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Introduction

In the era of precision medicine, human biospecimens are an 
important resource for basic, translational, and clinical research 
and are increasingly needed to advance our understanding 
of human physiology, disease, treatment response, and 
outcomes. The field of biobanking has undergone significant 
optimization efforts by national and international communities 
to improve and harmonize biospecimen curation to support this 
need.[1,2] However, the operationalization and maintenance of 
biobanks is resource‑intensive and often cost prohibitive for 
many institutions. In addition, long‑term biobanking may be 
suboptimal for some types of testing, such as for studies that 
rely on labile analytes.[3,4] As a result, comprehensive access to 
human biospecimens remains limited, and there is a persistent 

need for efficient solutions that can provide access to high 
quality and recently acquired human biospecimens.[5]

Human biospecimens can always be found in clinical laboratories, 
but access for the research is complicated by a series of technical, 
logistic, regulatory, and ethical challenges. Beyond the demands 
of delivering clinical results, laboratories lack efficient processes 
for biospecimen identification, human resources for sample 

Abstract

Introduction: Biomedical and translational research often relies on the evaluation of patients or specimens that meet specific clinical or 
laboratory criteria. The typical approach used to identify biospecimens is a manual, retrospective process that exists outside the clinical workflow. 
This often makes biospecimen collection cost prohibitive and prevents the collection of analytes with short stability times. Emerging data 
architectures offer novel approaches to enhance specimen‑identification practices. To this end, we present a new tool that can be deployed in a 
real‑time environment to automate the identification and notification of available biospecimens for biomedical research. Methods: Real‑time 
clinical and laboratory data from Cloverleaf  (Infor, NY, NY) were acquired within our computational health platform, which is built on 
open‑source applications. Study‑specific filters were developed in NiFi  (Apache Software Foundation, Wakefield, MA, USA) to identify 
the study‑appropriate specimens in real time. Specimen metadata were stored in Elasticsearch (Elastic N. V., Mountain View, CA, USA) for 
visualization and automated alerting. Results: Between June 2018 and December 2018, we identified 2992 unique specimens belonging to 
2815 unique patients, split between two different use cases. Based on laboratory policy for specimen retention and study‑specific stability 
requirements, secure E‑mail notifications were sent to investigators to automatically notify of availability. The assessment of throughput on 
commodity hardware demonstrates the ability to scale to approximately 2000 results per second. Conclusion: This work demonstrates that 
real‑world clinical data can be analyzed in real time to increase the efficiency of biospecimen identification with minimal overhead for the 
clinical laboratory. Future work will integrate additional data types, including the analysis of unstructured data, to enable more complex cases 
and biospecimen identification.

Keywords: Biobanking, biomedical research, biospecimen science, clinical specimens, real‑time identification, translational research

Access this article online

Quick Response Code:
Website:  
www.jpathinformatics.org

DOI:  
10.4103/jpi.jpi_15_20

Address for correspondence: Dr. Wade L. Schulz, 
Department of Laboratory Medicine, 55 Park Street PS502A,  

New Haven, CT, USA.  
E‑mail: wade.schulz@yale.edu

This is an open access journal, and articles are distributed under the terms of the Creative 
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to 
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit 
is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Durant TJ, Gong G, Price N, Schulz WL. Bridging 
the collaboration gap: Real-time identification of clinical specimens for 
biomedical research. J Pathol Inform 2020;11:14.
Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2020/11/1/14/284660

Bridging the Collaboration Gap: Real‑time Identification of 
Clinical Specimens for Biomedical Research

Thomas J. S. Durant1,2, Guannan Gong2,3, Nathan Price4, Wade L. Schulz1,2

1Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA, 2Center for Outcomes Research and Evaluation, Yale New Haven 
Hospital, New Haven, CT, USA, 3 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University School of Medicine, New Haven, CT, USA, 

4Department of Information Technology, Yale New Haven Health, New Haven, CT, USA

Submitted: 10-Mar-2020 Revised: 17-Mar-2020 Accepted: 30-Mar-2020 Published: 20-May-2020

Research Article



J Pathol Inform 2020, 1:14	 http://www.jpathinformatics.org/content/11/1/14

Journal of Pathology Informatics2

acquisition, and procedural infrastructure for biospecimen 
collection under the provisions of human interventional ethics 
committees. Despite these challenges, the clinical laboratory is 
a promising resource for the acquisition of biospecimens, and 
researchers are beginning to investigate curation methods that 
can integrate with existing clinical workflows and leverage 
EHR metadata for biospecimen identification and annotation.[6,7]

One of the first‑automated biospecimen identification systems 
was Crimson; an application used to identify the discarded 
blood samples accessioned into the clinical laboratory by 
querying the laboratory information system. Samples, which 
met predetermined inclusion criteria, were electronically 
reaccessioned into a deidentified research database that 
could be accessed by researchers with IRB approval.[8] While 
biobanks routinely link health information between specimen 
and participant postenrollment, such solutions demonstrate 
how EHR integration and associated metadata can be used 
for targeted and automated biospecimen selection. However, 
examples of this framework remain limited, both in the literature 
and in practice, which typically focus on retrospective specimen 
identification for long‑term biobanking. With increased 
digitization of healthcare and modern data architectures that 
allow for real‑time analysis of clinical data, biospecimens can 
be identified as samples that are processed through the clinical 
laboratory. This approach offers the benefit of increasing access 
to specimens of interest, including those with labile analytes, 
while not disrupting routine clinical workflows.[4]

In this report, we present Prism, a new tool built on 
open‑source technology that can efficiently identify and 
notify the investigators of biospecimen availability in near 
real time. We describe the pipeline architecture and our 
experience with two IRB‑approved pilot projects within 
our department (IRB Protocol IDs: Babesia – 2000023123; 
Diabetic biomarkers – 2000022266).

Methods

Prism platform architecture
We implemented a real‑time pipeline, called Prism, that consists 
of three key components: real‑time data acquisition, stream 
processing, and end‑user alerting, to support case and specimen 
identification [Figure 1]. Parameterized NiFi processors were 
used to filter and identify the clinical specimens based on 
study‑specific inclusion criteria extracted from corresponding 
laboratory result metadata. NiFi is an open‑source application 
designed for stream processing. Specimens that met inclusion 
criteria were indexed within Elastic search  (Elastic NV; 
Mountain View, CA, United States). Alerting was done 
through Watcher  (Elastic NV; Mountain View, CA, United 
States) and secure E‑mail, with a reporting dashboard built 
in Kibana (Elastic NV; Mountain View, CA, United States).

This framework was deployed within our organization’s 
computational health‑care platform, Baikal, which has been 
previously described [Supplemental Figure 1].[9] The Baikal 
platform is built on open‑source technology and provides 

a mechanism to manage and analyze high‑volume and 
high‑frequency clinical data in real‑time, including laboratory 
results.

Throughput assessment
Scalability and computing resource needs for Prism were 
estimated through the deployment in a standalone workstation 
environment with a single CPU with 6 cores  (Intel Core 
i7‑6850K CPU @ 3.60GHz) and 256 GiB of memory. Apache 
NiFi was deployed within a Docker (version 19.03.2, build 
6a30dfc; Docker, Inc., San Francisco, CA, United States) 
container under the Ubuntu (Version: 16.04.6 LTS (Xenial); 
Canonical Ltd; London, UK) operating system. We ran a 
modified version of the Prism dataflow using file‑based record 
I/O instead of streaming data from a network interface. Data 
for the assessment were obtained by randomly selecting data 
from our production Health‑Level 7  (HL7) feed that were 
assembled into three data sets of increasing size. These data 
sets contained 1 × 105, 1 × 106, and 1 × 107 Java Script Object 
Notation‑transformed HL7 ORU messages, resulting in 0.75 
GB, 7.27 GB, and 72.8 GB of data, respectively. Two series of 
five trials were performed with the 1 × 106 record data set. In the 
first series, all five trials were run consecutively. In the second 
series, Docker was restarted between each trial to assess for 
any possible performance impacts in long‑running containers. 
Throughput was measured using built‑in NiFi monitoring tools 
to assess record count and throughput.

Results

Babesia specimen identification
Babesia is a tick‑borne hemoprotozoan, which infects human 
erythrocytes and can be life‑threatening for patients who 
are asplenic, immunocompromised, or elderly. The gold 
standard for the laboratory diagnosis is microscopic analysis 
of peripheral blood smear. For research into the automation 
of digital microscopic analysis using the computer vision, 
the researcher needed peripheral blood smears, which were 
identified as containing Babesia. Incoming HL7 messages 
corresponding to a Babesia result record with a “Positive” 
result values were flagged and sent to the Prism index in 
Elasticsearch [Figure 2]. Researchers were securely notified 
of all “Positive” Babesia specimens identified every 4 h.

Specimen identification for positive Babesia specimens went 
live in May 2018. In a collection period of 16 months (June 
2018–September 2019), Prism identified 131 unique 
lavender‑top tubes, belonging to 44 unique patients, which 
were identified as positive for Babesia by manual light 
microscopy. The collection period for this project was extended 
beyond the anticipated time requirement as Babesia exhibits 
a strong seasonal prevalence, and positive specimen rates 
dropped over the colder months [Figure 3].

Diabetic biomarker specimen identification
The development of type 2 diabetes can be prevented or delayed 
in prediabetic individuals with lifestyle modifications such as 
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dietary changes or increased physical activity. Accordingly, 
there is a need to identify the biomarkers to guide preventative 
interventions.[10,11] To identify possible biomarkers, a researcher 
at our institution was interested in obtaining blood specimens 
from patients with and without diabetes, with borderline cases 
excluded, as a prelude to a larger prospective biomarker study. 
The deidentified samples would undergo metabolomic analysis 
by the liquid chromatography‑mass spectrometry to identify 
the metabolites that were significantly changed between the 
two groups as candidate biomarkers.

Hemoglobin A1C values < 5.7 and > 6.5 were used to delineate 
between diabetic and nondiabetic patients, with additional 
inclusion criteria of outpatient specimen collection and patient 
age range 18–70  years. Of note, the preferred collection 
container for Hgb A1c at our institution is a lavender‑top tube, 

Figure  3: Total number of unique patients and specimens identified 
for Babesia and A1C‑LGT specific use cases within the specified date 
range. Columns represent count of unique specimens per week. Right 
Y‑axis: HbA1c‑LGT, Left Y‑axis: Babesia. HbA1c: Hemoglobin A1c, LGT: 
Light‑green top

Figure 1: Dataflow diagram for laboratory results in using NiFi and Elasticsearch.  (A) Existing laboratory result dataflow.  (B) “Prism” specimen 
identification dataflow. BI: Business Intelligence, HDFS: Hadoop‑Distributed File System, HL7: Health‑Level 7, JSON: Java Script Object Notation

Figure 2: Laboratory result monitoring for positive Babesia specimens. Incoming HL7 observations are transformed to denormalized JSON documents 
and stored to HDFS. Prism dataflow ingests streaming JSON result records and filters “Positive” Babesia results to the “Prism” Specimen Surveillance 
Index from which secure notifications of positive Babesia results are generated. HDFS: Hadoop‑Distributed File System, HL7: Health‑Level 7, JSON: 
Java Script Object Notation
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which does not contain gel‑separation barriers. In an effort to 
optimize biomarker recovery, plasma from light‑green‑top 
tubes was requested for this study. Accordingly, LGT tubes 
were flagged when a paired sample with an Hgb A1c within the 
appropriate range was found within the past 7 days [Figure 4]. 
Researchers were securely notified every morning by the 
E‑mail of all matching LGT specimens present in the Prism 
index reported within the past 24 h.

Specimen identification for diabetic biomarker discovery 
went live in December 2018. In a collection period of 
4  months  (December 2018 and March 2019), Prism 
identified 2,861 unique LGT specimens from 2,771 unique 
patients [Figure 3].

Throughput assessment
We assessed the processing throughput to ensure the pipeline 
could scale to large environments and consistently manage 
high‑volume data. Our institution’s computational health 
platform processes approximately 350,000 discrete HL7 ORU 
messages per day. Accordingly, we evaluated processing time 
across five trials and observed an average execution time of 
approximately 8 min for one million records, which represents 
slightly <3 days of laboratory result volume. Processing time 
was observed to be linear over two orders of magnitude in 
dataset size [Figure 5a], and the average total execution time 
to process one million messages differed by 2% between 
runs with  (494 s) and without  (483 s) Docker container 
restart [Figure 5b].

Discussion

In this report, we describe a novel data analysis pipeline, called 
Prism that can be used to improve the efficiency of biospecimen 
collection. This workflow has been deployed to identify the 
biospecimens in near real‑time for two biomedical research use 
cases. We demonstrated that this solution is highly scalable to 
meet the needs of even large academic centers and reference 
laboratories. We also found, consistent with our prior work, 
that virtualization of this workflow within a microservices 
environment does not introduce a performance penalty.[12]

In 2000, it was estimated that 300 million human biospecimens 
were preserved in the United States, with a projected 7% 
annual growth rate.[13] However, researchers continue to 
report difficulty in obtaining specimens for biomedical 
research and express underlying concerns in the validity of 
their results when using specimens subjected to long‑term 
storage conditions.[5] In addition, while many biospecimens 
are being stored, a large proportion is expected to remain 
unused, and there is increasing concern that untargeted 
collection of biospecimens consumes resources that could 
be better allocated.[14‑16] Accordingly, as institutions seek to 
expand biomedical research efforts, particularly in the era of 
personalized medicine, novel approaches for improving access 
to high‑quality human biospecimens should be evaluated.

The quality of biomedical research is dependent on the 
integrity of biospecimens and as with clinical testing, analyte 
recovery is subject to a significant number of preanalytical 
considerations.[4] While biobanking procedures have seen 
significant optimization in recent years, poor reproducibility of 
studies that use biospecimens has been thought to be caused, in 
part, by the variable quality and inadequate documentation of 
biospecimen metadata.[5] To this end, biobanks are beginning 
to emulate testing procedures found in the clinical laboratory 
to optimize the analyte recovery and test reproducibility.[17,18] 
Tools that can identify the samples accessioned to the clinical 
laboratory, such as Prism, would align with these efforts 
by identifying the specimens that have been collected and 
processed under clinical conditions.

Despite ongoing adoption of clinical procedures in biospecimen 
science, the collection and processing of labile analytes remain 
challenging, and some components may require unique 
processing protocols.[17,19] Proteomic and molecular analytes 
are particularly sensitive to specimen transport delays, matrix 
effects, and optimal‑storage environments.[20] Accordingly, 
some components of interest may require sample processing 
techniques that exist outside routine clinical workflows. In this 
setting, real‑time streaming analytics could also be envisioned 
to identify patients which match study‑specific inclusion criteria 
to guide targeted subject enrollment and subsequent collection.

Figure 4: Laboratory result processing diagram for diabetic biomarker monitoring. Incoming HL7 observations are transformed to denormalized Java 
Script Object Notation documents and stored to HDFS. The Prism dataflow ingests streaming Java Script Object Notation result records and filters 
hemoglobin A1C results in the “Normal” (<5.7) and “Diabetic” (>6.5) cohorts to the “Prism” Specimen Surveillance Index in Elastic. Results from 
CMP/BMP panels (light‑green top specimens) are sent to the Prism index. Secure notifications are sent for A1C specimen IDs with related light‑green 
specimen info. BMP: Basic Metabolic Panel, CMP: Comprehensive Metabolic Panel, HbA1c: Hemoglobin A1c; HDFS: Hadoop‑Distributed File System, 
HL7: Health‑Level 7, JSON: Java Script Object Notation
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In addition to specimen identification and collection, annotation 
with patient metadata remains an important and challenging 
facet of contemporary biobanking. Large scale biobanks 
such as the U. K. Biobank rely on a combination of data 
sources for curating specimen metadata including participant 
enrollment surveys, physical measures (e.g., blood pressure 
and spirometry), and linkage to digital health information.[21,22] 
Indeed, while the majority of national biobanking resources 
capture data from both inpatient and outpatient medical 
records, there is also interest in capturing data that is not stored 
in the EHR.[21,23,24] As digital health information continues 
to expand, health‑care systems are increasingly working to 
develop clinically integrated data‑management tools for the 
centralization of disparate data resources.[9] Deployment of 
automated specimen identification tools in these frameworks 
may facilitate correlation with these data and would align with 
national efforts to do so.

It should be noted that the use cases described in this report 
were selected based on the immediate needs among researchers 
in our department. However, similar open‑source tools could 
be similarly envisioned to integrate with anatomic pathology 
data and the EHR, to automatically phenotype tissue specimens 
as they are processed in the laboratory. While the majority of 
data elements in the clinical laboratory are discrete, identifying 
tissue specimens in the anatomic pathology laboratory may 
require technologies such as natural language processing (NLP) 
to process semistructured and unstructured data, such as those 
commonly found in pathology reports.[25] While not used for 
this implementation, custom NiFi‑processors would allow the 
users to develop more complex filters and integrate NLP or 
machine learning‑based technology for free text or nested data 
structures commonly found in anatomic pathology. Similarly, 
the platform can also be used to identify the patients who may 
be eligible to consent and enroll in studies, rather than simply 
for biospecimen collection.

In the era of digital and personalized medicine, novel 
approaches to increase the efficiency of biospecimen 

identification will be crucial to accelerate discovery. Modern 
data architectures as described here can be used to address the 
fundamental challenges in the procurement of biospecimens 
in support of biomedical research. Future work will seek 
to integrate additional data types, including the analysis 
of unstructured data, to enable more complex case and 
biospecimen identification.
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Supplemental Figure 1: System architecture for Baikal. (A) Health‑Level 
7 messages generated by the laboratory information system and 
received by clinical integration engine.  (B) Health‑level 7 messages 
validated by custom emissary service and mapped to Java Script 
Object Notation. (C) Java Script Object Notation submitted to Kafka for 
downstream processing.  (D) Custom Python scripts executed in NiFi 
to parse and denormalize messages. (E) Denormalized data are stored 
in Hadoop‑distributed File System. (F) Java Script Object Notation and 
quality improvement metrics are stored in Elasticsearch.  (G) Watcher 
runs scheduled queries on Elasticsearch data and generates notifications. 
(H) Kibana is used for visualizations and dashboards


