance of the res-

toration [14]. It has also been reported that the type of sealant materials influenced the fracture

resistance of resin composite applied in sealing screw access hole in screwed implants [15]. In

two different studies, Honda et al. [1, 2] detected that monolithic screw-retained implant-sup-

ported and tooth-supported restorations were significantly more fracture-resistant than

bilayered restorations. Likewise, Johansson et al. [16] showed that the fracture strength of

monolithic high-translucent zirconia restorations was higher than porcelain-veneered crowns

and lithium disilicate crowns for non-implant restorations. A different study found that after

thermo-mechanical aging, the fracture strength of aged monolithic zirconia was more than

aged bilayer zirconia-based crowns [17]. Al-Zordk et al. [18] detected that the fracture resis-

tance of implant-supported restorations based on zirconia was more than lithium disilicate

and ceramic-reinforced polyetheretherketone restorations after thermal aging.

Although the mentioned studies evaluated the effect of different types of restoration on the

fracture resistance of both tooth- and implant-supported restorations either with or without

thermal aging, no study has evaluated the simultaneous effect of thermal aging and type of res-

toration on the fracture resistance of screw-cement-retained implant-supported zirconia-

based restorations. Consequently, the present study was designed to evaluate the effect of ther-

mocycling on the fracture resistance of screw-cemented implant-supported monolithic zirco-

nia and porcelain veneered zirconia restorations.

The null hypotheses were that the three types of restoration would not have different frac-

ture resistance regardless of thermocycling and that thermocycling would not affect the frac-

ture resistance of different screw-cement-retained implant-supported zirconia-based

restorations.

2. Materials and methods

2.1. Preparation of specimens

Six implant analogs (5×11.5 mm [diameter×height]) (Dio Implant, South Korea) were used to

replicate missing maxillary first premolar teeth. The analogs were embedded and fixed in

acrylic (Acropars, Iran), and also filled with acrylic up to 1 mm beneath the connection. Six
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titanium-based abutments (5-mm platform diameter, 7.5-mm width, 7-mm height) were

screwed to the analogs by using a hand-driven wrench (Healteckorea, South Korea) up to 30 N

(Fig 1). Forty-two implant-supported crowns were assigned to 3 groups (n = 14 per group) of

porcelain-veneered zirconia (PVZ), monolithic zirconia (MZ), and porcelain-fused-to-metal

(PFM) serving as the control group.

2.1.1. Porcelain-veneered zirconia group. Fourteen zirconia frames (Dental Direkt, Ger-

many) were manufactured by using computer-aided design/computer-aided manufacturing

([CAD/CAM], imes-icore 350i, Germany). Screw access holes (2.7 mm) were created on the

occlusal surfaces. The frameworks were then airborne particle-abraded with 50-μm aluminum

oxide for 20 seconds at 0.2 MPa, as described by previous studies [1, 2]. Finally, feldspathic

porcelain (Creation, Austria) was veneered onto the zirconia frameworks according to the

manufacturer’s instructions (Fig 2A).

2.1.2. Porcelain-fused-to-metal group. To create the metal frameworks by using the

CAM machine, wax patterns were fabricated on the titanium-base abutments and were cast

with non-precious metal alloy (Scheftner, Germany). Feldspathic porcelain (IPS Inline, Ivoclar

Vivadent, USA) was then fired onto the surface of the metal frameworks to create the same

contour as the two other groups (Fig 2B).

2.1.3. Monolithic zirconia group. Monolithic zirconia crown patterns were waxed up on

titanium abutments by using light-curing resin (Photec; China) with the same specifications as

Fig 1. Titanium-based abutments and analogs embedded in acrylic material.

https://doi.org/10.1371/journal.pone.0270527.g001

Fig 2. The study groups. a: porcelain-veneered zirconia, b: porcelain-fused-to-metal, c: monolithic zirconia.

https://doi.org/10.1371/journal.pone.0270527.g002
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the PVZ group. Wax patterns and abutments were then scanned with the CAD software (Fas-

tDesign, Glidewell, United States) and milled with the CAM machine from monolithic zirco-

nia blocks (Dental Direkt, Germany) (Fig 2C).

Wax plugs were used to preserve the screws from cement so they can be later accessed and

tightened. The restorations were cemented onto the abutments by using a dual-cure resin

Fig 3. A specimen being tested in the universal testing machine.

https://doi.org/10.1371/journal.pone.0270527.g003
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cement (Panavia F2.0, Kuraray, Japan). The abutment channels and the screw access holes

were filled with resin composite (Estelite, Tokuyama, Japan) and were left to set completely for

24 hours.

2.2. Thermocycling and compressive force test

Half of the samples of each group (n = 7) were subjected to 10000 thermal cycles (5–55˚C with

a dwell time of 1 minute at each temperature), which equals one-year use of the restorations in

the oral environment according to previous studies [19, 20]. During the artificial aging process,

the specimens were inspected for any screw loosening. A vertical compressive load was applied

on the specimens by a universal testing machine (ZwickRoell Z020, Germany) with a cross-

head speed of 0.5 mm/min until failure or a significant drop in the load curve along with an

evident crack sound. The fracture load for each specimen was recorded (Fig 3). The failure

modes of the specimens were observed under a scanning electron microscope (SEM) (Vega3,

TESCAN, Czech Republic) and classified as the porcelain fracture (fracture within the porce-

lain), interface fracture (fracture of the interface between the veneer and framework), and

framework fracture (fracture within the framework) [1] (Figs 4–6).

2.3. Statistical analyses

The data were analyzed by using SPSS software (Version 16.0. Chicago, SPSS Inc., United

States) The mean values and standard deviations were calculated for each group. Shapiro-Wilk

test was used to evaluate the normal distribution, and Levene’s test was used to assess the

equality of variances. Two-way ANOVA was used to evaluate the effect of thermocycling and

type of restoration and the interaction effect of two factors on the fracture resistance of

implant-supported restorations. One-way ANOVA was used to find differences between the

restoration groups in each level of thermocycling, and Bonferroni’s post hoc test was used for

pairwise comparison of the restoration groups. Independent samples t-test was used to com-

pare the thermocycled and non-thermocycled subgroups in each restoration group (α = 0.05

in all tests).

3. Results

The mean (±standard deviation) of fracture load according to two levels of thermocycling and

MZ, PVZ, and PFM restorations are summarized in Table 1. The results showed that the two-

way ANOVA model was significant (P = 0.002 and F = 5.86, R2 = 0.947). Accordingly, the

effect of restoration type (P = 0.005), thermocycling (P = 0.026), and the interaction effect of

the two factors (P<0.001) were all statistically significant (Table 2).

The result of one-way ANOVA revealed that the non-thermocycled subgroups had signifi-

cantly different fracture resistances (P = 0.008). However, this difference was not statistically

significant among the thermocycled subgroups (P = 0.274) (Table 1). Bonferroni’s post hoc

test showed that the non-thermocycled MZ group was significantly more fracture-resistant

(P = 0.008) than the non-thermocycled PVZ group. Independent samples t-test showed that

thermocycling insignificantly decreased the fracture resistance in all the three MZ (P = 0.055),

PVZ (P = 0.455), and PFM (P = 0.206) restoration groups (Fig 7). The Pareto curve of MZ,

PFM, and PVZ in thermocycled and non-thermocycled samples was shown in Fig 8.

According to the SEM analysis, the failure mode, in the MZ group was full framework frac-

ture along the screw access hole, which was the narrowest part of the restoration in all thermo-

cycled and non-thermocycled specimens (100% framework fracture). In the PVZ group, 57%

of specimens both thermocycled and non-thermocycled specimens showed fractures within

the veneering porcelain. Moreover, 43% of specimens in the PVZ group showed framework
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fracture regardless of thermocycling. In the thermocycled PFM subgroup, most of the fractures

(71%) were in the veneering porcelain; in non-thermocycling subgroups, 43% of failures were

in the interface and 57% were in the veneering porcelain. (Table 3).

Fig 4. SEM images of monolithic zirconia. a and b: thermocycled, c and d: non-thermocycled.

https://doi.org/10.1371/journal.pone.0270527.g004
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Fig 5. SEM images of the porcelain-fused-to-metal specimen. a and b: thermocycled, c and d: non-thermocycled).

https://doi.org/10.1371/journal.pone.0270527.g005
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Fig 6. SEM images of porcelain-veneered zirconia specimen. a and b: thermocycled, c and d: non-thermocycled.

https://doi.org/10.1371/journal.pone.0270527.g006

PLOS ONE Fracture resistance of screw-cement-retained implant-supported zirconia-based restorations

PLOS ONE | https://doi.org/10.1371/journal.pone.0270527 June 24, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0270527.g006
https://doi.org/10.1371/journal.pone.0270527


4. Discussion

The two null hypotheses were rejected since both the type of restoration and thermocycling

significantly affected the fracture resistance of screw-cement-retained restorations.

Before releasing material for clinical use, its performance and applicability should be tested.

Although clinical studies are much more reliable for assessing the clinical success of materials

like restoratives, they are sometimes replaced by in-vitro studies, which are quicker, reproduc-

ible, and allow using standardized test parameters. Moreover, their results are clinically more

generalizable when the tests closely simulate the clinical conditions like the thermocycling in

this study [21].

4.1. The effect of type of screw-cement retained restorations

The present findings showed that the MZ specimens were more fracture-resistant than the

PVZ and PFM specimens before thermocycling. In agreement with the current results, Rosen-

tritt et al. [22] and Augstin-Panadero et al. [23] detected that PVZ and PFM restorations had

comparable fracture resistance. Likewise, Hussein et al. [11] assessed implant-supported resto-

rations without thermocycling and noted that fracture resistance of restorations with screw

access holes was not significantly different from those without screw access holes. Also, the

MZ group had the highest fracture load both in groups with access holes and groups without

access holes.

Zhang et al. [24] demonstrated that the structure of MZ ceramics could potentially optimize

the restoration performance, owing to its material and geometric properties, as well as the

elimination of the interface between layering materials and zirconia frameworks. This is a

weak link in bilayered restorations; hence, its absence lowers the failure risk. Honda et al. [2]

detected that the monolithic specimens had a significantly higher mean fracture resistance

than bilayered restorations without thermal stress. Their findings support the results of the

present study.

Table 1. Mean and standard deviations and multiple comparisons of fractural load among the study groups (N).

Groups

Subgroups

MZ PVZ PFM P value �

Thermocycled 1143.7±187.2A 856.0±437.06A 983.4±233.6A 0.274

Non-thermocycled 1435.7±310.6A 1002.2±164.1B 1137.7±196.8AB 0.008

P value �� 0.055 0.455 0.206

� P values from one-way ANOVA

�� P values from independent samples t-test

https://doi.org/10.1371/journal.pone.0270527.t001

Table 2. Statistical results of the two-way ANOVA model.

Source Type III sum of squares df Mean square F Sig.

Corrected model 1342025.524 3 447341.841 5.860 0.002

Intercept 50188374.857 1 50188374.857 657.476 0.000

Thermocycling 409664.381 1 409664.381 5.367 0.026

Group 932361.143 2 466180.571 6.107 0.005

Error 2900725.619 38 76334.885

Total 54431126.000 42

Corrected total 4242751.143 41

R2 = 0.947

https://doi.org/10.1371/journal.pone.0270527.t002
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According to a study by Brizuela-Velasco et al. [25], the higher fracture resistance of the

MZ specimens may be explained by the mechanical properties of zirconia like the excellent

strength, hardness, and resistance to crack propagation, in addition to a narrow range of

Fig 7. The mean and standard error (SE) of fracture load in the study groups.

https://doi.org/10.1371/journal.pone.0270527.g007

Fig 8. Pareto curve of MZ, PFM, and PVZ in thermocycled and non-thermocycled samples.

https://doi.org/10.1371/journal.pone.0270527.g008
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strength variation compared with porcelain. They found that the screw-retained monolithic

high-translucency zirconia was more fracture-resistant than the high-translucency zirconia

+ feldspathic ceramic crowns. It was in agreement with the present results. Similarly, Elshiyab

et al. [26] observed that monolayer hybrid-abutment crown structures were significantly more

fracture-resistant than the bilayer counterparts when not thermocycled.

Lameira et al. [17] evaluated the effect of design and surface finishing on the fracture

strength of yttria-tetragonal zirconia polycrystal crowns in monolithic and bilayer configura-

tions after artificial aging. In contrast with the present study, they found that MZ crowns had

higher fracture strength than the bilayer configuration. Taguchi et al. [27] evaluated the frac-

ture resistance of single-tooth implant-supported zirconia-based indirect composite-layered

molar restorations. They observed no significant difference in the fracture resistance between

the PFM group and zirconia-based all-ceramic restorations. It contrasted the result of the pres-

ent study, which demonstrated the monolithic zirconia to have significantly higher fracture

resistance than the PFM group before thermocycling.

Another contrasting study was the one by Johansson et al. [16], who studied the fracture

resistance of monolithic and bilayered zirconia and lithium disilicate glass-ceramic crowns

after thermal and mechanical stress. Their results do not support the result of the present

study because their MZ restorations had higher fracture resistance than bilayered restorations

after thermal stress. Similarly, Honda et al. [1] concluded that the thermocycled MZ specimens

were more fracture-resistant than the bilayered restorations since there was no interface

between the veneer and zirconia framework, and also because the zirconia frameworks had

fewer mechanical defects. It contrasted the results of the present study.

4.2. The effect of thermocycling

Thermocycling decreased the fracture strength in all the screw-cement retained restorations.

Although this was not statistically significant, it can be considered clinically significant. These

testing procedures have been discussed in previous studies as having a detrimental effect on

the dental ceramics which resembles the clinical situation [28–30]. Cotes et al. [31] evaluated

the effects of different aging methods on the degradation and flexural strength of yttria-stabi-

lized tetragonal zirconia. Their results showed that mechanical and thermomechanical aging

reduced the mechanical strength of zirconium dioxide ceramic. This is in line with the present

results.

Elshiyab et al. [26] reported that non-aged monolayer zirconia crowns were significantly

more fracture-resistant than both non-aged and aged bilayer zirconia. It was closely consistent

with the findings of the current study; however, the monolithic zirconia was not significantly

more fracture-resistant than the bilayered specimens after thermocycling. In the meantime,

thermocycling did not statistically significantly affect the fracture strength of the control

bilayered zirconia subgroups, which approves the result of the present study. They also found

Table 3. Frequency of failure modes in the study groups (%).

Fracture mode

Group

Veneering porcelain Framework Interface

Thermocycled Monolithic zirconia 0 100 0

Porcelain-veneered zirconia 57 43 0

Porcelain-fused-to-metal 71 0 29

Non- thermocycled Monolithic zirconia 0 100 0

porcelain-veneered zirconia 57 43 0

Porcelain-fused-to-metal 57 0 43%

https://doi.org/10.1371/journal.pone.0270527.t003
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that thermal stress significantly reduced the fracture resistance of monolithic zirconia; which

contrasted with what was found in the present study. They attributed this finding to the inter-

action of water with yttrium and the produced yttrium hydroxide, which eventually leads to

yttrium deficiency, triggering the transformation of zirconia from the stable tetragonal phase

to the less stable and weaker monoclinic phase [26, 32].

Another study by Elshiyab et al. [33] concluded that hydrothermal stress reduced the frac-

ture resistance of MZ crowns. However, unlike the current study, the difference was statisti-

cally significant. Reduced fracture resistance of the MZ crowns was due to the aging of

zirconia, also known as “low-temperature degradation” of zirconia crystal, in which tetragonal

crystal phases turn into the less stable monoclinic phase. Temperature plays a key role in the

aging process of zirconia [31].

4.3. Fracture modes

Porcelain fracture happened in both types of layered restorations (PVZ and PFM) with or

without thermocycling. This is because the screw access hole weakens the porcelain around

the opening and at the cusp tip and disrupts its integrity [34]. This is in agreement with Karl

et al.’s findings [35], which concluded that screw-retained restorations had more porcelain

chipping fractures in comparison with the cement-retained restorations. It is probably because

the screw access hole may be a weak point of the ceramic veneer of implant-supported restora-

tions. Saito et al. [36] asserted that strong discrepancies in the Coefficient of thermal expansion

between the veneering porcelain and zirconia significantly affected their bond strength. This

also may be the reason for interface fracture in the PVZ group.

In the PVZ group, the fracture was most frequent within the veneering porcelain, followed

by the framework; but, never in the interface between the zirconia framework and the veneer-

ing porcelain. In the PFM group, fracture occurred both within the veneering porcelain and in

the interface between metal coping and the veneering porcelain. This was in line with Mal-

lmann et al.’s study [13], which reported that, unlike the zirconia-based restorations, porcelain

fracture in restorations with metal frameworks mostly reached the framework. This is because

of the adequate interfacial bond between the zirconia and porcelain.

Lameira et al. [17] evaluated the fracture modes of polished MZ crowns, glazed MZ crowns,

and bilayer crowns. According to their findings, a fracture within the veneering layer hap-

pened most commonly in restorations with the powder build-up technique, which is the tech-

nique used in the present study to fabricate the PVZ group, rather than in the sintering or

pressed veneering technique. They concluded that the powder build-up technique is a tech-

nique-sensitive process and requires many firing cycles; thus, it may increase the addition of

impurities and porosities, which maximizes the risk of crack propagation.

Johansson et al. [16] also observed the fracture modes for veneered high translucent zirco-

nia (Y-TZP) crowns and veneered lithium disilicate crowns. They found that veneered restora-

tions exhibited both total and cohesive fractures through the porcelain-veneer only but no

adhesive fractures. This is against the findings of the present study in which also interface frac-

tures were seen in the PVZ group.

All of the investigated types of screw-cement retained implant-supported zirconia-based

restorations appear to be resistant to masticatory forces of the premolar region which is about

220–450 N [37–39].

Among the limitations of this in-vitro study was the use of only single crowns instead of

multi-unit implant-supported screw-cement retained restorations. Also, only two types of

implant-supported zirconia-based restorations were studied in this experiment; further studies

are suggested to assess restorations like indirect veneered zirconia crowns.
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5. Conclusions

Within the limitations of this study, the following conclusions can be drawn:

1. Without thermocycling, the fracture resistance of the MZ group was significantly higher

than the PVZ and PFM groups; while after thermocycling, there was no statistically signifi-

cant difference between the fracture resistance of different restoration groups.

2. Although thermocycling could decrease the fracture resistance of each restoration type, it

was not statistically significant; however, it can be clinically important.

3. All of the fractures (100%) in the MZ group were in the framework along the screw access

hole both with and without thermocycling. In the PVZ group, 57% were veneering porce-

lain fractures and 43% were interface fractures for both thermocycling subgroups. In the

PFM group, 57% of failures were the veneering fracture in non-thermocycled specimens

and it increased to 71% in thermocycled specimens.
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