
polymers

Article

Melt Spinning of Highly Stretchable, Electrically Conductive
Filament Yarns

Henriette Probst 1,*, Konrad Katzer 2,3 , Andreas Nocke 1, Rico Hickmann 1, Martina Zimmermann 2,3

and Chokri Cherif 1

����������
�������

Citation: Probst, H.; Katzer, K.;

Nocke, A.; Hickmann, R.;

Zimmermann, M.; Cherif, C. Melt

Spinning of Highly Stretchable,

Electrically Conductive Filament

Yarns. Polymers 2021, 13, 590.

https://doi.org/10.3390/polym

13040590

Academic Editor: Oh Seok Kwon

Received: 16 January 2021

Accepted: 9 February 2021

Published: 16 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Textile Machinery and High Performance Material Technology, TU Dresden,
01062 Dresden, Germany; andreas.nocke@tu-dresden.de (A.N.); rico.hickmann@tu-dresden.de (R.H.);
chokri.cherif@tu-dresden.de (C.C.)

2 Fraunhofer Institute for Material and Beam Technology IWS, 01277 Dresden, Germany;
konrad.katzer1@tu-dresden.de (K.K.); martina.zimmermann@tu-dresden.de (M.Z.)

3 Institute of Materials Science, TU Dresden, 01069 Dresden, Germany
* Correspondence: henriette.probst@tu-dresden.de

Abstract: Electrically conductive fibers are required for various applications in modern textile
technology, e.g., the manufacturing of smart textiles and fiber composite systems with textile-based
sensor and actuator systems. According to the state of the art, fine copper wires, carbon rovings,
or metallized filament yarns, which offer very good electrical conductivity but low mechanical
elongation capabilities, are primarily used for this purpose. However, for applications requiring
highly flexible textile structures, as, for example, in the case of wearable smart textiles and fiber
elastomer composites, the development of electrically conductive, elastic yarns is of great importance.
Therefore, highly stretchable thermoplastic polyurethane (TPU) was compounded with electrically
conductive carbon nanotubes (CNTs) and subsequently melt spun. The melt spinning technology
had to be modified for the processing of highly viscous TPU–CNT compounds with fill levels of up
to 6 wt.% CNT. The optimal configuration was achieved at a CNT content of 5 wt.%, providing an
electrical resistance of 110 Ωcm and an elongation at break of 400%.

Keywords: melt spinning; thermoplastic polyurethane (TPU); carbon nanotube (CNT); stretchable
filament yarn; electrically conductive filament yarn

1. Introduction

For numerous applications, e.g., in the field of smart textiles and textile sensor and
actuator technology, electrically conductive fibers and filaments are of great importance.
They are essential for the production of textile-processable sensors [1–3] and sensor net-
works [4] as well as for the transmission of information detected in the device. New
developments in the smart textiles sector are inconceivable without electrically conductive
fibers. For instance, they can transmit the data collected during wound monitoring [5,6] or
mechanical structural health monitoring of critical components [7–9]. Furthermore, they
are essential for the development of novel, wearable devices [10–12] and the storage of
electrical energy [13].

In terms of actuator technology, the supplied electrical energy can be used to generate
mechanical deformation. In shape memory alloys (SMA), the applied electrical energy
combined with the intrinsic resistance of SMA causes temperature to increase, which
in turn leads to a conversion in the crystal structure from martensite to austenite, thus
generating large usable forces and strains [14–17]. In contrast, shape memory polymers do
not have intrinsically conductive components, but they too are able to use electrical energy
via the intermediate stage of thermal energy to perform mechanical work [18–20]. For
this purpose, the entire component can either be exposed to an electric field or a constant
temperature, or individual areas can be targeted separately. Electrically conductive yarns
are particularly suited for the activation of individual textile parts.
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According to the state of the art, metallized fibers, carbon fibers, or fine copper wires
are commonly used to conduct electric current [21–23]. These materials feature very low
electrical resistances as well as several specific disadvantages: metal-based conductors are
generally characterized by a very low elongation at break and almost no elastic strain [24].
Previous studies showed that in the case of metal-coated fibers, the coating often peels
off or breaks so that the electrical conductivity is significantly reduced, resulting in poor
long-term stability.

Electrically conductive spinnable polymers are a viable option to overcome these
disadvantages because—in comparison to metallized fibers—the physiological and me-
chanical properties of filled and unfilled polymer fibers exhibit reduced deviations. This
ensures a high degree of structural and material compatibility. Furthermore, the functional
component can be produced by means of a highly productive and automated spinning
process without the need for additional work steps or production facilities. Moreover,
spun filaments can achieve an elongation at break value that is significantly higher than
that of metal-based yarns. Additionally, their electrical conductivity does not rely on a
coating that is susceptible to mechanical damage, which is why they offer considerably
enhanced durability.

The spinning of intrinsically electrically conductive polymers represents a great tech-
nical challenge; therefore, additives or fillers are often added to conventional spinning
polymers to achieve electrical conductivity [24]. Trials have already been carried out
on compounding polypropylene (PP) with carbon black (CB) [25,26], or PP with carbon
nanotubes (CNTs) [27,28] and polyamide (PA) with CNTs [29,30]. The low mechanical elon-
gations of PP and PA fibers make them unsuitable for numerous applications, especially in
terms of actuator technology, where formability is a crucial criterion.

Further research activities deal with the production of electrically conductive compos-
ite yarns by using a CNT-based coating. For example, cotton threads could be coated with a
CNT ink and provided with an ion-selective membrane. This made it possible to determine
potassium, ammonium, and pH in human sweat, thus enabling the production of smart
textiles that can monitor biological functions [31]. The goal of producing biochemical
sensors was also pursued by Parrilla et al. who embedded commercial carbon fibers in a
polymeric fiber matrix in order to determine the sodium concentration in sweat by means
of textile-processable, wearable patches [32]. In addition, they succeeded in developing a
CNT-based ink that could be applied to a polyurethane layer to perform multi-ion sweat
analysis and could be used to coat conventional textiles [33,34]. Of particular note is the
fact that the chemosensorial behavior of the CNT composite yarns is hardly affected by
bending or stretching. This increases the fatigue strength of the biological sensors and
allows them to be used in smart textiles that must follow the movements of a human wearer.
However, this prevents them from serving as strain sensors. This goal, on the other hand, is
being pursued by Li et al., who surrounded electrospun thermoplastic polyurethane (TPU)
filaments with a CNT-based coating and used the resulting fibers as textile strain sensors.
They achieved very good electrical conductivities of up to 13 S/cm [35]. Nevertheless,
the manufacturing process based on electrospinning and coating has low productivity,
which limits its use for the mass market. The present research work, on the other hand,
aims at a highly productive, one-step manufacturing process for electrically conductive
and highly stretchable filaments. For this purpose, thermoplastic polyurethane (TPU) was
compounded with CNTs and processed by melt spinning.

TPUs are block copolymers consisting of hard and soft segments. The hard segments
comprise a diisocyanate and a polyol, thus forming urethane groups (–NHCO–O–). In
contrast, the soft segments consist of a polyester or polyether polyol [36,37]. The main
difference between TPU and conventional elastomers is that in conventional elastomers, the
cross-linking points generating material strength are formed by covalent bonds, whereas
in thermoplastic elastomers such as TPU, they appear in the form of partially crystalline
areas [38].
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The soft segments have a glass transition point, which is below the usage temperature
so that the molecules can be shifted flexibly due to low intermolecular interactions. More-
over, the soft segments exhibit an entropy-elastic behavior; i.e., the polymer chains that
are entangled in a stress-free state are stretched under mechanical load with a decrease in
entropy [39,40]. If the mechanical load is removed, the soft segments return to their ener-
getically favorable initial state [41]. Thus, the soft segments cause the high elasticity of the
polymer, whereas the hard segments determine the solid aggregate state at use temperature
as well as the mechanical strength and stiffness [41]. The semi-crystalline hard segments
in the TPU assume the function of covalent bonds (network points) in a conventional
elastomer, hence preventing the polymer chains from gliding off against each other [37].
When TPU is heated, the intermolecular bonds between the hard segments are broken and
the polymer becomes liquid so that it can be melt-spun. Thus, the structure of hard and
soft segments enables thermal processing that is unsuitable for standard elastomers since
they do not melt when heated but undergo decomposition processes.

In this study, the thermal processability of TPU is exploited to produce highly stretch-
able and electrically conductive multifilament yarns that can be used for a variety of tasks
in the field of smart textiles and fiber elastomer composites. For this purpose, TPU is
compounded with CNTs and melt spun. To enable a melt spinning process with this
polymer material, which has a very high viscosity, a process modification is necessary to
enable a particularly gentle drawing process. At filling levels of 5 wt.% CNT, electrical
resistances of 110 Ωcm can be realized in the mechanically unloaded state. Even under
relative mechanical strains of up to 100%, the electrical conductivity is maintained, but the
electrical resistance increases by up to one order of magnitude.

2. Materials and Methods

For the melt spinning trials, the TPU grade Desmopan 9370A from Covestro AG
(Leverkusen, Germany) [42] and TPU 1001 from Nanocyl SA (Sambreville, Belgium) [43]
were used. TPU 1001 from Nanocyl SA is a masterbatch containing 10 wt.% CNT and
90 wt.% TPU. Before the spinning process was started, the materials were pre-compounded
by hand to compounds of 1–6 wt.% CNT. The compounds were dried at a temperature of
80 ◦C for 24 h.

The tests were carried out on a bicomponent melt spinning plant of Dienes Apparate-
bau GmbH (Mühlheim am Main, Germany), at ITM, TU Dresden. This plant is equipped
with a single-screw extruder, a twin-screw, and several spinning packages to realize dif-
ferent fiber geometries. The following tests were performed with a twin-screw extruder
and a 60-filament core–sheath spinning die, although the extruder supplying the sheath
component was not taken into operation. The 60-filament die has diameters of 0.6 mm.
Each spinning process was performed with particularly coarse-meshed polymer filters
and under a nitrogen atmosphere to avoid the oxidation of TPU. A spinning temperature
of 180 ◦C was selected, and the winding speeds were varied between 8 and 650 m/min
according to the compound’s spinnability.

Extensive modifications to the spinning machine were required to ensure process
stability. By means of an additional device, the weight of the solidified filaments was
supported shortly below the spinneret so that the melt no longer had to support the entire
weight of the filaments. For this purpose, a duo of godets driven by an electric motor
was inserted into the spinning shaft 1 m below the spinneret (see Figure 1). Firstly, the
spun filaments were guided over the lower cylinder, and, secondly, they ran vertically
upwards while being drawn by the upper cylinder. Due to the staggered arrangement of
the cylinders, further deflection points could be avoided to minimize potential effects on
the yarn path, the geometry of individual filaments, and the arrangement of filaments in
the fiber bundle. Once the spun filaments passed this additional device, they were taken
off and wound up.
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Figure 1. Additional godet device: (a) in operation; (b) as SolidWorks 3D model.

To determine the melt viscosity, rheometric measurements were performed on a Haake
RheoWin /Thermo Scientific Mars II from Thermo Fisher Scientific Inc. (Waltham, MA,
USA). The measurements were carried out at a constant temperature of 200 ◦C. The fineness
was determined in accordance with DIN EN ISO 2060. For this purpose, 5 samples with a
defined length of 1 m each were taken from each spinning specification. The mass of the
samples was then determined using a precision scale R200D from Sartorius (Göttingen,
Germany). The tensile tests were performed on a Zwicki Junior from ZwickRoell GmbH
& Co. KG (Ulm, Germany) with a clamping length of 62.5 mm and a testing speed of
200 mm/min. Tensile testing as well as the determination of fineness were completed for
5 samples each.

A four wire method was employed for resistance measurements on filament sections
with a length of 50 mm (see Figure 2). Additionally, a current source Voltcraft LRP-
1601 (Wollerau, Switzerland) and two Keithley DAQ6510-7700 multimeters from Keithley
Instruments Corp. (Solon, OH, USA) were used. The current source supplied a maximum
current of 100 mA. For each sample, four different current values were set at the current
source, and the multimeters were used to measure current and voltage at the clamped
sample. Thus, four resistance values could be calculated and averaged for each sample
based on the quotients of voltage and current. Of each spinning specification, 7 samples
were tested.
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Figure 2. Test setup for the determination of electrical resistance.

Microscopic images of the cross section of spun filaments were obtained by means
of the light microscope Zeiss Ultra Plus with Axio Imager M1 from Carl Zeiss AG (Jena/
Oberkochen, Germany).
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3. Results and Discussion
3.1. Spinning and Stretching Process

The addition of CNTs to TPU led to significant inhomogeneities at the nano level,
thus reducing spinnability. Pure TPU showed a slightly shear-thinning material behavior,
which was significantly increased by the addition of CNTs. However, increasing the CNT
content also resulted in a considerable rise in melt viscosity (see Figure 3) and decrease
in stretchability. For example, once the CNT content was increased from 1 wt.% CNT to
5 wt.% CNT, a tenfold increase in viscosity was observed at shear rates of 1–10 s−1, which
are particularly relevant for the melt spinning process.
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Figure 3. Viscosity of compounds with different carbon nanotube (CNT) contents, measured at a
constant temperature of 200 ◦C.

As a result, these filaments must be pulled off at a significantly slower pace compared
to pure TPU (10 times higher) in order to avoid fiber breakage. TPU–CNT compounds
with 0 wt.% or 1 wt.% offer the potential to be spun at high winding speeds of up to
650 m/min, whereas compounds with 2 wt.% or more CNT cannot be spun at speeds
exceeding 37.2 m/min.

Especially in the case of low draw ratios and highly elastic melt, draw resonance can
occur. This phenomenon causes an unevenness in the filament diameter, which at worst
can lead to filament breakage [26]. In the experiments presented in this paper, there was a
sharp increase in unevenness at a CNT content above 5 wt.% and a drawing speed of less
than 15 m/min; hence, the resulting filaments were considered almost unusable for the
desired purpose.

Due to high viscosities, great pressures of over 100 bar occurred at the spinneret,
especially when processing compounds with high CNT contents. The reduced draw
ratio in combination with constant extruder speed led to increasing filament diameters
at increased CNT content. Moreover, the volume and the length-related filament mass
increased accordingly. However, greater mass and minimized extensibility caused the
polymer melt to emerge from the spinneret, which was no longer able to bear the weight of
the solidifying filaments.

3.2. Microscopic Analyses

Figure 4 shows cross-sections of the melt spun filaments and the distribution of the
CNTs. At a low CNT content of 2 wt.% (Figure 4a) CNTs are evenly distributed throughout
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the cross-section, whereas the CNT distribution becomes more inhomogeneous at a CNT
content of 4 wt.% (Figure 4b). In the case of high CNT contents of 6 wt.% (Figure 4c,d), an
outer sheath layer of CNT-poor TPU was formed during the spinning process. This means
that although the TPU–CNT compounds were spun as monocomponents, a core–sheath
structure was obtained. It can be assumed that the melt separated into components of high
viscosity (high CNT content) and low viscosity (low CNT content) as it passed through the
spinneret. During filament formation, the core was formed by high-viscosity melt, while
low-viscosity melt formed into the sheath.
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3.3. Stress–Strain Tests

All spun TPU–CNT filaments exhibited elongations at break of over 170% and low
Young’s moduli of less than 80 kPa. Table 1 lists the fineness, elongation at break, Young’s
modulus, and electrical resistance of all filaments as a function of the CNT content and the
winding speed.

The compounding of CNTs and TPU created a percolative system [44,45] with a
percolation threshold between 3 and 4 wt.% CNT. The lowest achieved specific resistance
was 110 ± 39 Ωcm. This value was obtained at an unstretched multifilament yarn with
a CNT content of 5 wt.% and a spinning speed of 10 m/min. Under stretching load, the
electrical resistances increase by up to one order of magnitude. This can be explained by
the fact that the electrically conducting CNT particles are moved away from each other,
so that percolation paths are interrupted. The lowest measured resistance value at 50%
relative elongation is 662 ± 221 Ωcm and was achieved at filaments with 5 wt.% CNT
and 8 m/min spinning speed. At a relative elongation of 100%, an electrical resistance of
2185 ± 608 Ωcm was recorded at 6 wt.% CNT and 10 m/min spinning speed.
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Table 1. Mechanical and electrical properties of TPU–CNT filaments.

CNT
Content
in wt.%

Winding
Speed in

m/min

Fineness in
Tex

Elongation
at Break

in %

Young’s
Modulus

in kPa

Specific
Electrical

Resistance
in Ωcm

Specific
Electrical

Resistance in
Ωcm at 50%

Relative
Elongation

Specific Electrical
Resistance in
Ωcm at 100%

Relative
Elongation

0
400.0 53 ± 2 717 ± 85 37.0 ± 4.4 > 2 × 105 > 2 × 105 > 2 × 105

650.0 50 ± 5 793 ± 84 21.8 ± 6.9 > 2 × 105 > 2 × 105 > 2 × 105

1
600.0 33 ± 1 669 ± 60 48.9 ± 9.4 > 2 × 105 > 2 × 105 > 2 × 105

650.0 32 ± 1 518 ± 82 55.7 ± 14.1 > 2 × 105 > 2 × 105 > 2 × 105

2 37.2 386 ± 74 294 ± 26 56.9 ± 6.4 > 2 × 105 > 2 × 105 > 2 × 105

3

15.0 903 ± 123 641 ± 75 34.2 ± 2.7 > 2 × 105 > 2 × 105 > 2 × 105

25.0 637 ± 122 524 ± 57 52.7 ± 5.0 > 2 × 105 > 2 × 105 > 2 × 105

37.2 271 ± 83 177 ± 21 74.7 ± 6.9 > 2 × 105 > 2 × 105 > 2 × 105

4

12.0 2102 ± 281 350 ± 44 27.2 ± 0.9 586 ± 411 3776 ± 482 12,909 ± 314

15.0 1750 ± 208 219 ± 49 44.8 ± 2.4 1777 ± 756 9011 ± 2317 14,057 ±750

20.0 1114 ± 133 505 ± 38 45.9 ± 2.6 4213 ± 975 12,401 ± 1343 9974 ± 274

25.0 1149 ± 195 346 ± 18 41.4 ± 1.9 6668 ± 662 10,808 ± 1521 10,048 ± 344

30.0 1211 ± 86 196 ± 32 29.9 ± 3.7 3904 ± 1553 6119 ± 1595 9942 ± 392

5

8.0 2314 ± 294 292 ± 23 63.0 ± 3.4 131 ± 48 663 ± 221 2571 ± 967

10.0 2171 ± 422 400 ± 18 46.4 ± 5.7 110 ± 39 1429 ± 303 5243 ± 811

15.0 1664 ± 92 383 ± 39 51.5 ± 3.8 2170 ± 201 17,441 ± 646 14,377 ± 296

6

10.0 2950 ± 207 339 ± 40 44.6 ± 1.8 151 ± 41 723 ± 156 2185 ± 608

15.0 2387 ± 258 326 ± 8 53.4 ± 2.4 1045 ± 316 1024 ± 424 2337 ± 831

17.0 1764 ± 217 293 ± 26 80.0 ± 3.0 2077 ± 405 2429 ± 295 10,234 ± 1202

20.0 1672 ± 272 246 ± 28 72.8 ± 3.9 1717 ± 448 1814 ± 239 5980 ± 2631

In general, electrical resistance increased in the case of faster spinning speeds. This
behavior can be explained by the fact that at high spinning speeds, the CNTs within
the solidifying filament were pulled away from each other, thus interrupting percolation
paths. However, electrical conductivity in the unstretched filaments was not further
improved by adding more CNTs beyond 5 wt.%. In unloaded yarns, higher electrical
resistances were measured at 6 wt.% CNT than at 5 wt.% CNT. It can be assumed that due
to the increased CNT content, the tendency of the CNTs to agglomerate was also more
pronounced. Hence, more clusters were formed within the filament without improving its
electrical conductivity as a result of insufficient distribution of the CNTs within the TPU.
However, at relative elongations of up to 100%, some of these clusters may contribute to
improving the filament’s electrical conductivity. The particles are pulled away from each
other under mechanical load so that agglomeration are broken up, and more particles are
available to build percolation paths. Therefore, filaments with 6 wt.% CNT offer lower
electrical resistances at 100% relative elongation than filaments with 5 wt.% CNT.

Figure 5 provides examples for stress–strain diagrams of multifilament yarns with
3 wt.% CNT and multifilament yarns with 6 wt.% CNT. Both compounds were spun at a
take-off speed of 15 m/min.
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(b) 94 wt.% TPU + 6 wt.% CNT.

It became evident that at higher CNT contents, the material failure of individual
filaments occurred in a staggered manner. This suggests that the textile–physical properties
of the filaments vary more widely among themselves than in compounds with a lower CNT
content. At a CNT content of 6 wt.%, filaments began to break at an elongation of approx.
320%, whereas other individual filaments did not fail even at an elongation exceeding 440%.
In contrast, at a CNT content of 3 wt.%, all filaments broke within a much smaller tensile
force range. This confirms the assumption that the probability of CNT agglomeration
increased significantly with increasing CNT content. Thus, the polymer network was more
affected, causing local weak points to be generated in individual filaments and a staggered
material failure to occur.

Furthermore, it was observed that the maximum tensile strength of the filaments
increased, whereas the elongation at break decreased with increasing CNT content. For a
multifilament with 3 wt.% CNT, the average tensile strength was 8.65 N, and the average
elongation at break was 641%. If the CNT content increased to 6 wt.%, the average
tensile strength almost doubled to 17.4 N; simultaneously, the elongation at break almost
halved to 326%. Figure 6a represents the elongation at break as a function of the CNT
content at a constant spinning speed of 15 m/min. It can also be seen that Young’s
modulus (Figure 6b) and fineness (Figure 6c) increase with increasing CNT content, while
elongation at break decreases. The data collected for electrical resistance (Figure 6d)
suggest large standard deviations, especially at a CNT content of 4 wt.% (specific electrical
resistance: 1777 ± 756 Ωcm); thus, further investigations are needed to increase reliability.
For multifilament yarns containing less than 4 wt.% CNT, no electrical resistance could be
measured, because it is beyond the measurable range. This indicates that the percolation
threshold must lie between 3 wt.% CNT and 4 wt.% CNT.

Even the lowest value of electrical resistance was several orders of magnitude higher
than the resistivity of fine copper wires (1.7 × 10−6 Ωcm [46]); however, it was in the
same range as electrically conductive liquid rubber (30–75 Ωcm [47,48]). Thus, CNT-filled
TPU is suitable for a wide range of sensors and actuators, as its combination of high
elasticity, electrical conductivity, and spinnability results in a completely new property
profile. Figure 7 provides a first impression of the sensorial behavior of the melt spun fibers.
The diagram shows the correlation between mechanical elongation and electrical resistance
for three different filament yarns, each containing 5 wt.% CNT but spun at different winding
speeds. It can be seen that the electrical resistance increases with increasing winding speed
in the spinning process. Furthermore, the intermediate peaks (also known as shoulder
phenomenon) are less pronounced with increasing winding speed. Nevertheless, there
is no unambiguous correlation between mechanical elongation and electrical resistance
in any specification. Further investigations will follow to determine the extent to which
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pretreatment of the filaments by means of mechanical pre-stretching or annealing has a
positive influence on the sensorial behavior.

Due to the very high viscosity gradient in the liquid compound, a CNT-rich region
was formed in the filament core, while a sheath of almost pure TPU surrounded this core
(see Figure 4c,d). Thus, without the need for an additional work step or a bicomponent melt
spinning process, a core–sheath filament with an electrically conductive filament core and
an insulating sheath layer was created. This insulating layer offers advantages for many
applications, for example, by minimizing the probability of undesirable short circuits in
sensor networks. It is also worth mentioning that the sheath established a strong physical
and chemical bond with the electrically conductive filament core, hence encouraging the
assumption of high fatigue strength.
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Figure 7. Correlation between mechanical elongation and electrical resistance for filament yarns containing 5 wt.% CNT
and melt spun at different winding speeds.

4. Conclusions

By adding CNTs to TPU, fibers that are elastic and electrically conductive can be melt
spun. The resulting filaments exhibited a very high elongation at break while providing
mechanical properties in the range of conventional elastic fibers and electrical conductivities
in the range of electrically conductive liquid rubbers. Additionally, the fiber core established
a highly favorable bond with the surrounding insulating layer of pure TPU. In future
research projects, the insulating properties have to be determined more specifically and
the surrounding sheath has to be thoroughly investigated in terms of potential conducting
flaws. Thus, the newly developed TPU–CNT filaments are durable and highly stress
resistant. This new class of electrically conductive, highly stretchable yarns offers a great
potential for sensors (for example, as strain sensors, pressure sensors, and electrochemical
sensors) and actuators (for example, in dielectric elastomer actuators). Furthermore, these
yarns could be used in wearable smart textiles for energy harvesting, computing, and
communication.
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