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Abstract

Random-variable-valued measurements (RVVMs) are proposed as a new framework for

treating measurement processes that generate non-deterministic sample data. They oper-

ate by assigning a probability measure to each observed sample instantiation of a global

measurement process for some particular random quantity of interest, thus allowing for the

explicit quantification of response process error. Common methodologies to date treat only

measurement processes that generate fixed values for each sample unit, thus generating

full (though possibly inaccurate) information on the random quantity of interest. However,

many applied research situations in the non-experimental sciences naturally contain

response process error, e.g. when psychologists assess patient agreement with various

diagnostic survey items or when conservation biologists perform formal assessments to

classify species-at-risk. Ignoring the sample-unit-level uncertainty of response process error

in such measurement processes can greatly compromise the quality of resulting inferences.

In this paper, a general theory of RVVMs is proposed to handle response process error, and

several applications are considered.

1 Introduction

The customary way to empirically study some stochastic phenomenon Y, with corresponding

probability distribution PrY defined over some measurable space, is to observe a set of inde-

pendent sample realizations of the random variable Y: y1, . . ., yN. In the broadest sense, these

data are a collection of sample measurements of Y. If these sample observations are subject to

measurement error, then one instead observes the sample measurements y�
1
; . . . ; y�n, where Y�

is related to the random variable of interest Y in some meaningful way. A host of measurement

error models have been proposed to handle such situations (see e.g. [1–7]). Regardless of the

presence of measurement error, these sample data are then used to derive estimates and make

inferences about various properties of Y. In a sense that we will make precise (see Section 2.1),
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such measurement schemes generate full information data sets for the target phenomenon Y
since y1, . . ., yN, or y�

1
; . . . ; y�n, are all fixed values (i.e. real-valued constants).

However, there are often instances that arise in an applied data collection system when

sample measurements do not generate such full information. Instead, we may find ourselves in

a situation where only partial information about the sample realizations of Y (or of Y�) is gen-

erated by the measurement process due to response process error. More precisely, our measure-

ment process may generate observations that are themselves new random variables that

describe the chance of observing a particular value, or range of values, for Y or Y� on each sam-

ple draw. What this means is that our sample measurements may not generate real numbers;

instead, each sample instantiation of the measurement process may generate its own random

variable (or, more precisely, its own measure; see Section 2), potentially unique to the sample

point.

The phenomenon of response process error has long been recognized as a key problem in

psychology (e.g. see [8]), but there are in fact many scientific domains where such measure-

ment phenomena occur. In psychometrics, sample subjects are often subjected to a test or sur-

vey to register their amount of agreement with a particular test or survey item. A single

multiple choice question on a school quiz is the archetypal example. Standard measurement

protocol requires a respondent to identify a subset of the item choices to furnish a response.

However, both (subjective) strength of agreement with an item and (subjective) confidence in

that agreement create uncertainty in any recorded response, and can help distinguish test-tak-

ers who record similar answers. It is uncontroversial that a student who guesses the correct

answer to a question, and the student who knows the correct answer are substantively different

for assessment purposes. The fact that these two students would generate identical answers

(i.e. sample measurements), though likely with very different degrees of confidence in their

answers, is a hallmark of response process error.

The question of disentangling ordinary sample uncertainty from such response process

error has long occupied psychometricians (in addition to how to disentangle both from more

typical measurement error). Certain types of item responses theory models (i.e. 3-parameter

IRT models; see e.g. [9, 10]) and CUB models (e.g. [11–13]) are two attempts to account for

simple response process errors. Crucially, these techniques are model-based, treating response

process error as a population-level—rather than sample-unit-specific—pheonomenon, and do

not aim to alter the actual sample data themselves. The framework proposed in this paper

takes another tack: collect different sample data (i.e. sample measurements) that encode both

“best guesses” and confidence in these guesses for each sample subject. Then work directly

with these data to estimate quantities of interest about any underlying trait of interest (e.g.

mathematics aptitude). In this way, we will be able to handle many more kinds of response

process errors, and our inferences will not require proposing any kind of extra model; we alter

the sample data (i.e. sample measurements), rather than any hypothesized structure on the phe-

nomenon of interest. Once we have developed the necessary theoretical vocabulary, we will

return to this archetypal scenario in Section 4 to precisely illustrate these points.

In conservation biology, the correct classification of species-at-risk is a vital enterprise that

allows governments, private companies, NGOs, and researchers to set informed conservation

policies and ensure that vulnerable species are afforded the necessary protections to sustain

viable populations. The IUCN Red List categories and criteria is the most widely used tool

implemented to perform these assessments [14]. At its most basic, experts assess species’ vul-

nerability according to a variety of quantitative criteria, and then arrive at an at-risk classifica-

tion. Naturally, it is quite common that complete quantitative information is unavailable for

all evaluation items for any particular species. For example, the exact number of mature indi-

viduals or the exact reproductive success of a population of breeding individuals is rarely
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known. At best, sample estimates for these quantities may be available; at worst, nothing at all

is known. Even with the benefit of empirical estimates of the pertinent quantities, there is

often considerable disagreement among expert assessers as to the quality and relevance of such

estimates for the criteria in question. Nevertheless, IUCN guidelines require assessers to arrive

at exact classifications for substantive purposes.

To address this conflict, “fuzzy numbers” [15] and consequent “fuzzy statistics” [16] have

been utilized to specify a best estimate and a range of plausible values (see e.g. [17, 18]), com-

bining both empirical estimates from the applied literature for many sub-populations, corre-

sponding sampling and/or measurement error of these estimates, and assessor-specific

uncertainties of the quality and applicability of these empirical quantities. In many applica-

tions (e.g. those of the previous citations), this framework relies on the use of so-called “trian-

gular numbers.” These are particular kinds of fuzzy numbers that naturally arise when one

considers an arithmetic of confidence intervals (or, more generally, interval estimates of popu-

lation parameters), rather than the ordinary arithmetic applicable to point estimates. Conse-

quently, decision-making is a much more delicate process than what arises out of the

sometimes overly coarse tradition of the “accept/reject” point-null hypothesis testing para-

digm. While a useful approach, these triangular number estimates, similar to the CUB and

3-parameter IRT models of psychometrics, are only equipped to deal with particular types of

response process error from a modelling perspective because they still treat the observed sam-
ple data (i.e. sample measurements) as fixed, deterministic real numbers.

In brief, this paper proposes a mathematical apparatus for quantifying response process error

broadly construed via the notion of random-variable-valued measurements (RVVMs). All sam-

ple data in any situation can be viewed as realizations of a measurement protocol, a measure-val-

ued mapping that determines the RVVMs. I will define these ideas formally and show how they

generalize and recover the classical case where sample data are totally deterministic (Section

2.1); i.e. sample realizations of a real-valued random variable. I make precise how measurement

protocols subject to response process error produce partial information about a random variable

of interest (Section 2.1), define a calibration condition that is desirable for measurement proto-

cols to obey, and discuss how this condition can be validated in practice (Section 2.2). Problems

of estimation and inference are then considered from the point of view of a classical Bayes’ esti-

mator (Section 3.1) and the basic case of Bernoulli-valued measurements is further developed as

an application (Section 3.2). The next section contains examples and applications (Section 4)

that illustrate the utility, power, and novelty of RVVMs in real world research scenarios relevant

to field ecology and clinical psychology. A short section comparing and contrasting RVVMs to a

few other related statistical topics (Section 5) concludes the paper. Two appendices containing

mathematical proofs of propositions and R code for examples follow.

2 Measurements as random variables

Let ðO;FÞ be a measurable space. We are interested in the general problem of inferring prop-

erties about a random variable Y : O! R defined on this measurable space. To do so, we

draw a random (finite) sampleS ≔ foi : 1 � i � ng � O, and then make a measurement ρ
for Y on each sample unit ωi. The following definition characterizes the mathematical structure

of this process.

Definition 2.1 For a given random variable Y defined on ðO;FÞ, we define a measurement
protocol for Y as a measure-valued mapping ρ such that

r≔ O! fm 2M ðR;BðRÞÞ≔ jmj ¼ 1; suppðmÞ � RangeðYÞg:
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Definition 2.1 requires two things: first, that for any sample point ω 2 O, the corresponding

sample measurement ρ(ω) = μω is a Borel probability measure on the real line. This allows one

to explicitly capture any uncertainty in the measurement response process itself at the individ-

ual level of the sample point. As we will see, such a feature is essential for quantifying the

notion of response process uncertainty in a mathematically coherent way.

Second, the restriction that the support of the sample measurement lies within the image of

Y is needed to ensure that ρ actually produces meaningful measurements for Y, the random

variable of inferential interest. A simple example will illustrate this: take Y�Ber(θ) defined on

the Borel sets over the reals. Consequently, Y(ω)2{0, 1} for any o 2 R. A measurement ρ for Y
must thus assign a probability that the measurement process produces a 0 or a 1 for any sample

point o 2 R. If the measurement process produces only fixed data (i.e. no response process

uncertainty), then ρ(ω) is a point-mass with support concentrated on the recorded outcome of

the observed measurement (i.e. 0 or 1). Moreover, if this measurement process is also free of

measurement error, then in fact this point-mass is concentrated on Y(ω)2{0, 1}. Alternatively,

if response process uncertainty is present (as in the example of the unsure student answering a

test question of the Introduction), then rðoÞ ¼ BerðyoÞ, where the parameter θω captures the

sample unit (response) uncertainty (i.e. subject-specific confidence) in the correctness of the

chosen multiple choice option for the test item in question. If we did not require supp(μ)�

Range(Y), then we could allow a measurement process to assign a non-zero probability to an

outcome that could not be produced by Y itself. Such a measurement protocol would not then

reflect anything inherently meaningful about the random variable of interest.

2.1 Generalized likelihoods

Now we need to make sense of how to use the measurements generated by ρ on our sampleS

to actually study the random variable of interest, Y. In this paper, we will be concerned with

making inferences on global properties (parameters) of the random variable Y; e.g. inferring

its mean. This is often accomplished probabilistically by creating a likelihood function for the

parameter of interest and the observed data. In the classic case, we often write f(y | θ), where

y = {Y(ω1), . . ., Y(ωn)}, the sample realizations of the random variable Y.

Our approach will be no different, except that our measurements are not necessarily simply

the sample realizations of Y (or of any measurement error prone proxy for Y). Our data, quite

literally, consist of the measurements rðS Þ, and for each o 2 S , what we actually observe

(via the measurement process) is a measure μω. In turn, the measure μω gives the response cer-

tainty that Y assumes some set of values for a given ω. Define random variables Zω� μω. Thus,

we write a generalized likelihood as

fYðrðS Þ j yÞ ¼ fYðZS j yÞ; ð1Þ

where ZS denotes the vector of random variables {Z1, . . ., Zn}, with Zi ¼ Zoi
. This is not recog-

nizable as a true likelihood function since the input ZS is a random variable defined on the

product space�n
i¼1
ðR;BðRÞÞ. However, for every z in the product space Rn

, the vector ZS ðzÞ
is a fixed sequence of real numbers (in the range of Y); thus, fYðZS ðzÞ j yÞ is an honest likeli-

hood function.

The key observation is that we can now express our generalized likelihood as an average of

traditional likelihoods via total probability:

fYðZS j yÞ ¼
Z

Rn
fYðZS ðzÞ j yÞ dμS ðzÞ;

where μS denotes the product measure on�n
i¼1
ðR;BðRÞÞ induced by the sequence of
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measures {μ1, . . ., μn}. In what follows, we will always assume that our sampleS is actually a

simple random sample, and that our measurement protocol generates mutually independent
measurements; i.e. that μi? μj for all i 6¼ j. We then have the following canonical expression for

the generalized likelihood of a simple random sample generated by independent measure-

ments:

fYðrðS Þ j yÞ ¼

Z

Rn

Yn

i¼1

fYðZiðziÞ j yÞ dμS ðzÞ; ð2Þ

where z ≔ (z1, . . ., zn) is a vector inRn. The assumption of an independent measurement pro-

tocol allows us to write

ZS ðzÞ ¼ ðZ1ðz1Þ; . . . ;ZnðznÞÞ;

and the assumption of simple random sampling allows for the usual decomposition of the

joint likelihood into the product of its marginals. As we will see in Section 3, such a generalized

likelihood can be used in essentially the same way as any traditional likelihood for purposes of

estimation and inference.

It is easy to see that this generalized likelihood collapses down to a traditional likelihood

when response process error is absent from the measurement protocol. To recover this classi-

cal fixed measurement approach, we simply require our measurement protocol ρ to assign

each sample unit ωi 2 O the appropriate observed realization of the random variable Y at ωi.

As previously noted, this means that the measurement μi is a point-mass concentrated at Y
(ωi). In this case, we have μS ¼ dy1

� . . .� dyn
, where δx denotes the point-mass at x and we

abbreviate with the usual notation yi = Y(ωi). To see how Eq (2) recovers the classical likeli-

hood associated with these fixed measurements, simply compute

Z

Rn

Yn

i¼1

fYðZiðziÞ j yÞ dμS ðzÞ ¼
Z

Rn

Yn

i¼1

fYðZiðziÞ j yÞ ddy1
ðz1Þ � � � � � ddyn

ðznÞ

¼
Yn

i¼1

Z

R
fYðZiðziÞ j yÞ ddyi

ðziÞ

¼
Yn

i¼1

fYðyi j yÞ:

Thus, we have that every measurement is the ordinary observed realization of the random

variable Y, and the generalized likelihood in Eq (2) recovers the classical likelihood function

associated to these fixed data.

Notice that exactly the same argument holds if the measurement protocol ρ produced fixed

measurements subject to some kind of measurement error. In this case, one would observe the

sample realizations of Y�, some proxy for Y. Crucially, the concept of measurement error

assumes that a fixed data point is always observed, Y�(ω), so again the sample measures gener-

ated by such a measurement protocol must be simple point-masses. Of course, in this context,

the generalized likelihood in (2) would reduce to
Yn

i¼1

f ðy�i j yÞ; and so the traditional measure-

ment error appartus would apply unchanged, usually in the form of some model relating the
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observed proxy Y� to Y, e.g.

f ðy� j yÞ ¼
Z

f ðy� j y; yÞf ðy j yÞ dy: ð3Þ

In what follows, we will refer to measurement protocols that generate only point-masses

(i.e. fixed data) as trivial RVVMs. Such measurements are free of response process error since

each sample measurement is deterministic. Absent any measurement error, we should intui-

tively expect that a set of sample data generated by such a sequence of fixed measurements to

contain more information about Y than one generated by a sequence of nontrivial RVVMs (i.e.

measurements for Y subject to response process error). Indeed, this intuition can be formal-

ized using the classical notions of Shannon information and relative entropy. It is worthwhile

to outline this mathematical interpretation here, as it will allow us to formalize what is meant

by the phrase partial information within the context of RVVMs, and to better understand the

unique kind of uncertainty that RVVMs can encode.

Suppose ρ0 is a fixed measurement protocol for Y such that ρ0(ω) = δY(ω), and let ρ1 be any

other nontrivial (i.e. not all point-masses) measurement protocol for Y such that μω(Y(ω)) 6¼ 0.

Then, for any ω 2 O, consider the Kullback-Leibler divergence from ρ1(ω) to ρ0(ω):

DKLðr0ðoÞ j r1ðoÞÞ ¼

Z

R
dYðoÞðyÞ � log

dYðoÞðyÞ
moðyÞ

� �

dy:

Since ρ0(ω) generates a fixed point-mass measure, the Kullback-Leibler divergence reduces

to

DKLðr0ðoÞ j r1ðoÞÞ ¼ � log ðmoðYðoÞÞÞ;

which is equal to the (always nonnegative) information content of μω at Y(ω). This fact is a

reflection of the principle of maximum entropy, and precisely quantifies the amount of infor-

mation lost when the nontrivial RVVM ρ1 is used as a measurement protocol for the random

variable of interest Y at the sample point ω instead of simply “observing” Y at ω itself via

ρ0. Extending this to the generalized likelihood associated to a set of sample points, we can

see that the generalized likelihood associated to the nontrivial RVVMs is naturally more

dispersed.

In the above sense, we can say that any nontrivial RVVMs correspond to partial informa-
tion measurement protocols for Y. Likewise, we can refer to fixed measurements (i.e. trivial

RVVMs) as full information measurement protocols for Y. Note that full information does not
imply that the measurement protocol for Y is accurate (e.g. it may still be subject to traditional

measurement error), since we could perform the same relative entropy calculation as above

even if ρ0 generates point-masses that do not always agree with the sample values of Y. The

information content of the measurement protocol is only a meaningful reflection of any

response process uncertainty that may be present in the measurement process.

Here, it may be useful to recognize that because response process error dictates that sample
measurements themselves are random quantities, one cannot fundamentally separate (and so

quantify) response process error from more customary sources of uncertainty: sampling error

and measurement error. Indeed, since we treat all sample measurements as potentially ran-

dom, the sample data themselves are random. Thus, response process error (when it is present)

and sampling error are interlocked, since sampling error is quantifiable only with respect to a

given dataset. This is not inherently meaningful from a frequentist interpretation of probabil-

ity, but fits well within the tradition of the Bayesian perspective, where probability is usually

construed as a measure of certainty rather than a long-run expected outcome. As we will see in
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Section 3 when we take up the task of actually estimating population parameters of interest

using sample data generated from nontrivial RVVMs, the Bayesian approach will also be far

more mathematically natural.

2.2 Calibrated RVVMs

Discerning how response process error and traditional notions of measurement error relate is

a bit stickier. A proper treatment of this topic requires more pages than this introduction to

the mechanics of RVVMs can reasonably hold, but will certainly appear in a forthcoming

work. For our present purposes, it is sufficient to distinguish the concepts as we already

implictly have: measurement error occurs at a sample unit ω 2 O when a trivial RVVM ρ(ω) is

not supported on the true value of Y(ω), whereas response process error is generated by non-

trivial RVVMs. Both concepts share the common feature that sample data subject to either

kind of error cannot be expected to (fully) agree with the true value of Y for any particular

sample measurement. Because of this, our measurements must be calibrated somehow (i.e.

vary systematically in some way around the corresponding true values of Y) if we ever hope to

quantify the accuracy of any resulting sample estimators for population features of Y. Classi-

cally, this necessity gives rise to a host of different calibration conditions, usually phrased in

the context of one of many different measurement error models (see Kroc and Zumbo [19] for

a detailed summary of additive measurement error models, and see Gustafson [6] for a treat-

ment of multiplicative measurement error). Within the context of response process error, we

will be concerned with a similar type of calibration condition. As we will see, this condition

will ensure that many sample estimators of interest are well behaved.

Fix a measurement protocol ρ. For any given ω 2 O, define the set

Oo ¼ fo
0 2 O : mo0 ¼ mog:

That is, Oo contains all the sample points ω0 2 O that map to the same measure as does ω
under the the measurement protocol ρ. We will assume thatOo is ðO;FÞ-measureable,

although this is not necessarily so apriori. We then have the following important definition.

Definition 2.2 We say that a measurement protocol ρ is calibrated to Y if for all ω 2 O
Z

R
x dmoðxÞ ¼ EðO;FÞðY j OoÞ:

Mathematically, the novelty of this definition lies in the fact that it equates expectations on

two different probability spaces. Notice that both quantities in play are functions of ω 2 O.

The lefthand quantity is simply the expectation of the measure assigned to the sample unit ω
via the measurement protocol ρ, whereas the righthand quantity calculates the conditional

expectation of Y over the subsetOo � O.

Definition 2.2 captures what we would expect to hold if the measurement protocol ρ gener-

ates response process error that is still accurate on average; i.e. if it is given by an expert

observer (see below). An important consequence of this kind of calibration is that it allows one

to easily construct accurate estimators of certain population parameters of Y, the actual ran-

dom variable of inferential interest. This notion of calibration will be exploited in Section 3 to

prove asymptotic unbiasedness and consistency of certain Bayes’ estimators (see Propositions

3.1 and 3.2), and we will use it again in Section 4 when we consider certain real world instances

of RVVMs in greater detail. To establish the former, we will require the following simple result

that a generalized sample mean is an unbiased and consistent estimator of the population

mean.
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Proposition 2.3 (Weak Law of Large Numbers for calibrated RVVMs) LetS ¼
foi : 1 � i � ng be a simple random sample drawn from O, and let ρ be an independent mea-
surement protocol on O. Define the sample estimator

�rðS Þ ¼
1

n

Xn

i¼1

Z

R
x dmoi

ðxÞ:

Then if ρ is calibrated to Y, some random variable with finite mean and variance, �rðS Þ is an
unbiased and consistent estimator of EðYÞ.

With Proposition 2.3 in mind (see the proof in S1 Appendix), it is worthwhile to spend

some time unpacking the practical meaning of the calibration condition of Definition 2.2. In

order to derive accurate inferences, it is crucial that the sample measurements ρ(ω) be reliable

in some sense. The calibration condition above says that the expected value of the sample mea-

surement coincides with the expected value of Y over the set of sample points that generate the

same sample measurement.

We can quickly see that traditional fixed measurements that are free of measurement error

must always be calibrated. Using the logic of the previous subsection, we know that for such a

measurement protocol, we can write rðS Þ ¼ fdy1
; . . . ; dyn

g. Of course, the expectation of any

random variable, X, distributed according to one of these measures is the appropriate yi. Now,

notice that for any i, we haveOoi
¼ Y � 1ðyiÞ. This is simply because we have required our mea-

surement protocol ρ to always return the appropriate fixed value of Y upon measurement. But

now

EðY j Ooi
Þ ¼ EðY j Y � 1ðyiÞÞ ¼ yi ¼

Z

R
x ddyi

ðxÞ;

for any i, since the random variable Y is always constant on the set Y−1(yi). Moreover, using

the standard formula for total variance (see the proof of Proposition 2.3 in S1 Appendix), Var

(Y | Y−1(yi)) = 0 for any i, so Varð�rðS ÞÞ ¼ VarðYÞ=n. Proposition 2.3 thus becomes a simple

generalization of the Weak Law of Large Numbers for the traditional sample mean.

To understand the calibration property in context, let us consider an example from field

ornithology (we will further develop this example in Section 4): assigning the proper sex to a

bird captured in the field. An expert researcher may inspect a single individual, denoted by ω,

and assess (i.e. measure) the sex as female with 90% confidence (i.e. response certainty). This

assessment is the product of a combination of expert diagnostics, including plumage charac-

teristics, body shape, bill shape and size, etc. Importantly, some of these diagnostics may be

subjective. We can imagine that this same researcher might capture another bird with the

same or different morphological characteristics, and subsequently assess (i.e. measure) the sex

of this new bird as female with 90% confidence (i.e. response certainty) again. Since the

RVVMs generated by this measurement protocol must be Bernoulli according to Definition

2.1, all birds that generate this same measure of confidence in female sex assessment form the

setOo. This researcher’s expert assessment is considered calibrated if, among the individuals

in this setOo, 90% of them are actually female. This is precisely what we would expect to hap-

pen if the researcher performing the measurements is well-trained and knowledgeable; i.e.

expert.

This interpretation suggests several ways that the calibration condition in Definition 2.2

can be validated in practice. A researcher could assess a small set of sample elements that are

then independently measured exactly (i.e. without response uncertainty), and have their

RVVMs checked against these gold standard measurements, with agreement on average yield-

ing calibration. Or, as is common practice in many small bird-banding operations, researchers
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can keep track of their measurements and cross-check them for accuracy if and when the sam-

ple unit is resampled in subsequent banding seasons. In some cases, the obstacles to assigning

a sure classification can disappear upon resampling, as when young banded birds are recap-

tured at a later stage in life when sexing characteristics are definitive. In still other cases, a sam-

ple RVVM can be recorded and further measurement protocols (partial or full information)

may be implemented that eventually yield a definitive classification. Such situations can com-

monly arise in applied medicine when patients are preliminarily diagnosed with a particular

affliction, and are then subjected to follow-up examinations and tests to confirm or deny an

initial diagnosis.

Even in the absence of rigorous validation, we may reasonably expect the calibration condi-

tion of Definition 2.2 to hold as long as the observer assigning the measurement is sufficiently

trained and knowledgeable in the aspects of diagnosis and discrimination particular to the

research and measurement setting. And inversely, we should not expect such a condition to

hold for less experienced assessers. In fact, we may expect such measurements to exhibit

important, structural miscalibration, resulting in systemic biases of inferences. This will often

be the case in studies of social and psychological phenomena where sample respondents are

untrained in uncertainty assessment (e.g. nontechnical survey respondents), or random vari-

ables of interest are loosely defined latent constructs.

3 Estimation and modelling with RVVMs

In this section, we will investigate the practical use of RVVMs for estimation and inference.

Since data generated via a nontrivial measurement protocol generate a generalized likelihood

as in Eq (2), it is not immediately apparent how estimation might proceed in a modelling con-

text. The most straightforward approach to estimation and modelling with RVVMs is the

Bayesian one, both in terms of direct interpretability of probability as uncertainty and with

regards to analytical tractability.

3.1 Classical Bayes’ estimator with RVVMs

Consider the problem of estimating some model parameter θ for Y with sample data generated

by an independent measurement protocol ρ. The classical Bayes’ estimator of y j rðS Þ, i.e.

the one minimizing the posterior expected value of the mean squared error, is:

Eðy j rðS ÞÞ ¼ EμS ½Eðy j rðS Þ; zÞ�

¼

Z

Rn

Z

R
yf ðy j ZðzÞÞ dy dμS ðzÞ

¼

Z

R
y

Z

Rn
f ðy j ZðzÞÞ dμS ðzÞ

� �

dy:

ð4Þ

The last line takes the familiar form of the classical Bayes’ estimator with a generalized pos-

terior assuming the role of the classical, fixed data (i.e. full information) posterior. Naturally,

one could rewrite this posterior in terms of the corresponding likelihood(s), prior, and nor-

malizing factor(s):

Eðy j rðS ÞÞ ¼
Z

R
y

Z

Rn

1

NðZðzÞÞ
fYðZðzÞ j yÞÞ dμS ðzÞ

� �

p0ðyÞ dy: ð5Þ

Note that the normalizing factor is now a function of the RVVMs (since it is a function of

the sample data).
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Eqs (4) and (5) suggest just why the Bayesian approach to estimation with RVVMs is funda-

mentally more mathematically tractable than an optimization based one, such as maximum

likelihood. The Fubini-Tonelli Theorem allows for unfettered exchangeability of the integrals

over θ and the joint (probability) measure mS in the definition of the Bayes’ estimator, which

greatly simplifies the computational problem. On the other hand, a maximum likelihood

approach would require optimization of a function of the generalized likelihood (2), a poten-

tially substantial task.

Notice that Eqs (4) and (5) also imply that if π0 is a conjugate prior for the traditional likeli-

hood fY(Z(z) | θ), then π0 is a conjugate prior for the generalized likelihood fYðZS j yÞ, in the

sense that the generalized posterior

f ðy j ZS Þ ¼
Z

Rn

fYðZðzÞ j yÞÞp0ðyÞ

NðZðzÞÞ
dμS ðzÞ ð6Þ

is simply a μS -weighted average of traditional posteriors that belong to the same parametric

family as π0. This property can also greatly aid in computation (e.g. see S2 Appendix), and

even allows for analytical expressions of the Bayes’ estimator in a variety of classic scenarios.

3.2 Bernoulli-valued measurements

The most basic such scenario is the study of a Bernoulli phenomenon Y� Ber(θ0). In this case,

any measurement protocol ρ for Y can only yield Bernoulli-valued measurements ρ(ω) for any

ω 2 O by Definition 2.1. Thus, if Zω� μω, then we may write Zω� Ber(θω), where θω 2 [0, 1]

in general, and θω 2 {0, 1} corresponds to a full information RVVM (i.e. no response process

error). Given a random sampleS � O, the generalized likelihood (2) becomes

fYðZS j yÞ ¼
Z

Rn

Yn

i¼1

y
ZiðziÞð1 � yÞ

1� ZiðziÞ dμS ðzÞ:

Since the value of this generalized likelihood is driven only by how many Bernoulli suc-

cesses occur among the RVVMs, we can simplify this expression by defining the measure ν =

μ1
�. . .�μn and the random variable W� ν, yielding

fYðZS j yÞ ¼
Z

R
y

W
ð1 � yÞ

n� W dnðwÞ:

Note that ν is not in general a Binomial measure, since the μi measures are not necessarily

identical; ν is a categorical measure (multinomial on one trial) in general. However, ν is dis-

crete on R, so we can simplify things further and write

fYðZS j yÞ ¼
Xn

k¼1

y
k
ð1 � yÞ

n� kPrnðW ¼ kÞ:

This simplified version of the generalized likelihood can greatly ease the analytical and

computational burden of working with Bernoulli-valued measurements, a fact we exploit in

the computations of Section 4 (see S2 Appendix for computational details).

Given a prior distribution π0 on θ, and using (6), we now have a tractable form for the gen-

eralized posterior

f ðy j ZS Þ ¼ p0ðyÞ
Xn

k¼0

y
k
ð1 � yÞ

n� k

NðkÞ
� PrnðW ¼ kÞ: ð7Þ
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Consonant with above, if π0 is a generic Beta(α, β) prior, then we see that this generalized

posterior is simply a ν-weighted sum of Beta densities. Put another way, conditional on W = k,

the density is Beta(α + k, β + n−k).

Using (7) and (4), the Bayes’ estimator of θ becomes

Eðy j rðS ÞÞ ¼
Z 1

0

y � p0ðyÞ
Xn

k¼0

y
k
ð1 � yÞ

n� k

NðkÞ
� PrnðW ¼ kÞ dy

¼
Xn

k¼0

PrnðW ¼ kÞ
Z 1

0

p0ðyÞ � y
kþ1
ð1 � yÞ

n� k dy
NðkÞ

¼
aþ

Pn
k¼1

k � PrnðW ¼ kÞ
aþ bþ n

¼
aþ EnðWÞ
aþ bþ n

ð8Þ

Using a similar argument, we can also derive an analytical expression for the posterior vari-

ance:

Varðy j rðS ÞÞ ¼ En½Varðy j rðS Þ;WÞ� þ Varn½Eðy j rðS Þ;WÞ�

¼
aðbþ nÞ þ ðbþ n � aÞEnðWÞ þ EnðWÞ

2

ðaþ bþ nÞ2ðaþ bþ nþ 1Þ
þ

VarnðWÞ
ðaþ bþ nÞðaþ bþ nþ 1Þ

ð9Þ

In general, the behaviour of this posterior can be quite variable depending on the exact

structure of the Bernoulli-valued measurements, even as sample size is increased. In particular,

it need not be unbiased or even asymptotically unbiased for θ, and since Varν(W) can be on

the order of n2 by the sharpness of Popoviciu’s Inequality [20], the classical Bayes’ estimator

need not be consistent for a general independent measurement protocol. However, when we

assume that our measurements are calibrated in the sense of Definition 2.2, we do have the fol-

lowing interesting result (see the proof in S1 Appendix).

Proposition 3.1 Let ŷ ¼ Eðy j rðS ÞÞ be the Bayes’ estimator in (8) under an arbitrary Beta
(α, β) prior on θ, where Y� Ber(θ0). Suppose that an independent measurement protocol ρ is cal-
ibrated to Y according to Definition 2.2. Then ŷ is an asymptotically unbiased estimator of θ0.

Suppose now that only some of our sample measurements (not necessarily calibrated) gen-

erate response process error, while the others are ordinary sample realizations of Y free of mea-

surement error. Then the following proposition holds.

Proposition 3.2 Let ŷ ¼ Eðy j rðS ÞÞ be the Bayes’ estimator in (8) under an arbitrary Beta
(α, β) prior on θ, where Y� Ber(θ0). Let the first m1 RVVMs generate fixed data (i.e. full infor-
mation point-masses) free of measurement error, and the remaining m2 be nontrivial RVVMs.
Then as m1+ m2!1, ŷ is an asymptotically unbiased estimator of θ0 if either

(i) ρ is calibrated to Y according to Definition 2.2, or

(ii) m2 = o(m1); i.e. lim
m1!1

m2

m1

¼ 0.

Moreover, if (ii) holds, then ŷ is a consistent estimator of θ0; i.e. Varðy j rðS ÞÞ ! 0 if m2 =

o(m1).

There are two implicit though important implications of Proposition 3.2 (see the proof in

S1 Appendix). The first is that an RVVM mapping need not be calibrated to yield
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asymptotically unbiased and consistent estimates. Indeed, condition (ii) is sufficient to ensure

such behaviour. Intuitively, this is not surprising given that condition (ii) guarantees that the

full and accurate information about Y contained in the subsample of (accurate) fixed measure-

ments will always overpower the partial information contained in the nontrivial RVVMs.

The second important implication is that calibration is not sufficient for consistency of the

Bayes’ estimator. This too is not surprising when we realize that we have not placed any stabi-

lizing condition on the RVVMs as the sample size grows. Indeed, notice that the first term in

the variance expression (9) always approaches zero asymptotically, but that the second term

need not. This is a reflection of the fact that the nontrivial RVVMs are theoretically allowed

to have as much entropy as we like; thus, we should not expect that their expected value will

stabilize as the subsample of nontrivial RVVMs grows. Unless this expectation is stabilized by

a relatively greater subsample of fixed measurements, the (generalized) posterior need not con-

verge to a point. Informally, we cannot hope to “sample away” the partial information in our

nontrivial RVVMs simply by collecting more of them. In the context of the applied examples

considered in the Introduction and in Section 4 below, this phenomenon is totally expected.

4 Applied examples and comparisons with methods that ignore

response process error

In this section, we illustrate the power and the mechanics of RVVMs to explicitly quantify

response process error as part of an integrated data analysis. Results are contrasted with those

that would be generated via a typical analysis (i.e. one that ignores response process error) to

further emphasize the utility of RVVMs.

4.1 Research scenario 1: Sexing birds in the field

Wildlife researchers are often interested in recording the nesting locations of an avian species;

however, direct visual confirmation of a nesting site is not always possible [21]. Instead, vari-

ous diagnostics can be used to assess the likelihood that a nest is present: for example, territo-

rial and mating displays that are characteristic of nesting pairs. Such tentative determinations

are an instantiation of the response process error inherent in the measurement process.

In many bird-banding operations individual birds are captured, tagged, and a variety of

morphological characteristics are recorded before the birds are released back into the wild.

Some measurements are exact, like wing chord and tail length, while others are more diagnos-

tic, like sex and age. In many bird species, sex can be difficult to determine in the field with

complete confidence even for highly trained professionals [22]. This is especially true for

young birds that have yet to develop their adult plumage [23]. The North American Bird Band-

ing Program requires at least 95% confidence in sex determination before considering a sexing

observation valid [24]. Other programs, such as the Vancouver Avian Research Centre, con-

sider at least 90% confidence in sex determination sufficient to generate useable information

[25]. Current applied practice dictates that any response process uncertainty is ignored: either

when a sample sex identification with 95% certainty is treated as equivalent to a definitive sam-

ple sex identification, or when identification uncertainty dips below the acceptable threshold

and so the sample datum is discarded. Indeed, this has long been considered good practice in

field ornithology for sex and age determination, where Ralph et al. [23] have advised us that “it

is better to be cautious than inaccurate.” Utilizing the framework for handling response pro-

cess error proposed in this paper, however, we will see that these two options do not have to be

exclusive.

Consider the problem of estimating the sex distribution of a population of small songbird

that nests in a particular valley in the summer months, a Bernoulli phenomenon denoted by Y.
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Suppose this songbird requires two years to obtain its full adult plumage, after which identifi-

cation of sex is exact due to pronounced sexual dimorphism. Both adult and juvenile birds

return to the valley of interest each summer, and we aim to quantify the distribution of sexes at

the beginning of the breeding season. Juveniles can only occasionally be exactly sexed by plum-

age or other morphological characteristics; usually, only educated guesses can be made instead.

Consequently, sex measurements may be subject to response process error.

Suppose that a team of researchers has been banding and collecting data on these birds for

many years. Consequently, they are experienced and well-versed in distinguishing sexes accu-

rately at all ages; i.e. suppose that the measurement protocol that quantifies their response pro-

cess error is calibrated to Y according to Definition 2.2. Note that the assumed accuracy of the

researchers in question could have been explictly justified already, perhaps by cross-checking

previous tentative sexing diagnoses of banded juveniles against definitive sexing data on recap-

tured individuals in subsequent breeding seasons.

For our illustration, suppose 50 birds have been sampled at our test location, and data on

individual age (0 = juvenile, 1 = adult), weight (in grams), wing chord length (in cm), and sex

(0 = male, 1 = female) have been recorded. Measurement protocols on age, weight, and wing

chord length generate full and accurate sample information (i.e. generate trivial RVVMs free

of measurement error). We will consider three different measurement protocols for sex in this

exploration: ρ1, ρ2, and ρ3. The first, ρ1, generates full and accurate sample information (trivial

RVVMs free of measurement error) for all 50 individuals. This is an idealized measurement

protocol that is not actually realized in the field; i.e. the measurement protocol that always

returns the true sex of the sampled individual with total certainty. The second measurement

protocol, ρ2, acts the same as ρ1, but is only applied to the subsample of individuals that can be

definitively sexed in the field. Any individuals that cannot be definitively sexed in the field are

discarded entirely from the sample, which reflects current best practice in field ornithology

[24]. The final measurement protocol, ρ3, will consist of a mixture of trivial and nontrivial,

but still calibrated, RVVMs. For those individuals that can be definitively sexed in the field,

ρ3(ω) = ρ1(ω) = ρ2(ω). However, for individuals that cannot be definitively sexed in the field, ρ3

encodes the certainty that the individual is female, as generated by the domain-expert field

technician. Table 1 provides a snapshot of the sample data for each of the three measurement

protocols (note that the full dataset(s) can be generated using the R script of S2 Appendix).

Note that only 8 birds (all juvenile) are not definitively sexed by the bird-banders.

In the absence of any prior information on sex distribution, it may be natural to expect a

uniform split between male and female birds at any age. However, suppose in reality there is

more of a tendency for juvenile females to return to their birthplace than for juvenile males, a

tendency that disappears once the birds reach adulthood due to differential behavioural

changes (e.g. greater pressure on males to find and establish new breeding territory, forcing

them to disperse earlier from their natal sites). Unknown to the researchers, suppose the true

percentage of adult females at the site of interest is 50%, while the true percentage of juvenile

females is 75%. Thus, for our particular data, the dearth of definitively sexed juveniles would

inevitably confound any derivative inferences on the sex distribution over the entire popula-

tion, as well as within the juvenile subpopulation only, if we chose to ignore the nontrivial

RVVMs by using measurement protocol ρ2.

For this particular dataset, 19 of the 38 sexed adult birds (all definitively sexed) were female,

while only 4 out of the 12 juvenile birds were definitively sexed: all these birds were female. Of

the remaining 8 partially sexed juveniles, 5 were actually female (unobserved under the realis-

tic measurement protocols of ρ2 and ρ3).

For the three measurement protocols, we will compare how good of a job the resulting pos-

teriors, and their corresponding Bayes’ estimators, do at capturing the true sex distribution in
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the total population, as well as within the subpopulation of juveniles. We will then complicate

the problem by incorporating weight and wing chord data, which will be seen to have differen-

tial effects on age and sex. Moreoever, we will compare how the RVVM approach, the only

one that explicitly accounts for response process error, compares to a missing data approach

where the non-definitively sexed individuals from measurement protocol ρ2 have their sexes

imputed.

All numerical calculations were performed in R [26]. Multiple imputations were performed

using the ‘mice’ package [27]. Regression models were fit using the ‘RStanArm’ package to

approximate the appropriate posteriors [28]. All R code is available in S2 Appendix of this

article.

4.1.1 Subgroup analysis. We will start by examining our estimates of the overall propor-

tion of females. Table 2 contains the values of the Bayes’ estimators and the standard deviations

of the corresponding posterior distributions when we use the data generated from each of the

three measurement protocols. All three estimators assume a naive prior of Beta(15,15) for the

overall proportion female.

The estimated proportion of female birds is the same between the full fixed dataset (unob-

served), ρ1, and the RVVM-generated dataset, ρ3. This is expected since, as we note in the proof

of Proposition 3.2, using calibrated RVVMs does not inject any additional bias into the Bayes’

estimator than what would already be present under the complete and accurate information

measurements. However, the corresponding posterior distribution under the RVVMs is slightly

Table 1. Example data layout and sample data for the example bird-banding measurement protocols. Note that the Bernoulli-valued measurements for sex give the

observed response process certainty that the sample unit is female.

index age weight wing.chord sex, ρ3 sex, ρ2 sex, ρ1

34 1 52.087 11.239 Ber(0) 0 0

35 1 56.623 12.379 Ber(0) 0 0

36 1 57.288 10.048 Ber(0) 0 0

37 1 68.327 8.315 Ber(0) 0 0

38 1 60.219 10.613 Ber(0) 0 0

39 0 38.566 11.957 Ber(1) 1 1

40 0 21.984 9.999 Ber(1) 1 1

41 0 32.770 10.194 Ber(1) 1 1

42 0 26.276 11.780 Ber(1) 1 1

43 0 14.701 11.553 Ber(0.9) NA 1

44 0 11.902 11.812 Ber(0.9) NA 1

45 0 25.015 9.737 Ber(0.8) NA 1

46 0 23.797 12.210 Ber(0.8) NA 1

47 0 12.305 11.174 Ber(0.7) NA 1

48 0 29.453 8.261 Ber(0.4) NA 0

49 0 33.304 7.370 Ber(0.3) NA 0

50 0 27.099 7.424 Ber(0.2) NA 0

https://doi.org/10.1371/journal.pone.0239821.t001

Table 2. Bayes’ estimates and posterior standard deviations for proportion of female birds. A naive prior of Beta(15,15) was used for each of the three estimates.

meas. protocol ρ1 meas. protocol ρ2 meas. protocol ρ3

Full fixed bad hbox Observed fixed bad hbox RVVM data

est. proportion female 0.5375 0.5278 0.5375

standard deviation of estimate 0.0554 0.0584 0.0572

https://doi.org/10.1371/journal.pone.0239821.t002
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more dispersed, reflecting the inherent uncertainty in the nontrivial RVVMs and their use of

partial, rather than complete, sample information. Note that the estimated proportion derived

from the observed fixed measurements, ρ2, is not as accurate as the RVVM-derived estimate

due to the decreased sample size (42 vs. 50) and the lack of partial information use.

Note also that missing data techniques cannot be applied to the data generated by ρ2, simply

because we are not utilizing information on any covariates. The RVVM framework of course

makes no such requirement.

Now consider what happens if we estimate the proportion of female birds according to age

categorization. Here, we will be in a situation amenable to imputation of missing values under

measurement protocol ρ2. Table 3 contains the output of logistic regressions for each of our

four estimates of interest. Each of the four estimates are derived by assuming a default N(0,

2.5) prior on the ‘age’ effect and a default N(0, 10) prior on the model intercept.

The RVVM-based model does a much better job than either of the ρ2-generated model fits

of reflecting the ideal model fit under the full fixed (unobserved) dataset generated by ρ1. Esti-

mated model coefficients are far more accurate in the RVVM-based fit, and the corresponding

posterior standard deviations are naturally wider than those from the idealized ρ1-generated

dataset. Again, this reflects the inherent response process error inherent in the measurement

protocol ρ3, captured by the nontrivial RVVMs.

Interestingly, the posterior uncertainties under the imputation-based approach are larger than

the RVVM-based uncertainties. The reason for this becomes plain when we consider the esti-

mated odds ratios within each age group (bottom two rows of Table 3). Recall that all the defini-

tively sexed juveniles were female; thus, there is no way for an imputation procedure to assign a

reasonable chance of observing a juve-nile male, as there are no complete observations on this

subpopulation. Such structural confounding yields a severly inflated odds of female sex among

juveniles and also inflates the variance in the posterior distributions of the model coefficients.

4.1.2 Multiple regression with RVVMs. We now consider what happens when we fit

slightly more complicated regression models in an attempt to uncover finer relationships

between the four observed variables: sex, age, weight, and wing chord length. First, we aim to

model sex as a function of age and weight. Consider the boxplots in Fig 1. The weight data

have been generated so that adult female weights are distributed as N(50, 5) and adult male

weights are distributed as N(60, 5) (see the S2 Appendix for reproducible code). For juvenile

weights however, the distributions are normal mixtures; this introduces confounding via the

measurement process. The idea is that underweight juveniles may be more difficult to defini-

tively sex; thus, definitively sexed juvenile females have weights distributed as N(30, 5), while

partially sexed juvenile females have weights distributed as N(20, 5). Similarly, definitively

sexed juvenile males have weights distributed as N(40, 5), while partially sexed juvenile males

have weights distributed as N(30, 5). No weight data are assumed missing.

Table 3. Bayes’ estimates and posterior standard deviations for logistic model: Sex� age. Coefficients are on the log-odds scale. Measurement protocol ρ1 is response-

process-error-free. Measurement protocol ρ2 ignores response process error. Measurement protocol ρ3 quantifies response error via RVVMs.

meas. protocol ρ1 meas. protocol ρ2 meas. protocol ρ2 meas. protocol ρ3

Full fixed data (unobserved) Observed fixed data no

imputation

Observed fixed data w/

imputation

RVVM data

estimate s.d. estimate s.d. estimate s.d. estimate s.d.

coefficient (intercept) 1.0973 0.6650 2.6539 1.5390 2.8637 1.1584 1.1516 0.7103

coefficient age -1.0967 0.7314 -2.6202 1.5383 -2.8296 1.1880 -1.1409 0.7697

odds of female adult 1.0005 1.0343 1.0347 1.0108

odds of female juvenile 2.9959 14.2098 17.5256 3.1633

https://doi.org/10.1371/journal.pone.0239821.t003
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This type of measurement process confounding has two main effects: (1) all underweight

birds will tend to be categorized as female by a missing data approach, and (2) since our data

contain no definitively sexed juvenile males, the extra weight covariate will give us no informa-

tional leverage with which to model this subpopulation using a missing data approach. In con-

trast, the RVVM framework will allow us to fix both issues, since calibrated measurements will

negate any confounding introduced by the incompleteness mechanism (on average), at the

cost of the additional uncertainty generated by the nontrivial RVVMs.

Table 4 contains the output of logistic regressions under each of our four comparison sce-

narios. Again, each of the four sets of estimates are derived by assuming default N(0, 2.5) priors

on all covariates, and a N(0, 10) prior on the model intercept.

Examining the estimated coefficients only, it is quite clear that the RVVM approach closely

aligns with the model estimates we would expect if the full true (unobserved) data were

Fig 1. Weight vs. age and sex for the 50 sampled individuals (not all observed without response process error).

https://doi.org/10.1371/journal.pone.0239821.g001

Table 4. Bayes’ estimates and posterior standard deviations for logistic model: Sex� age + weight + age � weight under the three measurement protocols. Coeffi-

cients are on the log-odds scale.

meas. protocol ρ1 meas. protocol ρ2 meas. protocol ρ2 meas. protocol ρ3

Full fixed data (unobserved) Observed fixed data no

imputation

Observed fixed data w/

imputation

RVVM data

estimate s.d. estimate s.d. estimate s.d. estimate s.d.

(intercept) 8.0279 2.5451 20.2487 5.9180 17.7728 5.1105 6.5375 2.4774

age 3.1017 2.0042 -0.1926 2.4711 -0.1239 2.3734 3.4244 2.0123

weight -0.2314 0.0815 -0.2633 0.1422 -0.2324 0.1070 -0.1725 0.0785

age � weight 0.0263 0.0582 -0.1033 0.1155 -0.0912 0.0853 -0.0113 0.0583

odds of female, juv. w/weight = 25 9.4199 860,360 156,890 9.2591

odds of female, juv. w/weight = 30 2.9618 230,588 49,089 3.9089

odds of female, ad. w/weight = 50 2.3997 5.6190 4.3392 2.1717

odds of female, ad. w/weight = 60 0.3087 0.1437 0.1706 0.3458

https://doi.org/10.1371/journal.pone.0239821.t004
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available. Posterior uncertainty in the RVVM framework is comparable to that produced by

the fit with the full true (unobserved) data, reflective of the fact that for these sample data,

there is very little response process error present. In contrast, the missing data approach per-

forms very poorly.

Examining the estimated raw odds, the full information data generated under ρ1 produce

an odds of female among juveniles with weight = 30 g of 2.96, and an odds of female among

juveniles with weight = 25 g of 9.42. These estimates are expected when one considers the dis-

tribution of the full (unobservd) data over subgroups, as in Fig 1. The estimated odds from the

RVVM dataset are similar to the estimated odds from the full ρ1 dataset. In contrast the esti-

mated odds from the ρ2-generated dataset, with or without imputation, are horrendous over

the juvenile subgroups. This is not surprising given how the sex data are not missing at ran-

dom and that there are no definitively sexed juvenile males in our sample. It is important to

recognize that the RVVM framework is not susceptible to this same source of confounding

(on average) under calibration of the RVVMs. Put another way, there is no need for the partial

data to be “incomplete at random,” so long as the RVVMs are calibrated.

Next, we aim to model sex as a function of age and wing chord length. Fig 2 displays box-

plots for the full information (unobserved) sample data generated under ρ1. Wing chord length

was generated as random draws from a N(11, 1) distribution for juvenile females, and adults of

both sexes. Thus, missing data in the ‘sex’ variable are now “missing at random” (MAR).

Wing chord length for juvenile males was generated from a N(8, 1) distribution. Here, we

model sex as a function of age and wing chord length, using the same default priors that were

used in the previous example. Table 5 displays the results.

Even though the ‘sex’ data are MAR, the results are similar to the previous example. The

model estimates and the resulting estimated odds are still quite bad for the juvenile subgroups

with the imputed dataset precisely because even though the missing ‘sex’ values are MAR, we

do not actually observe any definitively sexed juvenile males. The juvenile male group is the

only one that generates differential wing chord lengths on average; thus, an imputation proce-

dure will tend to assign these different (smaller) wing chord lengths to the juvenile male

Fig 2. Wing chord length vs. age and sex for the 50 sampled individuals (not all observed without response

process error).

https://doi.org/10.1371/journal.pone.0239821.g002
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group. However, this is a passive prediction born of a lack of alternatives rather than an

informed categorization.

In contrast, the RVVM-derived estimates recover the true relationships between the vari-

ables, and the estimated odds align well with the estimates on the full and accurate information

(unobserved) dataset. Also, note the comparable posterior uncertainties to those generated by

the full information (unobserved) dataset; again, a reflection of the relatively small amount of

response process error captured by ρ3 vs. ρ1.

Finally, we consider an ordinary normal model for wing chord length as a function of sex

and age. Table 6 summarizes the output from these model fits using the same default priors as

the previous example.

The RVVM fits are once again closer to the fits given the full and accurate information

(unobserved) data, but interestingly, the model fit on the ρ2-generated data with imputation

does not actually appear to be too much worse if one only considers the fitted values in each

subgroup. However, when attention turns to the model coefficients, it becomes clear why the

model fit under measurement protocol ρ3 is preferable to the ones fit under measurement pro-

tocol ρ2. Once again, the RVVM-based data produces more accurate estimates since it actually

contains partial information on juvenile males, whereas the ρ2 dataset contains no observed

complete information on juvenile males. Moreover, there is clear evidence of an average differ-

ence in wing chord length between the juvenile male subgroup and any other subgroup when

considering either the full information (unobserved) dataset under ρ1 or the RVVM-generated

Table 5. Bayes’ estimates and posterior standard deviations for logistic model: Sex� age + wc + age � wc under the three measurement protocols. Coefficients are on

the log-odds scale. For measurement protocol ρ2, some ‘sex’ data are missing at random.

meas. protocol ρ1 meas. protocol ρ2 meas. protocol ρ2 meas. protocol ρ3

Full fixed data (unobserved) Observed fixed data no

imputation

Observed fixed data w/

imputation

RVVM data

estimate s.d. estimate s.d. estimate s.d. estimate s.d.

(intercept) -6.1633 3.1448 1.1721 4.2750 -0.1690 3.3998 -3.1373 3.1234

age 1.6367 2.0856 -0.6101 2.4232 -0.1417 2.1910 0.8495 2.1189

wc 0.7690 0.3286 0.5625 0.5595 0.2541 0.3403 0.4610 0.3224

age � wc -0.3519 0.2173 -0.5847 0.4649 -0.2353 0.2315 -0.2524 0.2214

odds of female, juv. w/wc = 8 0.9889 290.65 6.4482 1.7349

odds of female, juv. w/wc = 11 9.9330 1571.2 13.8198 6.9172

odds of female, ad. w/wc = 11 1.0636 1.3744 0.9013 1.0075

https://doi.org/10.1371/journal.pone.0239821.t005

Table 6. Bayes’ estimates and posterior standard deviations for linear model: wc� sex + age + sex � age for the three measurement protocols. For measurement pro-

tocol 2, some ‘sex’ data are missing at random.

meas. protocol ρ1 meas. protocol ρ2 meas. protocol ρ2 meas. protocol ρ3

Full fixed data (unobserved) Observed fixed data no

imputation

Observed fixed data w/

imputation

RVVM data

estimate s.d. estimate s.d. estimate s.d. estimate s.d.

(intercept) 8.0355 0.5817 10.9282 1.5477 9.9403 0.9425 8.8970 0.6954

sex 3.0617 0.6598 0.0440 1.5143 0.5327 0.9925 1.8773 0.7792

age 2.6759 0.6195 -0.1856 1.5348 0.7961 0.9732 1.8165 0.7359

sex � age -3.0354 0.7373 -0.0906 1.5086 -0.5619 1.0592 -1.8798 0.8536

avg. wc length, juv. female 11.0972 10.9722 10.4730 10.7743

avg. wc length, juv. male 8.0355 10.9282 9.9403 8.8970

avg. wc length, ad. female 10.7378 10.6961 10.7072 10.7110

avg. wc length, ad. male 10.7114 10.7427 10.7364 10.7135

https://doi.org/10.1371/journal.pone.0239821.t006
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dataset. The corresponding estimated model coefficients clearly separate the mean response in

this subgroup from the remainder. Evidence for this separation is substantially weaker under

either of the analyses that use the ρ2-generated dataset.

4.2 Research scenario 2: Diagnostic rating scales in clinical practice

For our second detailed application, consider a typical scenario in applied psychology where a

trained psychologist must diagnose a patient for depression. While many diagnostic tech-

niques and paradigms exist (e.g. see [29, 30]), the Hamilton Depression Rating Scale

(HAM-D), or one of its many variants, is a highly classical tool that is still widely used today

(e.g. see [31–33]) to aide in the diagnostic process. The HAM-D is a 17-item questionnaire

designed to be administered by a health care professional to rate the severity of depression in a

patient. The health care professional chooses a single answer for each of the 17 items; item

responses are categorical (on 3 or 5 categories), though loosely ordinal in nature, and are

assigned integer scores from 0 to 4 (or 0 to 2 for items with 3 categories). Upon completion,

the sum of the patient’s scores provides a tentative assessment of their severity of depression

via the following recommendations (e.g. see [34]):

1. Scores 0—7 = Normal

2. Scores 8—13 = Mild Depression

3. Scores 14—18 = Moderate Depression

4. Scores 19—22 = Severe Depression

5. Scores� 23 = Very Severe Depression

Nearly all items of the HAM-D have a clearly subjective component, and this can produce a

wide range of response process error as the health care professional attempts to answer each

item. Consider item 1 of the scale, aimed at assessing a patient’s depressed mood:

1. HAM-D, item 1: Depressed Mood (Gloomy attitude, pessimism about the future, feeling of

sadness, tendency to weep)

0 = Absent

1 = Sadness, etc.

2 = Occasional weeping

3 = Frequent weeping

4 = Extreme symptoms

Clearly, there is no objective or consistent distinction between, say, the categories of “occa-

sional weeping” and “frequent weeping.” A large amount of subjective interpretation of those

terms, as well as how well they apply to the particular patient in question, will inevitably factor

into the health care professional’s score assignment; i.e. into the sample measurement process.

Notice too that this subjectivity can be unique to both the patient being scored and the assessor

conducting the scoring. Various construals of semantical uncertainty, blurry categorization,

partial ordering, and contextual applicability are all potential instances (see e.g. [17, 35–37]) of

response process error.

The traditional approach requires the assessor to simply assign the best-fitting or most appro-

priate category to the patient for the item: an integer between 0 and 4. An RVVM approach

however could require the assessor to indicate their confidence in the applicability of each of the
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5 categories to the particular patient in question. Table 7 summarizes the type of sample data

that would be generated by these two different measurement protocols (denoted by ρ1 and ρ2

respectively) for 8 hypothetical patients, assumed to all be assessed by the same health care pro-

fessional. We have abused notation slightly here and recorded simply the vector parameter that

characterizes each (sample) measurement protocol. So for the trivial RVVMs generated by ρ1

corresponding to current practice, we record the support of the point-mass rather than the mea-

sure itself. The nontrivial RVVMs generated by ρ2 are always (discrete) categorical measures on

5 categories (the integers 0 to 4); thus, we have simply encoded the measure of these atoms.

Notice that there are considerable differences among, say, all patients who received a score

of “1” under measurement protocol ρ1 that are completely hidden by the classical measure-

ment apparatus. Classically, these patients are simply assigned their (subjective) “best” score as

decided by their common assessor; thus, they are indistinguishable on this item; i.e. they all

receive the same measurement under ρ1. But the use of (nontrivial) RVVMs, ρ2, reveals poten-

tially important clinical differences: e.g. while the assessor is very confident in their score for

patient 2, they instead retain considerable uncertainty in their score assignment for patient 1,

leaning towards a more severe score. Put another way, a fixed score of “1” seems to mean

something quite different for these two patients.

The same two measurement protocols could be applied to every item of the HAM-D, and

so opportunities for further clinical distinctions to simultaneously manifest in the sample val-

ues of ρ2, and be hidden in the sample values of ρ1, will only accumulate. This means that two

different diagnoses for the same patient can be reached depending on which measurement

protocol is used. Table 8 summarizes what could happen for our 8 hypothetical patients.

Notice that the HAM-D scores agree over the two measurement protocols quite well for some

patients, e.g. patient 8, but differ in clinically significant ways for other patients. In particular,

patient 6 and patient 7 would both be classified with “Moderate Depression” according to the

classical, point-mass measurement protocol, ρ1. However, when accounting for various

response process uncertainty in assigning item scores under ρ2, there is a noticeable separation

of scores between the two patients. Moreover, under ρ2, patient 6 would be classified with

“Severe Depression”, while patient 7 would retain the “Moderate Depression” diagnosis.

The sum scores for patients assessed under measurement protocol ρ2 were constructed by

using the implied estimator from Proposition 2.3. Recall that this proposition asserted a Weak

Law of Large Numbers for calibrated RVVMs, implying that the natural analogue of the tradi-

tional sample mean for nontrivial and calibrated RVVMs takes the form

�rðS Þ ¼
1

n

Xn

i¼1

Z

R
x dmoi

ðxÞ:

Table 7. An encoding of HAM-D sample measurements for 8 patients and two different measurement protocols.

Patient ID ρ1 ρ2

1 1 (0, 0.5, 0.5, 0, 0)

2 1 (0, 1, 0, 0, 0)

3 2 (0, 0.1, 0.6, 0.3, 0)

4 2 (0, 0.1, 0.8, 0.1, 0)

5 1 (0, 0.7, 0.3, 0, 0)

6 3 (0, 0, 0, 0.8, 0.2)

7 2 (0, 0.1, 0.9, 0, 0)

8 1 (0, 0.6, 0.4, 0, 0)

https://doi.org/10.1371/journal.pone.0239821.t007
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From this, we see that the natural analogue of the sample sum is n � �rðS Þ; this is the statis-

tic used to compute the HAM-D scores under measurement protocol ρ2 in Table 8. This esti-

mator would also be a natural choice in this context because presumably, if we were following

recommended clinical practice, each patient’s item scores would be generated by an expert

assessor, the health care professional. Thus, we would expect that the nontrivial RVVMs gener-

ated by ρ2 will be calibrated to the phenomenon of interest according to Definition 2.2.

Notice that this assumption is not usually unique to the measurement protocol ρ2 in applied

practice; indeed, if the classical ρ1-generated HAM-D scores were used for clinical decision-

making purposes, it would be implicitly assumed that they too were calibrated according to

Definition 2.2; i.e. that they were accurately measuring the target phenomenon of interest. Psy-

chometricians will often speak of the validity of a rating scale, and while that term has many

different and often imprecise meanings (see Zumbo & Hubley [8] for thorough discussion),

one key facet that the term usually encapsulates is exactly the idea that the measurement in use

is fidelitous to the phenomenon. The notion of calibration introduced in this paper is certainly,

at least, a part of that idea.

5 Discussion

The specific theory for Bernoulli-valued measurements developed and applied in the previous

sections can be generalized in a straightfoward manner to categorical-valued measurements.

The general theory of RVVMs of course applies equally well to non-discrete-valued measure-

ments, although the analytical niceties of Section 3.2 become far less obvious. Nevertheless, the

RVVM framework provides a coherent means of incorporating the quantification of response

process error into any applied data analysis, albeit with the caveat that considerable computa-

tional power may be required to obtain useable estimates and make valid inferences.

The general idea of response process error and the specific mathematical machinery to

quantify it proposed here share many conceptual features with more traditional ideas in the

statistics literature, notably: measurement error, fuzzy statistics, elicitation, and missing data. I

have already discussed the relationship between RVVMs and measurement error in the pre-

ceding sections. Now, consider the other three domains.

As previously indicated in the Introduction, notions from fuzzy numbers/statistics usually

arise in practice via the application of “triangular numbers,” e.g. [17, 18]. In their more general

formulations however (see e.g. [38, 39]), fuzzy numbers are used to extend a real number to a

certain kind of real-valued function, or a random variable to a certain kind of set-valued func-

tion. Fuzzy statistics tend to operate then as a means to construct new sample estimators from

old ones using the arithmetic of fuzzy number systems, but still assuming that the sample

data used to construct constituent estimators are deterministic (see e.g. [16]). The RVVM

Table 8. Sum scores on the HAM-D rating scale, with corresponding (tentative) diagnoses, for 8 patients and two different measurement protocols.

Patient ID HAM-D Score, ρ1 Depression diagnosis, ρ1 HAM-D Score, ρ2 Depression diagnosis, ρ2

1 15 Moderate 16.5 Moderate

2 4 Normal 4.7 Normal

3 27 Very Severe 25.2 Very Severe

4 24 Very Severe 22.9 Severe

5 15 Moderate 16.0 Moderate

6 18 Moderate 19.1 Severe

7 18 Moderate 17.6 Moderate

8 36 Very Severe 35.9 Very Severe

https://doi.org/10.1371/journal.pone.0239821.t008
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framework proposed in this paper operates instead by assigning a probability measure directly

to each sample instantiation of a measurement process, which allows for the possibility that

our sample observations are not simply (fixed) numbers or functions. This idea is similar in

spirit to the “fuzzy information” approach developed by Okuda et al. [40] and Tanaka et al.
[41], among others, where one assumes that observed sample data can be fuzzy numbers them-

selves. It would be interesting to investigate what results from this fuzzy information frame-

work can be translated over to our measure-valued one; future work should focus on this.

The idea of elicitation (see e.g. [42–44]) aims to use expert information that does not take

the form of a fixed measurement of a sample process to improve inferences about the popula-

tion process. This use of subjective and imprecise expert information makes elicitation concep-

tually similar to the RVVM framework, specifically to the case of calibrated measurement

protocols. However, the two ideas differ substantially in the type of expert information gath-

ered and in how it is eventually used to inform inference. The elicitation method aims to for-

mally build expert information into an informative prior to improve inference; crucially,

elicitation does not use expert information to adjust the actual sample measurements that

are used to create a likelihood; i.e. it does not attempt to quantify response error in a sample

measurement. Put another way, elicitation uses expert information to better calibrate the

assumptions behind an inferential model (via a prior), while calibrated RVVMs use expert

information to alter the sample data, and so the inferential model, directly (via the likelihood).

Missing data problems have a long history (see Rubin [45]), and techniques for handling

them have enjoyed considerable success in a variety of fields (see e.g. [46–48]). Traditionally,

the presence of response process error has sometimes been assumed to generate missing data,

as in Ralph et al.’s [23] recommendations for indefinite age and sexing determinations in field

ornithology (see Section 4.1). However, the phenomenon of response process error is not sim-

ply a type of missing data problem.

The structural distinctions are easy to make since the missing data framework assumes that

all data are fixed (i.e. deterministic), even those data that are missing. One either observes a

fixed measurement of a random variable Y, or one does not. Typically, when some fixed mea-

surements are missing, one then proceeds to leverage information from complete observations

on related random variables (covariates) to predict (i.e. impute) the unobserved values of Y.

Critically, this process requires fixed measurements on auxiliary random variables to get

started. Equally important, this process has nothing to say about response process uncertainty

inherent in the (sample) measurement process itself.

Moreover, missing data techniques are model-dependent, whereas response process error

is an essential feature of the sample data themselves. Partial information due to response pro-

cess error is not the same thing as a total lack of information due to missingness. Indeed, there

is a fundamental difference between a measurement process that, say, generates a partial spe-

cies identification for an individual (say, 50% certainty between two possible species), and one

that generates no information by simply not sampling or measuring the sample individual.

It should be clear now that a variety of distinctions exist between the idea of response pro-

cess error (quantified via RVVMs) and related concepts of imprecise measurement, like tradi-

tional measurement error. It is important to note, however, that these different ideas need not

occupy distinct domains in applied practice. In fact, it is entirely plausible that an applied

researcher may find herself in a situation where the measurement process generates response

process error in addition to actual missing data and traditional measurement error. If previous

expert information relative to the study phenomena is also available, elicitation could of course

be used to inform the priors. Triangular numbers too could be applied to credibility intervals

resulting from any analysis to further inform the decision-making process. RVVMs provide a

PLOS ONE Measurement protocols, random-variable-valued measurements, and response process error

PLOS ONE | https://doi.org/10.1371/journal.pone.0239821 October 1, 2020 22 / 25

https://doi.org/10.1371/journal.pone.0239821


structured and mathematically coherent way of incorporating partial information due to

response process error into an ordinary statistical analysis.

RVVMs arise naturally in a variety of applied research settings. For the most part though,

the partial information that they generate has traditionally either had to be simplified (to the

detriment of both accurate estimation and reliable inference), or discarded altogether. The the-

ory developed in this paper is only a first step towards a robust and comprehensive theory of

this type of sample data, but I contend that it is time to make explicit use of all the information

contained in measurement processes subject to response process error.
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