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Abstract
To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be 
applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances 
in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade 
Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for 
research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has 
so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using 
standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated 
thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intra-
cellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered 
antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, 
are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related 
targets included proteins associated with neurodegenerative diseases such as Parkinson’s disease (α-synuclein), Alzheimer’s 
disease (amyloid-β) or Huntington’s disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral 
infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different onco-
viruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and 
they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, 
proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 
[HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular 
endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed 
that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique 
insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.
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Key Points 

Therapeutic antibodies are valuable drugs, which mostly 
act outside of cells.

Reaching the numerous drug targets that reside inside 
cells by antibodies is possible in vitro and allows unique 
insights compared with other methods.

Applying antibodies inside cells for therapeutic pur-
poses has been explored in animal models and promises 
specific therapeutic benefits in neurobiology, virology 
and oncology.

1  Why Target Proteins Directly?

Targeting proteins inside cells can serve the development of 
therapies in two ways: by using antibodies as drugs them-
selves inside cells or by using them as a tool to characterize 
and understand protein components of signalling pathways 
and thus identify targets for the development of new drugs. 
The hurdle for applying antibodies as drugs inside cells 
is often their delivery into the cell, which has so far been 
considered the “high-hanging fruit”, as detailed by Carter 
and Lazar [1]. Although DNA, RNA and proteins can all 
be introduced into cells, they may require different delivery 
methods. Delivering proteins to the cytosol is challenging, 
and progress has been hampered by inappropriate detec-
tion methods that substantially overestimated delivery effi-
ciency. The importance of appropriate assays and scrutiny 
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of evaluation criteria when interpreting the results of protein 
delivery experiments has since become evident [2–4].

Targeting at the protein level offers the advantages of tar-
geting protein conformations, post-translational modifica-
tions, splice variants, different functional epitopes, targeting 
individual cellular compartments and interference indepen-
dently of protein half-life (see details in Table 1). In con-
trast to knocking out a gene, interference at the protein level 
furthermore allows tuning the amounts of a target protein 
instead of allowing only the presence or complete absence 
of the protein [5, 6]. The rapid effects achievable by protein 
delivery can be used to interfere in a stage-specific way and 
when time is a relevant factor. This is also relevant if the 
time required to obtain a single clone with a gene knock-
out is long enough to allow genetic compensation for the 
modification introduced [6, 7]. Delivering proteins directly 
circumvents stable DNA integration into the genome. The 
temporally more limited presence of proteins than that of 
permanently integrated DNA might also allow better con-
trol over therapeutic effects. Direct protein delivery is also 
a suitable method for inducing effects in non-dividing cells 
[8]. Furthermore, protein mutations could be specifically 
targeted and distinguished from the wild-type version, such 
as mutated versions of enzymes that lead to the formation 
of oncometabolites that may alter gene expression [9, 10]. 
Interestingly, not only can protein conformations be distin-
guished, but small antibody fragments of camelid origin 
(nanobodies) have even been reported to allow modification 
of the conformation of a target protein [11].

Although small molecule drugs can target the protein 
level directly, not all of the proteome is druggable by small 
molecule drugs. Not all proteins have active sites, and pro-
tein–protein interactions are more challenging to target with 
small molecules [12–15]. The large surface area via which 
antibodies can interact with different target shapes might 
explain the ease with which they allow interference with 
protein–protein interactions.

Given its advantages, how can the protein level be tar-
geted? Antibodies can be expressed inside cells or deliv-
ered as proteins into cells. Approaches using antibodies are 
reviewed here with an emphasis on long-term proven robust 
approaches while discussing the strengths and challenges 
of individual methods. Applications in the research areas of 
neurobiology, viral infection and immunology or oncology 
are reviewed.

2  Strategies to Use Antibodies Inside Living 
Cells

Antibodies can be used inside cells to neutralize targets, 
redirect proteins to different locations or simply ana-
lyse proteins of interest by tracking them. For instance, a 

membrane-tethered green fluorescent protein (GFP)-specific 
antibody was used to trap a GFP-fused morphogen at the 
cell surface, which abolished gradient formation [16]. This 
approach, termed morphotrap or nanotrap, demonstrates 
impressively how intracellular antibodies (intrabodies) can 
be used as tools to manipulate cellular processes by redirect-
ing proteins of interest [16, 17]. In addition to interference, 
antibodies have also been used to trace and visualize proteins 
of interest in living cells [18, 19]. Tracing proteins not only 
qualitatively but also quantitatively with intrabodies allows 
studying protein turnover and the dynamic regulation of pro-
teins [20]. Quantified visualization may require optimized 
intrabody expression [21]. Antibodies may furthermore be 
used to increase the turnover of a protein of interest (POI) 
via targeted proteolysis [6].

2.1  Sources for Binders

Molecules composed of amino acids that are able to specifi-
cally recognize another molecule are summarized under the 
general term ‘binder’ in the following. All binders can be 
used as intrabodies provided that the gene for the binder 
is available or the sequence is known. Depending on the 
compartment in which the intrabody is expressed, additional 
selection procedures might be required to ensure functional-
ity of the binder in the chosen compartment [22, 23]. Meth-
ods to generate binders are briefly summarized in Table 2. 
For more detailed information, interested readers are 
referred to reviews on technologies for generating binders, 
such as display technologies including phage display, yeast 
display, ribosome display and bacterial display [24–29]. 
Among the group of recombinant binders, there are differ-
ences in species and in biochemical properties, which might 
be relevant for their use as intrabodies or other purposes. 
Binder species might not always be relevant if intrabodies 
are applied for research purposes, but therapeutic applica-
tions may require human or humanized antibodies. Certain 
species, such as sharks and camels, possess single-domain 
antibodies (sdAbs), a type of antibody that contains only a 
variable heavy chain (VH) but no light chain. Fragments of 
sdAbs of camelid origin, called nanobodies, are smaller in 
size than single-chain fragment variables (scFvs), a com-
mon antibody fragment of, for example, murine or human 
origin [30]. sdAbs may exhibit high thermal stability and the 
potential to refold [31, 32]. As an alternative to antibodies, 
designed synthetic scaffolds are potential sources for bind-
ers, such as designed ankyrin repeat proteins (DARPins), 
affibodies, fibronectin folds or alphaRep. Alternative scaf-
folds include synthetic molecules derived from ankyrin 
proteins (DARPins), fibronectin (e.g. monobodies), HEAT 
(huntingtin, elongation factor 3 [EF3], protein phosphatase 
2A [PP2A], yeast kinase Tor1) protein-derived alphaRep or 
peptides derived from protein A (affibodies). In contrast to 
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most natural antibodies, alternative scaffolds may not require 
the formation of disulfide bonds, so an additional selection 
procedure for functionality in the cytosol may be omitted 
[33–36]. The size and biochemical properties of binders 

may affect their suitability for intracellular use. Examples 
of binder formats that have already been used as intrabodies 
or for intracellular delivery are given in Table 2.

Table 1  Targeting at the protein level: selected advantages

Distinguishable features Examples for potential applications References

Different functional 

conformations or pathological 

conformations 
Functional/non functional

Misfolded/correctly folded

GTPases in their functional or non-

functional conformation (e.g.,

conformation-specific antibodies 

were generated for the GTPases Rab6 

or dynamin [306–308]); misfolded 

vs correctly folded proteins

Post-translational modifications 

Separate targeting of non-

phosphorylated or phosphorylated 

versions of a protein  

A phosphorylation site-specific 

intrabody targeting STAT3 was 

generated [270]

Splice variants  Targeting I II V only:

or all splice variants:

Avoiding laborious multiple 

knockouts: instead of targeting 

individual isoforms, a family of 

proteins could be targeted with a 

single antibody instead of knocking 

out many genes, as suggested by 

Büssow and colleagues [50]

Different functional epitopes of 

the same protein 

Specifically blocking the function of 

epitope 3 while preserving the 

functions of epitope 1 and 2

Functions of individual domains of 

cortactin were blocked by 

intracellular nanobodies: different 

outcomes when different epitopes of 

cortactin were targeted [275, 276]

Interfering with function in 

selected compartments 

E.g., targeting exclusively the 

nucleus, exclusively the ER or 

exclusively the cytosol.

Functions can be blocked in defined 

cellular compartments as 

demonstrated by the knockdown of 

Sec61 by an intrabody [299]. Proteins 

with a similar sequence but residing 

in different cellular compartments 

can also be targeted individually at 

the protein level, using antibodies 

[253]

Functional interference 

independently of protein half-

life 

Knockdown at the RNA level relies

on the turnover of a protein and 

proteins can often not be switched off 

faster than 48-72 h after treatment. 

Direct protein delivery to cells allows 

more rapid interference [6, 8] and 

allows acting on very long-lived 

proteins

Targets such as the protein Rec8 are 

normally hardly degraded and 

therefore difficult or impossible to 

deplete by methods acting on the 

DNA or RNA level, [8, 113].

Therefore, targeting at the protein 

level directly if applying targeted 

degradation allows interfering with 

function when other techniques fail

ER endoplasmic reticulum, STAT3 signal transducer and activator of transcription 3
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2.2  In Vivo Delivery of Binders or Binder Genes

Local in vivo electroporation has been reported for the 
delivery of proteins (antibodies) [37], but the in vivo deliv-
ery of proteins remains a challenge. The delivery of genes 
in vivo is much more advanced, with clinical trials for gene 
therapy in progress and some drugs already available, such 
as the US Food and Drug Administration (FDA)-approved 
gene therapy for spinal muscular atrophy (onasemnogene 
abeparvovec-xioi) or the in vivo gene therapy for treating an 
inherited eye disease (voretigene neparvovec). As a deliv-
ery vehicle for genes, adeno-associated viruses (AAVs) have 
been widely used, but gene therapy has also been performed 
with other virus types depending on the therapeutic goal, 
such as the FDA-approved genetically modified oncolytic 
virus for treating melanoma (talimogene laherparepvec) 
[38–43]. The therapeutic use of intrabodies is not limited 
to in vivo gene delivery, but intrabody genes could also be 
delivered ex vivo to blood cells, which could then be rein-
fused into the patient, as recently suggested by Png and col-
leagues [44]. Ex vivo gene delivery into T cells followed by 
reinfusion into patients has already been approved for treat-
ing B cell acute lymphoblastic leukaemia (tisagenlecleucel) 
[45] and large B cell lymphoma (axicabtagene ciloleucel) 
[46]. Ex vivo-transduced haematopoietic stem cells have 

been approved for treating a genetic disorder that causes 
immunodeficiency (severe combined immunodeficiency due 
to adenosine deaminase deficiency [ADA-SCID]) [47]. Gene 
therapy is reviewed elsewhere in more depth [43, 48–50].

2.3  Compartments Conducive to Expression 
or Accessible to Externally Applied Antibodies

In nature, antibodies are produced in the secretory pathway, 
and recombinant expression in this compartment ensures 
optimal conditions for correct folding. Mitochondria have 
also been found to be conducive to correct folding of anti-
bodies [22, 51]. Antibodies can be directed to various sub-
cellular compartments using appropriate sorting signals [52, 
53]. Intrabodies directed to the endoplasmic reticulum (ER) 
can be used to knock down membrane or secreted proteins 
by retaining these target proteins in the ER, if an ER reten-
tion signal is fused to the antibody.

The compartments that can be targeted easily by proteins 
include endosomes and lysosomes. This route of delivery 
has, for instance, been proven successful as part of the entry 
mechanism of antibody–drug conjugates (ADCs) [1, 54, 55]. 
The various routes for macromolecules into the cell are sum-
marized in Fig. 1.

Table 2  Sources of binders and their suitability for use inside cells

DARPins designed ankyrin repeat proteins, ER endoplasmic reticulum, scFvs single-chain fragment variables, – indicates no, + indicates yes

Binder properties Source for 
intrabody?

Source for 
protein deliv-
ery?

Methods to generate 
binders

Examples of binders Use as an intrabody? Use for protein deliv-
ery?

Polyclonal – + Immunization Full-length IgG – Clift et al. [8]
Monoclonal – + Hybridoma technology Full-length IgG – e.g. Clift et al. [8], 

Freund et al. [105], 
Desplacq et al. [317]

Recombinant + + Gene isolated from a 
hybridoma, B cell 
clones or selected 
from libraries by 
display technologies

Full-length IgG A construct of compa-
rable size (150 kDa) 
containing constant 
domains of an IgG1 
was reported as an 
ER intrabody [318] 
but not commonly 
used as an intrabody

e.g. Marschall et al. [3]

Antibody fragments Most commonly used 
type of intrabodies, 
e.g. scFvs or nano-
bodies [22, 91]

Alternative scaffolds Examples for alterna-
tive scaffolds, e.g. 
DARPins, affibodies, 
monobodies, intra-
cellular expression: 
Cetin et al. [319], 
Brauchle et al. [320], 
Vernet et al. [321]
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2.3.1  Membrane and Secreted Proteins: Knockdown 
with Endoplasmic Reticulum (ER) Intrabodies

ER intrabodies are antibodies that are directed into the ER 
by a secretory leader peptide and retained in the ER by the 
ER retention motif KDEL. By binding to their target protein 
in the ER and retaining it there, ER intrabodies are able to 
keep their targets away from the place where they are func-
tional. Knockdown depends on binding only, irrespective of 
which epitope is bound. Target proteins can be membrane 
proteins, such as the type I membrane protein vascular cell 
adhesion molecule 1 (VCAM1), which was knocked down 
by an ER intrabody in vitro and in vivo [56, 57]. Targets can 
also be secreted proteins such as interferon-α, the secretion 
of which was blocked by ER intrabodies in macrophages 
and dendritic cells [58]. The ER intrabody approach has 
already been successfully applied in many research areas. 
Examples of the application of ER-retained intrabodies with 
a focus on methodological and technological aspects have 
been reviewed previously [22], and their therapeutic poten-
tial has been briefly discussed [59, 60].

2.3.2  Mitochondria‑Targeted Intrabodies

A target protein has been redirected away from its natural 
location using an antibody that was tethered to mitochondria 
using a mitochondrial outer membrane targeting element 
[61]. Antibodies containing a mitochondrial presequence, 
as described by Biocca and colleagues [51], correctly form 
intrachain disulfide bonds, in contrast to those expressed 
in the cytosol. Intrabodies have been used to analyse  Ca2+ 
dynamics at the surface of mitochondria [62]. An antibody 
that was targeted to mitochondria and relocalized endog-
enous survivin to the intermembrane space of mitochon-
dria was suggested as a tool to study mitochondrial protein 
import [63]. In another report, p53 was immobilized at the 
mitochondrial outer membrane, resulting in reduced cell 
viability and morphological changes of mitochondria [64].

2.3.3  Antibody Delivery Routes: Endosomes, Lysosomes, 
ER‑Associated Degradation (ERAD) and How to Use It

Delivery of proteins to endosomes and lysosomes can be 
easily and efficiently achieved, even if proteins often cannot 
escape from endosomes [65, 66]. How can antibodies be 
employed for therapy in these compartments? One example 
of the use of this cell entry route is ADCs, which consist 

Fig. 1  Routes into the cell for antibodies. Antibodies can be 
expressed in cells or delivered as proteins to cells. Antibodies fold 
correctly in the endoplasmic reticulum (ER), where they are naturally 
expressed, as well as in mitochondria. The expression of antibodies in 
the cytosol may require selection for antibodies that are suitable for 
folding in the cytosol (dashed lines) using one of the cytosolic intra-
body selection technologies. Antibodies can be delivered as proteins 
to the cytosol, for instance, by physical methods that are associated 

with membrane disruption. The critical step for antibodies that are 
delivered via a route that involves endosomal uptake is overcoming 
endosomal entrapment, which has been a major efficiency bottleneck 
for some of those approaches. The delivery of antibodies to the lyso-
some can serve to deliver small molecules to the cytosol of selected 
cell types, such as in antibody–drug conjugates (ADCs). Small pro-
tein toxins or peptides have been delivered to the cytosol via retro-
translocation from the ER to the cytosol
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of antibodies linked to a small molecule, such as a chemo-
therapeutic, kinase inhibitor or antibiotic [67–69]. While the 
antibody cannot cross the membrane, small molecules can, 
if freed from the antibody via a cleavable linker or by degra-
dation of the antibody in the lysosome [70–72]. The proven 
success of ADCs in clinical practice (e.g. an ADC that was 
approved for the therapy of metastatic breast cancer in 2013) 
suggests that this route of delivery is effective.

A different delivery route is exemplified by immunotox-
ins, which consist of an antibody linked to a toxin, often a 
protein of bacterial origin [73]. Similar to ADCs, the toxin 
has to be released from the antibody, which can be achieved 
by a cleavage site [74, 75]. After release, small proteins, 
such as bacterial toxins can, for instance, reach the cytosol 
via the ER-associated degradation (ERAD) pathway [76]. 
Proteins are normally degraded as part of the ERAD. A low 
lysine content in the toxin ricin is assumed to promote the 
escape of some toxin molecules from degradation, which is 
sufficient for the toxin to be effective [77–79]. An immu-
notoxin for the treatment of leukaemia was approved for 
therapy in 2018 [55, 80]. This route of delivery is suitable 
for all proteins that readily refold and are effective at the 
dose of proteins that can escape degradation during ERAD.

The refolding of molecules translocated to the cytosol via 
ERAD is not necessary if the molecule is a peptide. A con-
struct containing a peptide that can regulate immune reac-
tions if delivered to the cytosol showed promising results in 
mouse models for rheumatoid arthritis [81, 82].

2.4  Compartments with No Natural Expression 
or Inaccessible to Externally Applied Antibodies

2.4.1  Cytosolic and Nuclear Intrabodies

Antibodies in the secretory compartment fold correctly, and 
antibodies form disulfide bonds in mitochondria. In contrast, 
antibodies do not form disulfide bonds in the cytosol [51], 
and only a few antibodies (estimated to be as low as 1% of 
antibodies) can be expressed as high-quality molecules in 
this compartment [23, 83, 84]. Approximately 0.1% of anti-
bodies from a naive human spleen cell-derived scFv library 
were stable and functional [83]. Engineering a net charge 
was proposed as a strategy for generating antibodies that do 
not aggregate in the cytosol [85]. Certain frameworks may 
increase the chance of expression as functional antibodies 
in the cytosol [86–89]. Such frameworks may be selected 
antibody scaffolds that are functional even in the absence 
of disulfide bonds [90] or non-antibody scaffolds [35, 36]. 
The properties of nanobodies render them more suitable 
for expression in the cytosol [91], but various tendencies 
for aggregation may still occur [92, 93]. Non-antibody 
scaffolds may also not always be functional; only 10–20% 
of a fibronectin-derived alternative scaffold called FingR 

(Fibronectin intrabody generated with messenger RNA dis-
play) that was target-specific in vitro also co-localized with 
its target intracellularly [94]. Therefore, technologies such as 
intracellular antibody capture technology (IACT), intrabody 
selection after tat export (ISELATE) and “quality control” 
were developed to select antibodies that are suitable for cyto-
solic expression, which are reviewed in Marschall et al. [22, 
23] and described in more detail elsewhere [83, 89, 95]. 
Additionally, a bacterial two-hybrid system was developed 
as a selection method for nanobodies as intrabodies, which 
has the advantage of higher transformation efficiencies and 
thus the chance for obtaining higher diversity than yeast 
two-hybrid methods [96]. To eliminate self-oligomerizing 
intrabodies from an intrabody library, a Fas-associated death 
domain (FADD) was fused to antibodies as a suicide switch 
against unwanted intrabodies [97]. Antibodies that are func-
tional if expressed in the cytosol can also be directed to the 
nucleus if provided with the respective signal peptides. In 
contrast to ER intrabodies, cytosolic intrabodies need to bind 
a particular epitope on the target to neutralize its function 
[22]. Both the requirement for selecting antibodies that can 
fold correctly in the cytosol and the requirement for neu-
tralizing properties make cytosolic intrabodies laborious to 
generate. However, cytosolic intrabodies allow promising 
applications, such as a recently described concept using two 
intrabodies against a target to sense and trigger a response 
to this target [98].

2.4.2  Protein Delivery to the Cytosol or Nucleus

A plethora of methods for the delivery of proteins have 
been suggested, with varying degrees of success and vali-
dation. Because one plasmid can express many proteins, low 
delivery efficiencies are less critical for DNA than for most 
proteins. A few enzymes may convert many substrate mol-
ecules, but antibodies usually have to be delivered in excess 
to intracellular molecules to cause an effect. Past results have 
demonstrated the crucial importance of choosing appropriate 
methods for evaluating the cytosolic delivery of proteins to 
avoid artefacts and the overestimation of delivery efficiency 
[2–4, 99].

Methods for protein delivery include approaches based on 
physical membrane disruption and approaches that rely on 
the endocytotic uptake of cargo with subsequent endosomal 
release [100]. For the latter class, endosomal entrapment 
has in the past been found to pose a major block to deliv-
ery efficiency [101, 102]. Further delivery methods include 
approaches that combine physical methods with chemicals, 
such as the application of graphene quantum dots to cells 
and laser irradiation [103], or use microorganisms to deliver 
cargoes [104]. Among the many proposed approaches to the 
cytosolic delivery of proteins, disruption of the membrane 
has proven particularly efficient for the delivery of proteins 
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into cells [3, 105, 106]. With an efficiency of up to 90–99%, 
high cell viability of 80–90% [107, 108] and validation in 
many cell types over the last 20 years (Table 3), electropora-
tion is a robust approach for delivering antibodies into the 
cytosol. Further physical methods include microinjection 
or microfluidic cell squeezing, which are either applicable 
to lower cell numbers or require special equipment [106]. 
Delivered antibodies remain functional in the cytosol in 
spite of the reducing environment. The half-life of antibod-
ies in the cytosol is long and they bind to their targets even 
3–4 days after electroporation [3, 105]. This suggests that 
degradation might be even slower than dilution of the anti-
body by cell division. Compared with DNA that has inte-
grated into the genome, protein delivery is not permanent 
but transient and depends on the half-life of the delivered 
protein. The time-limited activity of a protein drug offers the 
opportunity for better control over therapy and thus higher 
safety.

3  Targeted Protein Degradation

Targeted proteolysis as an alternative to RNA interference 
(RNAi) and CRISPR (clustered regularly interspaced short 
palindromic repeats)/Cas9-based knockdown allows rapid 
interference with protein levels, which is independent of 
regulation on the RNA and DNA level. While tools for per-
forming knockdown via RNAi or CRISPR/Cas9 have so far 
been accessible more easily, the field of targeted protein 
degradation has recently undergone rapid progress. Targeted 
proteolysis can be mediated both by intrabodies (antibodies 
expressed intracellularly) and delivered antibodies (protein 
delivery). Two types of targeted proteolysis are distinguished 
here: approaches using degrons and approaches using high-
affinity binders (Table 4).

3.1  Targeted Proteolysis by Modifying the Protein 
of Interest (POI)

Degrons enable proteolysis by fusing a short sequence to the 
POI, which means that the POI needs to be modified. Pro-
teolysis approaches based on high-affinity binders may use 
macromolecules or small molecules as binders and can act 
on endogenous, unmodified POIs. The proteolysis of degron-
tagged proteins can be controlled by adding a small mole-
cule that either induces degradation upon addition or induces 
degradation upon withdrawal. The auxin-inducible degron 
(AiD), a proteolysis approach based on a plant hormone, 
allows degradation of the degron-tagged POI upon the addi-
tion of a small molecule. Upon fusing a POI with a SMASh 
(small molecule-assisted shutoff)-tag, the SMASh-tagged 
POI can also be degraded upon addition of a small mol-
ecule, but because of its special property of promoting the 

proteolysis of newly synthesized proteins upon addition of 
the chemical, this degron allows research on the protein half-
life and degradation of the POI. In contrast, for FKBP12 (12 
kDa FK506-binding protein)- or UnaG-tag based degrons 
the degron-tagged POI is stabilized upon addition of the 
small molecule and degraded as soon as the small molecule 
is absent [5, 6, 109–111].

3.2  Targeted Proteolysis Via High‑Affinity Binders: 
Keeping the POI Unmodified

High-affinity binders allow the targeted proteolysis of 
unmodified POIs. Proteolysis-targeting chimaeras (PRO-
TACs), which are bispecific binders, have recently gained 
much attention, with the first one reaching clinical studies 
[112, 113]. The concept of bispecificity is well-known for 
intercellular applications, such as bispecific antibodies that 
link tumour cells and immune cells to promote the killing of 
tumour cells [114]. The same concept can also be used for 
intracellular applications. By recruiting the cellular degrada-
tion machinery to a POI, degradation of the chosen protein 
can be achieved. The first PROTACs, which were based on 
peptides, suffered from a lack of cell permeability. More 
recent generations of PROTACs were constructed from 
small molecules and have shown improved cell permeabil-
ity [113, 115]. Because PROTACs keep recruiting POIs, 
a single PROTAC molecule can induce the proteolysis of 
many POI molecules [116]. PROTACs have already been 
used successfully in vivo, and an oral PROTAC drug has 
been approved for a phase I clinical trial as a drug for the 
treatment of prostate cancer. In spite of the great success 
of PROTACs, future work is still needed; for instance, Guo 
and colleagues [117] state that there is still a “challenge 
for designing on-target PROTACs” [118]. Although small-
molecule PROTACs are cell permeable, in contrast to anti-
bodies, the high specificity and almost unlimited diversity 
of proteins that can be targeted by antibodies make them an 
attractive tool for targeted degradation. More than 30 pro-
teins have already been targeted by PROTACs [115], but 
hundreds of antigens can already be targeted via antibod-
ies derived from phage display with HAL libraries alone 
[24], not including the enormous number of antibodies from 
other sources allowing access to the antibody gene. The 
technology for generating antibodies specific for a new POI 
is a well-established and robust procedure [24]. The high 
number of proteins that can be targeted with antibodies can 
therefore justify the trade-off between diversity of targeted 
antigens and deliverability that is more favourable in small-
molecule PROTACs.

Antibodies can, for instance, be delivered into cells via 
electroporation or microinjection. Delivering full-length 
IgGs to cells has been described as a means to achieve 
the degradation of a POI dependent on the tripartite motif 
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protein TRIM21 (tripartite motif containing-21)/Ro52 [8]. 
TRIM21/Ro52 first attracted attention due to its particular 
antigenicity and as a target for autoantibodies in autoim-
mune diseases [119]. TRIM21/Ro52 is an E3 ubiquitin 
ligase that has been proposed to act as a mechanism of 
intracellular antiviral defence by binding to the Fc part of 
antibodies attached to viruses that enter the cytosol and sub-
sequently induce degradation of antibodies and viruses via 

the proteasome [120]. Targeted degradation via TRIM21 
can therefore be achieved using full-length antibodies or by 
using proteins fused to the Fc part of an antibody. While all 
cells can express TRIM21, it is expressed at different levels 
in different cell types [8]. The efficiency of targeted degra-
dation depends on the expression level of TRIM21 as well 
as the amount of antibody and the amount of target present. 
TRIM21-mediated targeted proteolysis was reported to be 

Table 3  Antibodies or proteins delivered by electroporation

BASM bovine aortic smooth muscle, CHO Chinese hamster ovary, c-Src cellular Src, EGFP enhanced green fluorescent protein, H2AX H2A.X 
variant histone, HPV16 human papillomavirus  16, IKKα IκB kinase  α, MAP mitogen-activated protein, MDCK Madin-Darby canine kidney, 
MLCK myosin light chain kinase, mTOR mammalian target of rapamycin, NLRP3 NLR family pyrin domain containing 3, NRK normal rat kid-
ney, Orai1 ORAI calcium release-activated calcium modulator 1, PCNA proliferating cell nuclear antigen, RBP1 retinol binding protein 1, STAT  
signal transducer and activator of transcription, STIM1 stromal interaction molecule 1, TAF10 TATA-box binding protein associated factor 10, 
TBP TATA box binding protein, TFAR19 TF-1 apoptosis-related gene 19, TK thymidine kinase

Delivered protein Cell type References

Asparagine synthetase antibody HeLa, HT-5, and L5178Y DlO/R [107]
p21ras antibody B16BL6 mouse melanoma cells [322]
Various antibodies Human cells [323]
MLCK antibody, constitutively active form of MLCK Macrophages [324]
Various antibodies and proteins Pheochromocytoma, other cultured cells [325]
p21ras antibody B16BL6 mouse melanoma cells [326]
Tubulin antibody CHO cells [327]
TK enzyme TK-deficient mammalian cell line [328]
Lipoxygenase antibody Lentil protoplasts [329]
Vimentin antibody, RNAse A Fibroblasts [330]
Lipoxygenase antibody Lentil protoplasts [331]
Cyclin D1 antibody Mouse embryo and SKUT1B cells [332]
TGN38-, p200- and VSV-G antibodies NRK-6G cells [333]
Tropomodulin, antibodies specific to: tropomodulin, talin, vinculin 

and a-actinin
Fibroblasts [334]

Lucifer yellow, IgG SW 3T3, NIH 3T3, dHL60, A7r5, BASM [335]
MAP kinase antibody MDCK cells [336]
Anti-M-line protein, titin antibodies Chicken cardiomyocytes [337]
Various antibodies Chicken cardiomyocytes [338]
Wild-type STAT1, mutated STAT1, STAT1 antibody Rat mesangial cells [339]
DNase I, restriction enzymes Jurkat cells [340]
c-Src antibody Human vascular smooth muscle cells [341]
TFAR19 antibody HeLa [342]
c-Fos antibody Spinal neuronal cells [37]
STIM1 antibody Platelets [343]
Orai1 antibody Platelets [344]
EGFP HeLa [345]
Orai1 antibody Platelets [346]
HPV16 E6 oncoprotein, PCNA, RNA polymerase II largest subunit HeLa, CaSki, H1299, MEL501 and U2OS [105]
Fc-Cre, tubulin antibody, myosin antibody SC1 REW22, HeLa [3]
PCNA, DNA polymerase alpha HeLa, US2-OS [317]
Pericentrin, mTOR, IκBα, NLRP3, anti-IKKα antibodies NIH3T3, HEK293T, human monocyte-derived macrophages [8]
RBP1, TBP and TAF10 antibodies Various mammalian or Drosophila melanogaster cell types [108]
γ H2AX antibody U2-OS [347]
Various recombinant proteins Various cell lines [348]
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rapid, occurring within minutes [8]. Although endogenous 
TRIM21 levels may be sufficient in some cells, TRIM21 
has to be overexpressed or delivered as a protein to mediate 
proteolysis sufficiently in other cells [8]. Using antibody- 
and TRIM21-mediated proteolysis, a method termed ‘Trim 
away’, allowed depletion of the long-lived protein Rec8, 
which has a role in sister chromatid cohesion and does not 
turn over for long time periods in mice and possibly for years 
in humans. If there is a lack of turnover of the POI, deple-
tion via RNAi would be ineffective. Gene knockout is fur-
thermore not possible if a gene is essential for viability [8, 
121, 122]. Furthermore, by using antibodies that specifically 
recognize a pathogenic version of the protein huntingtin, 
Trim away allowed selective depletion of only the patho-
genic protein variant that was co-expressed with the normal 
huntingtin protein [8]. This demonstrates the possibility of 
selectively depleting protein variants, which could also be 
employed for selectively depleting proteins with post-trans-
lational modifications.

Targeted degradation was also mediated by expressing 
antibodies in cells instead of delivering them as proteins. 
The binder is genetically engineered for targeted proteoly-
sis, leaving the POI unmodified [6]. Selecting antibodies 
that are functional if expressed in the cytosol is often more 
elaborate than normal antibody generation procedures, but 
the use of an anti-GFP antibody allowed a single antibody 
to target many antigens for degradation if GFP-tagged [123]. 
This approach is especially attractive for model organisms 
with GFP-tagged proteins, such as those often used in devel-
opmental biology. In zebrafish and flies, this approach has 
already been successfully applied [124–126]. Various tags 
and motifs can be employed to target antibodies and their 
antigens for degradation, such as providing the binder with 
an AiD, a proline, aspartate or glutamate, serine and threo-
nine (PEST) motif, the Von Hippel Lindau protein, Speckle-
type POZ protein (SPOP), an F-box domain or the catalytic 
domain of a ubiquitin ligase [6, 124, 127–132].

A nanobody fused to an AiD allowed inactivation of the 
anaphase-promoting complex/cyclosome (APC/C) in vitro 
and in zebrafish. Genetic engineering was required to 

allow expression of the nanobody–degron fusion, and this 
approach also required expression of the plant F-box protein, 
protein transport inhibitor response 1 (TIR1). The advantage 
of this approach was its reversibility as well as rapid and 
effective temporal control over degradation via auxin supply. 
Marked degradation occurred within 16–28 min, and protein 
levels had recovered sufficiently to rescue the knockdown 
phenotype 8 h after the removal of auxin [131]. An intrabody 
fused to an F-box domain was used to specifically degrade 
the active form of the GTPase RHOB [132]. ‘Ubiquibodies’ 
are ubiquitin ligases in which the natural substrate binding 
domain has been replaced by an antibody, which allows the 
targeting of POIs for degradation [127]. Integrating PEST 
motifs into the sequence of a binder has also been used for 
the purpose of targeted degradation [130, 133, 134], so, 
overall, there is a wide range of strategies and tools avail-
able to target proteins for degradation once an antibody can 
access a POI.

3.3  Targeted Proteolysis Via Lysosomes or the ER

The approaches mentioned so far employed the cytosolic 
degradation machinery, but approaches to perform tar-
geted degradation in other compartments have also been 
described. Lysosome-targeting chimaeras (LYTACs) are 
based on the strategy of employing the cation-independent 
mannose-6-phosphate receptor (CI-M6PR) to target POIs 
for lysosomal degradation. LYTACs consist of an antibody 
that is fused to a ligand for this receptor and allows target-
ing membrane proteins and secreted proteins for lysosomal 
degradation [135]. Further strategies for lysosomal target-
ing include approaches based on receptor crosslinking and 
targeting to the lysosome by means of peptides [65, 66]. 
Degradins allow targeting of proteins in the ER for degrada-
tion. Degradins consist of a moiety that is specific for the 
POI and the protein SEL1L, which is involved in identifying 
misfolded proteins in the ER to subject them to the ERAD 
pathway. Degradins were thus proposed as a strategy to ret-
rotranslocate POIs from the ER to the cytosol for proteaso-
mal degradation [136].

Table 4  Comparison of strategies for targeted degradation

POI protein of interest, PROTAC  proteolysis-targeting chimaera, scFv single-chain fragment variable, TRIM21 tripartite motif containing-21

Type Module to target for degradation Requirements and features

POI fusion Degron Modification of the POI and genetic modification of the cell/organism required
High-affinity binder 

based (unmodified 
POI)

TRIM21 Binder with a constant (Fc) domain has to be used, protein delivery required
Bispecific small molecule (PROTAC) Availability of a small molecule binder for the POI required
Binder fused to a degron Either expression of the binder from a gene or protein delivery can be used; no 

Fc domain is required, and therefore more choice is available for the binder 
format/type (e.g. IgG, scFv, nanobody, alternative scaffolds)
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4  Applications in Neurobiology

Many neurodegenerative diseases are associated with pro-
tein misfolding and aggregation [137]. There is controversy 
about which forms of proteins are toxic in neurodegenera-
tive disorders. While some studies attribute toxicity to the 
aggregated form, other studies suggest aggregation to be a 
beneficial process that protects the cell from intermediate or 
misfolded toxic proteins [138, 139]. Neurodegenerative dis-
eases such as Alzheimer’s disease (AD) and Parkinson’s dis-
ease (PD) are also discussed as potential prion-like diseases 
for which misfolded proteins are known to propagate and 
convert other proteins into pathological forms [140, 141]. 
Because protein aggregation occurs downstream of the gene 
level, studying neurodegenerative diseases requires methods 
that allow direct targeting of proteins. To date, there is no 
cure for neurodegenerative diseases, and all available treat-
ments only manage symptoms or halt disease progression. 
Drug repurposing, which is the evaluation of existing drugs 
normally used to treat other diseases such as cancer, asthma, 
infections and others for their therapeutic potential in treat-
ing neurodegenerative diseases, is an active area of research 
with the advantage of already pre-existing knowledge about 
the pharmacokinetic and pharmacodynamic profiles of drugs 
[142]. Beyond repurposing existing drugs, further research 
on molecular mechanisms and potential new therapies for 
neurodegenerative diseases is desirable. With their suit-
ability for targeting different conformations and aberrant 
versions of protein structures, antibodies are particularly 
interesting as research tools or as potential new therapies 
for protein misfolding diseases (Table 5).

4.1  Parkinson’s Disease

PD, the second most common neurodegenerative disease, 
is characterized by the loss of dopaminergic neurons, and 
is best known for causing motor symptoms. PD is associ-
ated with misfolded forms of the protein α-synuclein, which 
therefore has been considered of interest as a potential drug 
target [143]. Several α-synuclein intrabodies and engineered 
versions thereof have been described to reduce aggrega-
tion and toxicity in vitro [144–148]. In vivo, gene therapy 
using AAV-based vectors has been performed to deliver 
α-synuclein intrabodies into rats. Because antibodies can 
be employed to target selected regions of a protein, intrabod-
ies can be used to map structure function relationships in 
detail. This advantage was used by employing two different 
intrabodies, targeting the non-amyloid or the C-terminal part 
of α-synuclein. The two different intrabodies were further 
engineered with a PEST motif for proteasomal degradation. 
One intrabody showed marked maintenance of striatal dopa-
minergic tone compared with controls. Furthermore, modest 

behavioural rescue was observed, although pronounced vari-
ability occurred among individual animals. While authors 
mention the importance of evaluating the model system as 
well as the timeline of therapeutic intervention, this study 
demonstrates the feasibility and potential of intrabody gene 
therapy in vivo [130].

4.2  Alzheimer’s Disease

Gene therapy to express antibodies in animal models has 
also been applied multiple times as a potential new treat-
ment for AD and was reviewed in depth by Cardinale et al. 
[149] and Meli et al. [150]. AD is the most common neuro-
degenerative disease causing dementia. It is associated with 
the aggregation of amyloid-β (Aβ) peptide, which therefore 
raised interest as a potential drug target [151]. The Aβ pep-
tide is formed via proteolysis of the Aβ precursor protein 
(APP), and intrabody binding to an epitope adjacent to the 
cleavage site reduces Aβ formation by shielding the cleav-
age site. Another even more efficient intrabody almost com-
pletely prevented Aβ formation by inducing disposal of APP 
from the ER [152]. As a complementary approach, an intra-
body was used to suppress the function of a protein involved 
in APP proteolysis [153]. Instead of targeting cleavage, the 
different products of cleavage can also selectively be distin-
guished by intrabodies. Misfolding leads to the formation 
of pathological aggregates, as has been demonstrated using 
conformation-specific intrabodies. This opens up promising 
new therapeutic avenues, since conformation-specific intra-
bodies could target only those Aβ conformers that undergo 
pathological oligomerization without interfering with the 
‘healthy’ processing of APP [154]. The intrabody could 
thus act as a filter that allows only ‘healthy’ conformers to 
pass. Gene therapy via the AAV-mediated delivery of an 
anti-Aβ42 intrabody in an AD mouse model allowed partial 
clearance of Aβ42 deposits [155], and in a follow-up study, 
myelin integrity was restored in mice treated with intrabody 
gene therapy [156]. An intrabody was furthermore used for 
imaging purposes in live neurons to study mechanisms of 
memory impairment in AD [157], and intrabodies have been 
found to be generally valuable tools for imaging purposes 
in neurons [158].

AD is also associated with abnormal tau phosphorylation 
as well as aggregation and is the most common tauopathy 
[159, 160]. Melchionna and Cattaneo [161] reported the 
degradation of tau by intrabody-mediated tumour necrosis 
factor (TNF)-α inducible targeted proteolysis. However, this 
approach might be limited as a therapeutic approach due to 
the adverse effects of the cytokine TNF-α and is more likely 
to serve as a research tool [162], as reviewed by Messer and 
Butler [160]. Targeted degradation of tau via expressing an 
AAV-delivered intrabody resulted in a statistically signifi-
cant decrease in tau-associated pathology in a human-tau 
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transgenic mouse model as reported by Gallardo and col-
leagues [163]. Among several splice variants of tau, the 2 N 
isoform has been suggested to preferentially interact with 
proteins that are associated with neurodegenerative diseases 
[164]. The effect on a selected isoform could be imagined to 
be more effective if targeted by an antibody specific for only 
an individual splice variant compared with a drug that rec-
ognizes all isoforms because binding does not compete with 
the other isoforms. A combination of focused ultrasound and 
administration of an antibody specific for the 2 N isoform of 
tau was applied to deliver the antibody to the brains of mice. 
This treatment was found to reduce tau hyperphosphoryla-
tion and anxiety-like behaviour in a transgenic mouse model 
that overexpresses the 2 N isoform of tau [165].

4.3  Huntington’s Disease

Huntington’s disease (HD) is a hereditary disorder caused 
by a mutant version of the huntingtin gene (mHtt), which 

is associated with motor symptoms and cognitive decline 
as a consequence of the death of brain cells in the striatum 
[166]. If gene therapy is used to target mHtt as a treatment 
for HD, the pathologic protein could still remain in the body 
and cause pathologic effects due to its ability to act as a seed 
and convert other proteins into pathologic molecules [167]. 
For this reason, even in the absence of the mutated gene, the 
pathological protein would have to be removed, which could 
be performed with intrabodies. Multiple studies have already 
focused on intrabodies as a promising treatment option for 
HD, which are reviewed in detail by Denis et al. [168, 169]. 
In vitro, intrabody expression resulted in decreased mHtt 
aggregates or increased mHtt turnover and increased cell 
survival. Therapeutic effects were enhanced when drug 
administration was combined with intrabody expression 
in vivo in a fly model [170]. In transgenic mice or mice that 
received intrabody gene therapy, decreased motor and cog-
nitive impairments and increased body weight and lifespan 
were observed [169, 171–175].

Table 5  Intracellular antibodies applied in research and as potential therapeutic strategies

EBV Epstein-Barr virus, HBV hepatitis B virus, HCV hepatitis C virus, HHV human herpesvirus, HPV human papillomavirus, OPMD oculo-
pharyngeal muscular dystrophy

Research area Disease/disease process References

Neurobiology Alzheimer’s disease [152–157, 161, 163, 165, 349]
Parkinson’s disease [130, 136, 145–148]
Huntington’s disease [133, 168, 170–175, 310, 350, 351]
Amyotrophic lateral sclerosis [182, 184]
OPMD [185]

Viral infections HIV [213, 215, 217, 218, 221, 222, 224–227, 229]
EBV (HHV-4) [235, 236]
HHV-8 [238, 241]
HBV [259–261, 352]÷
HCV [265–267, 270, 353]
HPV [246–251]
Rotavirus [199]
Influenza A [202, 203]
Ebola [209, 354]
Marburg virus [209]
Bluetongue virus [355]
Hantavirus [356]
Vesicular stomatitis virus [357]
Rabies [358]
Porcine viruses [359, 360]
Maedi visna virus [361]
Flavivirus [362]
Cucumber mosaic virus [194, 196]

Cancer research Cellular level: oncogenic pathways, proliferation, cell cycle, 
apoptosis

[64, 274, 276, 278, 363, 356, 364–369]

Tissue level: adhesion, metastasis, angiogenesis [132, 279–288, 370–377]
Neo-antigens [291, 295, 296]



446 C. Zhang et al.

4.4  Further Applications in Neurobiology

Amyotrophic lateral sclerosis (AML) is a neurodegenerative 
disease characterized by motor deficits, which can also be 
associated with cognitive and behavioural changes. In most 
cases the mechanisms causing the disease are unknown, 
called sporadic ALS, but in a subset of patients the disease is 
familial involving mutations in the genes C9orf72, TARDBP 
(TDP43), FUS and superoxide dismutase (SOD1) among 
others [176–180]. One hypothesis is that the degeneration 
of motor neurons in AML caused by mutated versions of 
SOD1, might be associated with the tendency of mutant 
SOD1 versions to misfold and aggregate [176]. Ghadge and 
colleagues [181] generated two anti-SOD1 antibodies, which 
prolonged survival in a mouse model after delivery by gene 
therapy. Gene therapy was also performed to express anti-
bodies specific for misfolded SOD1 in mice, resulting in 
delayed onset of ALS pathogenesis and an extended lifes-
pan [182]. TDP43 is an RNA/DNA binding protein involved 
in the regulation of gene expression and RNA processing. 
TDP43 aggregates not only in ALS but in other neurode-
generative diseases such as frontotemporal lobar degenera-
tion (FTLD), therefore being a promising target for multiple 
diseases [183]. An antibody specific to a selected domain of 
TDP43, RNA recognition motif 1 (RRM1), was generated by 
Pozzi and colleagues [184] to obtain two therapeutic effects 
at the same time. The TDP43-specific antibody should inter-
fere with protein aggregation and additionally combat hyper-
active inflammatory responses by blocking protein–protein 
interactions of the RRM1 domain. Gene therapy of mice 
with this antibody had a protective effect and could be a 
novel therapeutic avenue for AML and for TDP43 tauopa-
thies in general [184].

Oculopharyngeal muscular dystrophy (OPMD), a protein 
aggregation disease that is characterized by the weakening 
of specific muscle groups involved in holding the eyelids and 
swallowing and of proximal limb muscles, was nearly com-
pletely rescued in vivo by an intrabody in a fly model [185].

Apoptosis might be responsible for cell death in several 
neurodegenerative diseases. Inhibition of the proapoptotic 
protein Bax was proposed as a means to confer resistance of 
cells against apoptosis [186].

The optimization of intrabodies to treat neurodegenera-
tive disorders was reviewed in depth in a recent publication 
by Messer and Butler [160].

5  Applications in Viral Infections

Intrabodies used in the research area of viral infections 
belong to the class of cytosolic intrabodies or the class of 
ER intrabodies, if the proteins of interest are in the secretory 
pathway [58, 187–193]. The intracellular use of antibodies 

has been considered a valuable option by researchers for 
targeting many viruses (Table 5). The ease with which 
plants can be genetically modified allows conferring an 
antibody-based ‘immune response’ on plants. Intrabodies 
were expressed in tobacco and tomato plants as a means of 
protecting them from infection with the cucumber mosaic 
virus, which has economic relevance due to its wide host 
range and worldwide occurrence [194–196]. Antibodies 
from camelid origin have also been reported to be expressed 
in plants [197, 198].

Understanding the mechanistic details of infections 
through intrabody-mediated interference may help with 
identifying new strategies for pharmaceutical intervention. 
An advantage of applying intrabodies in viral infection 
research is the possibility of disrupting viral protein func-
tion without genetic manipulation of the virus itself. For 
instance, an intrabody was used to study rotavirus [199], 
a non-enveloped RNA virus causing gastroenteritis [200]. 
Intrabodies also allowed the mechanistic details of influ-
enza A, an enveloped RNA virus, to be studied [201–203]. 
Because genetic engineering often impairs or abrogates viral 
function for small RNA viruses such as influenza A [202, 
204–206] and inhibition by chemicals is not always possible, 
intrabodies allow questions to be answered that cannot be 
addressed by these methods. Beyond analysing virus biol-
ogy, intrabodies were also used in a more therapy-oriented 
approach. Infection with Ebola and Marburg virus, which are 
both enveloped RNA filoviruses [207], poses a significant 
threat due to their high lethality rates of up to 90% in some 
cases of outbreaks [208]. As a strategy to allow only empty 
and non-infectious particles to form by inhibiting packaging, 
viral proteins from Ebola and Marburg virus were cross-
linked inside the cell via a dimeric intrabody [209].

5.1  Chronic Viral Infections and Oncoviruses

5.1.1  Human Immunodeficiency Virus

Human immunodeficiency virus (HIV) is an enveloped 
(+)-strand RNA retrovirus that can eventually cause 
acquired immunodeficiency syndrome (AIDS), caus-
ing distinct depletion of CD4+ T cells and thus death by 
progressive failure of the immune system if not treated. A 
combination of antiretroviral drugs is used to manage the 
disease as a chronic condition to prevent the development 
of AIDS in patients [210–212]. Similar to the approach of 
combination therapies used in HIV treatment, intrabodies 
were used to target different points in the infectious cycle. 
Both viral and host proteins have been targeted by intrabod-
ies to attack HIV, including the matrix protein p17 [213], 
the viral surface protein gp120, which is responsible for 
binding to the cellular receptor [214, 215], gp41, which is 
involved in fusion of virus and host membranes [216, 217], 
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the virion infectivity factor Vif, which counteracts antiviral 
mechanisms of the host [218, 219], Rev, which is respon-
sible for the export of viral RNA from the nucleus [220, 
221], the viral accessory protein Vpr, which disturbs cellular 
pathways [222, 223], the viral protein TAT, which allows 
viral gene expression [215, 224–226], the cellular protein 
LEDGF (lens epithelium-derived growth factor) [227], and 
cellular receptors involved in viral entry of HIV into cells, 
such as the host proteins CCR5 (C–C chemokine recep-
tor type 5) [189, 191, 193] and C-X-C chemokine receptor 
type 4 (CXCR4) [190, 192, 228]. An intrabody fused to a 
fluorescent protein was further used to allow dynamic trac-
ing of HIV in cells [229]. To interrupt viral replication by 
allowing only non-infective virions to form, intrabodies were 
expressed that were targeted for degradation and specific 
for gp160 [230]. Because of its high mutation rate, HIV 
continues to change in patients, which can result in drug 
resistance [231]. A way to circumvent this problem could 
be targeting host proteins that are relevant in the viral life 
cycle, but do not have high underlying mutation rates like 
the viral proteins. Protein–protein interaction between a viral 
and a host protein was blocked by an intrabody as a means 
to interfere with viral replication and proposed as a poten-
tial intracellular immunization for T cells in HIV-positive 
patients [227]. By expressing an ER intrabody that retained 
the host cell surface receptor CCR5 in the ER of CD4+ 
T cells, these cells were protected from viral entry both 
in vitro and in a mouse model [193]. Because this approach 
is also based on targeting a host protein, the ER intrabody 
is not at risk of losing the ability to bind its target, as might 
occur with escape mutants if a viral protein is targeted. To 
address problems with drug resistance and residual infected 
reservoir populations under antiretroviral therapy, alternative 
approaches such as gene therapy could be further explored 
to improve therapeutic efficacy. Viral gene expression is 
stimulated by the HIV-1 Tat protein [232]. In a preclinical 
study with rhesus macaques, CD4+ T cells were isolated 
from macaques for ex vivo transduction with an HIV-1-Tat-
specific intrabody to promote the survival of CD4+ T cells. 
Modified CD4+ T cells were re-infused into macaques, and 
the animals were subsequently challenged with the virus. 
CD4+ T cells expressing the Tat-specific intrabody survived 
longer than cells expressing a control intrabody after chal-
lenge, and a reduced viral load was observed in one of two 
animals [226].

5.1.2  Epstein–Barr Virus

Epstein–Barr virus (EBV), also called human herpesvirus 4 
(HHV-4), is a DNA virus that may cause cell transformation 
and has a global prevalence of more than 90%. Although 
EBV infection is in most cases lifelong dormant, EBV was 
the first virus identified as an oncovirus and is associated 

with cancers such as lymphomas and epithelial cancer and 
is a risk factor after transplantation for developing post-
transplant lymphoproliferative disease (PTLD) [233, 234]. 
Latent membrane protein 1 (LMP1) of EBV is essential 
for B cell transformation, and its knockdown was achieved 
by expressing an ER intrabody. By reducing LMP1 levels 
via an ER intrabody, cells were rendered more sensitive to 
chemotherapeutic-induced cell death [235]. The same target, 
LMP1, was also attacked at the cytosolic part of the LMP1 
transmembrane protein by a cytosolic intrabody. To induce 
a functional effect with a cytosolic intrabody, an antibody 
was generated against a selected epitope of LMP1, which 
serves as a docking site for downstream signalling mole-
cules [236]. This demonstrates how the same protein can 
be targeted in different ways by intrabodies and how the 
experimental approach differs accordingly. As a therapeutic 
strategy, EBV-infected tumour cells could be sensitized to 
chemotherapeutic drugs by ER intrabodies or by cytosolic 
intrabodies as gene medicines [235, 236].

5.1.3  Human Herpesvirus 8

Kaposi sarcoma-associated herpesvirus, also called human 
herpesvirus 8 (HHV-8), has a global prevalence of less than 
10% but a regional prevalence of up to 70%. HHV-8 is an 
enveloped DNA virus that is usually asymptomatic upon 
primary infection but can cause Kaposi sarcoma in immuno-
deficient individuals [234]. Latency-associated nuclear anti-
gen (LANA1) helps to maintain the viral DNA of HHV-8 in 
daughter cells [237] and was therefore chosen as a promising 
drug target for intracellularly expressed antibodies [238]. A 
cancer-promoting feature of HHV-8 is its expression of pro-
teins that are very similar to host proteins and it can therefore 
interfere with regulation of the host’s cell cycle, apoptosis 
and cytokine signalling. Viral interleukin-6 (vIL6) mimics 
the activities of human interleukin-6 (hIL6), but stimulation 
by hIL6 depends on hIL6 receptor (hIL6R), while vIL6 can 
stimulate cells even independently of hIL6R [239, 240]. By 
the expression of an ER intrabody that retained vIL6 in the 
ER, the secretion of vIL6 was prevented, and vIL6-mediated 
signalling was blocked [241].

5.1.4  Human Papillomavirus

Human papillomavirus (HPV) has a prevalence of 70 million 
cases in the USA alone. Each year, an estimated 500,000 
cases of cervical cancer occur, which are caused by high-
risk HPV strains. The first prophylactic vaccine against 
high-risk HPV strains was approved in 2006, but only part 
of the global female population is vaccinated [242]. HPV 
belongs to the non-enveloped DNA viruses, and the viral 
proteins E6 and E7 have oncogenic activity or contribute 
to malignant progression [243]. In high-risk HPV strains, 
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E7 has transforming activities, and the tumour suppressor 
p53 can be inactivated by E6, preventing p53 from induc-
ing apoptosis, which makes both proteins interesting as 
drug targets [244, 245]. There have been reports of using 
intracellularly expressed antibodies to influence oncogenic 
effects of the viral proteins E6 as well as E7 [246–250]. 
Interestingly, the epitope recognized by an antibody directed 
against E6 was found to be in a region that could hinder 
recognition of the E6 nuclear export signal. As hypothe-
sized by the authors, this could be a potential mechanism 
by which export of E6-bound p53 to the cytosol might be 
blocked, and, as a consequence, proteasomal degradation of 
the tumour suppressor p53 might be prevented [249]. The 
strategy to influence the subcellular localization of a protein 
for modulating its function, or as hypothesized here to influ-
ence turnover as a consequence of trapping in the nucleus, 
allowed studying cells in an entirely new way. The preven-
tion of p53 degradation was also achieved in HPV-infected 
cells by an intracellularly expressed nanobody. In contrast to 
the aforementioned example, the intracellular nanobody did 
not bind E6 but was specific for the DNA binding domain 
of p53. Although the tumour suppressor p53 was stabilized 
against degradation by the nanobody, the function of p53 
was inhibited upon expression of the nanobody, resulting in 
increased cell proliferation [251]. This impressively dem-
onstrates how intrabodies can be used to study different 
functional details of the exact same process, in this case 
by targeting a different binding site. The therapeutic poten-
tial of intrabodies in HPV treatment was further explored 
by Amici and colleagues [250]. An E6-specific intrabody 
was isolated using IACT, a method for selecting antibodies 
that fold correctly in the cytoplasm. The E6-specific intra-
body was expressed and directed to the nucleus in cells. As 
a result, p53 accumulated in the nucleus of SiHa cells and 
was able to partially inhibit its degradation. Via a retroviral 
vector, the E6 intrabody was expressed in preclinical mouse 
models of HPV and resulted in a marked delay of tumour 
onset. While all mice had developed tumours by 20 days 
after injecting HPV16-positive tumour cells, 60% and 40% 
of mice injected with TC-1 and C3 intrabody-expressing 
tumour cells, respectively, remained tumour free for more 
than 4 months [250].

5.1.5  Hepatitis B Virus

Hepatitis B virus (HBV) is an enveloped DNA virus with a 
virion diameter of approximately 45 nm and a 36 nm diam-
eter core [252]. HBV can be prevented by prophylactic vac-
cines, but vaccination is not sufficiently effective to induce 
seroprotection for every person. Approximately 5% of the 
population does not respond sufficiently to vaccination [253] 
and HIV patients in particular have lower response rates 
[254, 255]. The regional prevalence of HBV infection varies 

[234, 256]; with a prevalence of 10–25% in some developing 
countries, HBV is still a concern [257]. HBV infection can 
result in various liver disorders or hepatocellular carcinoma, 
which still causes 500,000–700,000 deaths per year [253, 
258, 259]. Expression of a nanobody as an intrabody in the 
cytosol or nucleus was used to attack the HBV core protein 
(HBcAg) [260]. The secreted viral proteins hepatitis B sur-
face antigen (HBsAg) and hepatitis B e-antigen (HBeAg) 
have been retained in the ER by ER intrabodies. HBeAg 
secretion was downregulated by the ER intrabody, but 
HBcAg was not affected, although its sequence is similar, 
and cross-reactivity of the anti-HBeAg antibody to HBcAg 
was shown [261]. This demonstrates how proteins with high 
sequence similarity but residing in different compartments 
can be targeted separately from each other by employing the 
compartment-specific action of intrabodies. An ER intra-
body specific for HBsAg was shown to inhibit secretion of 
HBV virions in vivo in a mouse model, demonstrating the 
therapeutic potential of this approach [259].

5.1.6  Hepatitis C Virus

Hepatitis C virus (HCV) causes approximately 400,000 
deaths per year as a consequence of chronic HCV-induced 
liver disease and liver carcinoma, in spite of advances in 
HCV treatment [262, 263]. HCV is an enveloped (+)-strand 
RNA virus that produces viral components as a polyprotein 
that needs to be cleaved into its individual functional protein 
units [264]. HCV core protein, which forms the viral capsid 
[264], was the target of intracellularly expressed antibodies 
[265–267]. Despite the availability of direct-acting antivirals 
and small-molecule inhibitors for HCV treatment, the high 
mutation rate of HCV can rapidly lead to the emergence 
of drug resistance in patients during treatment [268, 269]. 
The inhibitory effect observed upon expression of an NS3-
specific intrabody was maintained even in the presence of 
point mutations that confer resistance to small-molecule 
drugs. As hypothesized by the authors, resistance to anti-
body-based drugs might occur more slowly than resistance 
to small-molecule-based drugs because antibodies contact 
their targets over a comparably large surface area via mul-
tiple residues [270].

5.2  Targeting Host Processes in Viral Infections

Viral infections are counteracted by the host protein inter-
feron (IFN)-α, but due to the high homology of the 14 dif-
ferent isoforms of IFN-α in mice, generating knockout mice 
on a genetic level would require immense effort. A single 
intrabody that recognizes all isoforms could provide a solu-
tion. Following this hypothesis, an ER intrabody specific for 
IFN-α isoforms was expressed in different cell lines in vitro 
and allowed blocking of IFN-α secretion as well as increased 
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virus proliferation as a consequence of ER intrabody-medi-
ated IFN-α knockdown [58]. Knocking out many genes with 
similar functions to generate a mouse model may no longer 
be required if all isoforms of a protein can be targeted with 
a single intrabody, which means only a single gene has to 
be integrated into the genome to generate a transgenic intra-
body mouse. Because intrabody expression is dominant, a 
marked phenotype may already be observed in an earlier 
stage during the generation of a mouse model: heterozygous 
intrabody mice might already display sufficient knockdown 
of the target protein, in contrast to a heterozygous genetic 
knockout of the target. Intrabodies could in this way mark-
edly accelerate the generation of mouse models.

6  Applications in Oncology

A phase I clinical trial was performed to assess the feasibil-
ity of adenovirus-mediated intrabody gene therapy [271], 
and various strategies have been suggested for the intracel-
lular use of antibodies to target processes related to cancer 
(Table 5).

6.1  Applications in Oncology: Targeting 
at the Cellular Level

At the cellular level, intrabodies have been used to interfere 
with protein–protein interactions in oncogenic pathways 
[272] and to influence processes involved in proliferation, 
the cell cycle and apoptosis. DNA repair and genomic sta-
bility were studied by a nanobody fused to a fluorescent 
protein that allowed tracking of poly (ADP-ribose) polymer-
ase 1 (PARP1), a target for cancer therapy to inhibit DNA 
repair for sensitizing tumour cells to radio- or chemotherapy 
[273]. Several proof-of-concept studies have demonstrated 
downregulation of human epidermal growth factor recep-
tor-2 (HER2) or inhibition of cell proliferation by intrabod-
ies targeting HER2 [272, 274]. A nanobody directed against 
the tumour suppressor p53, which is involved in processes 
such as the cell cycle and apoptosis [275], was used to delo-
calize p53 by capturing it at mitochondria to generate a 
functional knockdown [64]. By the expression of a library 
of intrabodies in tumour cells, potential mechanisms by 
which cells are rescued from apoptosis as a contribution 
to cancer progression were identified [276]. The capabil-
ity of intrabodies to specifically target post-translational 
modifications was demonstrated by an intrabody against a 
particular phosphorylated form of signal transducer and acti-
vator of transcription 3 (STAT3), which plays a role in vari-
ous processes including proliferation and apoptosis [277]. 
STAT3 can be phosphorylated at different sites or remain 
unphosphorylated. By using an intrabody, it was possible to 
block the function of the tyrosine-phosphorylated form of 

STAT3 (pYSTAT3) but not the serine-phosphorylated form 
(pSSTAT3) or the unphosphorylated form (USTAT3), which 
is impossible for conventional small molecule-based inhibi-
tion. This was demonstrated both in vitro and in mice and 
illustrates the potential of intrabodies to study mechanisms 
based on individual functional units of proteins [278].

6.2  Applications in Oncology: Targeting 
at the Tissue Level

At a level superordinate to cells, processes such as adhesion, 
metastasis and angiogenesis have been targeted by intrabod-
ies. As adhesion molecules, integrins have implications in 
metastasis [279], and, therefore, a better understanding of 
integrin function might be beneficial for cancer research. 
Integrins can form different heterodimers depending on 
which integrin subunits combine. The retention of a par-
ticular integrin subunit in the ER by an intrabody allowed 
study of how integrin heterodimers form and revealed a hier-
archy in complex formation when different subunits combine 
[280]. Tumour invasion and metastasis were further targeted 
using an intrabody to block the activation of matrix metal-
loproteinases in an in vitro model [281, 282]. Plasma mem-
brane extensions that also have proteolytic activity, called 
invadopodia, allow cancer cells to invade their surroundings 
and form metastases. The protein cortactin is involved in 
invadopodia formation, and a better understanding of this 
potential drug target was achieved by blocking the function 
of individual domains of the protein by intracellular nano-
bodies, which revealed different outcomes when different 
epitopes of cortactin were targeted [283, 284]. The GTPase 
RHOB is also involved in invasion. A conformation-specific 
intrabody that was targeted for degradation allowed selec-
tive degradation of only the guanosine triphosphate (GTP)-
bound form of the protein. Targeted degradation with this 
conformation-specific intrabody revealed the processes of 
invasion and genomic instability to be associated with only 
one but not the other conformation of RHOB [132]. These 
examples impressively illustrate how intrabodies allow 
research on the functional consequences of complex forma-
tion in the presence of different subunits that complex in 
different combinations, blocking individual protein domains 
and individual conformations of a protein. Angiogenesis, 
the process of forming new blood vessels, has been suc-
cessfully blocked by ER intrabodies specific for vascular 
endothelial growth factor receptor 2 (VEGFR2) in in vitro 
models [285, 286], and a bispecific intrabody allowed inhib-
iting angiogenesis and tumour growth by targeting VEGFR2 
and the angiopoietin receptor Tie2 [287]. An adenovirus that 
delivered Tie2 intrabody to mice allowed a marked reduc-
tion in vessel density and significant reductions in two types 
of tumours, which were xenografts derived from human 
Kaposi’s sarcoma or human colon carcinoma [288]. The 
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therapeutic potential of intrabodies with respect to angio-
genesis may in the future be extended by broadening the 
range of angiogenesis-related targets attacked by intrabodies. 
In addition to the strategy of starving tumours by blocking 
angiogenesis, the normalization of tumour vascularization 
has emerged as another therapeutic strategy because vas-
cularization is expected not only to supply the tumour with 
nutrients but also to allow the supply of chemotherapeutics, 
making chemotherapy more effective [289].

6.3  Applications in Oncology: Targeting 
Neo‑Antigens

Neo-antigens or oncoproteins, aberrant proteins that exist 
only in tumour cells, are particularly interesting targets 
because they allow the often difficult discrimination of 
tumour and healthy cells during therapy. The oncoprotein 
Bcr-Abl originates from the fusion of two genes due to the 
formation of an aberrant chromosome, which results in a 
constitutively active kinase associated with chronic myelog-
enous leukaemia [290]. Because intrabodies can be used to 
de-localize proteins, an intrabody was employed to re-route 
Bcr-Abl to the nucleus, where it causes apoptosis. To obtain 
Bcr-Abl-specific intrabodies that are functional in the cyto-
solic milieu, IACT was employed for intrabody selection 
[291]. The protein Ras, which is involved in signal transduc-
tion and is frequently mutated in cancer, can become perma-
nently activated due to mutations and influence cell growth 
and survival [292]. Intrabodies targeting Ras were already 
developed in the early 1990s by Cattaneo and colleagues 
[293, 294]. In a new concept, antibody–antigen interaction-
dependent apoptosis (AIDA), an intrabody specific to mutant 
Ras, was split into two parts variable heavy chain  (VH) and 
variable light chain  (VL). Each part was fused to inactive 
procaspase-3 and auto-activation of caspase-3. The forma-
tion of a tri-molecular complex of mutant Ras and the two 
procaspase-3-fused intrabody halves allowed the induction 
of apoptosis upon the binding of mutant Ras. This method 
could be further extended to any neo-antigen for which a 
specific intrabody is available [295]. A different approach 
was taken by using intrabodies for target validation to block 
protein–protein interactions in disease models and subse-
quently find small molecules that overlap with the antibody 
binding site. An anti-mutant Ras intrabody allowed the iden-
tification of compounds from a small-molecule library that 
are able to mimic the effect of the intrabody on protein–pro-
tein interactions [296].

6.4  Applications in Oncology: Targeting Tumours 
Using Cellular Immunotherapy

There are recently approved cellular therapies for haema-
tological diseases based on immune cells that are directed 

towards killing tumour cells [297]. The direction of immune 
cells as weapons against tumour cells is achieved by means 
of chimeric antigen receptors (CARs) on T cells or natural 
killer (NK) cells. CARs are expressed after ex vivo genetic 
engineering of cells, which are subsequently reinfused into 
patients [298, 299]. Ex vivo genetic engineering of lym-
phocytes for cellular therapy has recently also been pursued 
for intrabodies. As a target for CAR T cell therapy, CD7 
was chosen due to its consistent expression in T cell acute 
lymphoblastic leukaemia. However, CAR T cells expressed 
CD7 as well, which resulted in killing of not only tumour 
cells but also of CAR T cells. To prevent this, an ER intra-
body was employed to deplete expression of CD7 in CAR 
T cells. The expression of the ER intrabody prevented self-
attack by CAR T cells and allowed them to kill only leukae-
mic cells [44].

7  Summary and Comparison of all 
Strategies

The expression of intrabodies in the cytosol or nucleus usu-
ally requires an involved selection procedure, but technolo-
gies have been developed to address this requirement and 
have allowed the generation of cytosolic intrabodies for 
many research areas [89, 95]. The generation of ER intra-
bodies is relatively straightforward, allowing more freedom 
in the choice of the epitope, and the folding properties of 
normal antibodies are sufficient. ER intrabodies have so far 
been found to be well-tolerated by cells and in mice. Even 
substantial overexpression of an ER intrabody specific for 
the neuronal receptor p75NTR was not found to induce 
ER stress, as indicated by the absence of induction of the 
unfolded protein response (UPR) [300], and no marked ER 
stress was found by other researchers examining the reten-
tion of Z alpha antitrypsin by an ER intrabody [301]. Knock-
down of VCAM1 by an ER intrabody was also detected in 
living mice [302], and expression of the ER intrabody by 
transgenic mice was well-tolerated [57]. The delivery of 
antibodies to the cytosol as proteins is no longer a chal-
lenge in vitro but reliably applicable with standard labora-
tory equipment (see also Table 3). Whether there is thera-
peutic potential for protein delivery still needs to be further 
explored. Delivering proteins to endosomes or lysosomes is 
less challenging but may raise the question of what therapeu-
tic effect could be obtained by targeting these compartments, 
especially because the delivered protein is degraded in the 
lysosome. A particularly interesting future application of 
delivering antibodies to lysosomes could be in the context of 
intracellular pathogens that inhibit lysosomal acidification.

In addition to the possibility of inhibiting POIs by neu-
tralization or re-localizing POIs, all methods based on intra-
body expression or antibody delivery to the cytosol allow 
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the targeting of POIs for degradation (Table 6). Intrabodies 
have already been delivered by gene therapy in preclinical 
animal models. The delivery of proteins to lysosomes is 
readily achievable even in vivo and has been used for drugs 
that have already been approved for therapy, including an 
immunotoxin [55] and ADCs [303–306].

8  The Future: Key Preclinical and Clinical 
Challenges

Using intrabodies for therapy is interdisciplinary, requiring 
expertise in intrabody-related technologies based on molecu-
lar and cellular sciences, in specific disease areas and in 
clinical application. This may in some cases pose a higher 
threshold to using this approach. However, for certain appli-
cations, there might be no suitable or feasible alternatives [8, 
307]. In previous decades, the laborious and still error-prone 
technologies for antibody generation have complicated the 
use of intrabodies. This former hurdle may be responsible 
for the comparably late increase in research articles in this 
field. Antibody generation technologies and selection tech-
nologies for cytosolic intrabodies are no longer limitations. 
A large number of well-validated and sequence-defined 
antibodies are ready for use as intrabodies and delivery as 
proteins into cells.

There are also a variety of successful strategies to degrade 
a POI. A limited number of small-molecule reagents are 

available to bind POIs, and targeting protein–protein inter-
actions has been reported to be challenging for small mol-
ecules, which are small and have little contact area with the 
protein [12–15]. Targeted degradation by protein binders 
would therefore have enormous potential, but therapeutic 
application will critically depend on the feasibility of in vivo 
protein delivery. Local in vivo electroporation delivery of 
antibodies has been performed in rats [37], and in vivo elec-
troporation has been applied in further model organisms, 
e.g. locally to muscle tissue [308]. In addition to in vivo 
delivery to tissues, ex vivo delivery for cell therapy could be 
explored as an application for protein delivery in the future. 
For research purposes, delivering antibodies to the cytosol 
might become a standard method in many research areas, 
depending on the availability of reagents that are affordable 
and suitable for this application.

The application of intrabodies in clinical use depends 
on in vivo or ex vivo gene therapy. Particularly in the area 
of neurodegenerative diseases, there are comparably many 
preclinical in vivo studies, probably due to the urgent neces-
sity of targeting pathologic proteins. Pathologic mechanisms 
associated with protein conformation are more amenable to 
being targeted by antibodies than by classic small-molecule 
therapy, which works better for inhibiting enzymes. Gene 
therapy to correct the gene for mutant huntingtin (mHtt) can-
not remedy pathogenic mHtt protein because it may have 
prion-like properties and convert other proteins to patho-
genic forms. Intrabodies could solve this problem. A range 

Table 6  Comparison of strategies to target the inside of cells with antibodies

ADCs antibody–drug conjugates, ER endoplasmic reticulum, ERAD ER-associated degradation, LYTACs lysosome-targeting chimaeras, POIs 
proteins of interest, PTM post-translational modification, TRIM21 tripartite motif containing-21,? indicates to be determined, – indicates 
no, + indicates yes

Properties Intrabody expression Antibody delivery (as a protein)

Cytosol/nucleus ER/mitochondria Cytosol/nucleus Other compartments

Correct antibody folding 
possible?

? + + +

Epitope choice: can non-
neutralizing antibodies 
be used?

–
(+ if combined with tar-

geted degradation)

+ –
(+ if combined with tar-

geted degradation)

–
(+ if combined with tar-

geted degradation)
Antibody-mediated func-

tional knockdown
+ + + ?

Targeted degradation? Tags targeting for proteaso-
mal degradation

ER: targeting for ERAD TRIM21 for antibod-
ies with Fc part, tags 
targeting for proteasomal 
degradation

Lysosomal targeting (e.g. 
LYTACs)

Examples of special fea-
tures targeted

PTMs, individual domains, 
conformations

Complex formation, knock-
down in selected cellular 
compartment

Long half-life protein 
degraded, tracking of 
unmodified endogenous 
POIs

Deliverable in therapy? Adoptive cell therapy, gene 
therapy

Adoptive cell therapy, gene 
therapy

Adoptive cell therapy?
Local tissue electropora-

tion?

+ (ADCs, approved for 
therapy)
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of preclinical animal models have demonstrated the feasi-
bility of intrabody gene therapy, and intrabody expression 
has been well-tolerated in animals [57]. This might not be 
surprising considering that high expression of antibodies 
during an immune reaction should be well-tolerated. Chal-
lenges might still arise from disease-specific pathologic 
mechanisms, which require a more detailed understanding 
of the pathologic process as well as the exact functional 
effects of individual intrabodies on their targets. While many 
intrabodies block the aggregation of pathologic proteins, the 
aggregation rate has also been found to be increased by an 
intrabody [309]. Additionally, two different intrabodies have 
been reported by the same authors, of which one acceler-
ated the mutant phenotype and one rescued it [310]. In can-
cer research, several different Bcr-Abl-specific intrabodies 
with a signal sequence for nuclear translocation differed in 
their effect on the re-localization of Bcr-Abl to the nucleus 
[291]. A related observation was made by Martinelli and 
colleagues [311]. A better mechanistic understanding of how 
function is affected by binding of the antibody to its target in 
the cell might therefore be required to select for antibodies 
with the intended effects. Intrabodies targeting individual 
post-translational modification (PTM)s could in the future 
contribute further to a better understanding of processes in 
health and disease [312, 313]. Cellular therapy employing 
an ER intrabody has recently been proposed as a therapeutic 
approach [44]. Because it provides a solution to the chal-
lenges of intrabody delivery that has been demonstrated to 
be feasible in approved CAR T cell therapies [297], this 
approach might be a particularly promising avenue for thera-
peutic application of intrabodies in the future.
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