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Abstract

Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences
research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious
genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads
and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing
and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no
report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple
assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read
length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using
simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage
which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the
minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly
algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were
assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read
depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover,
our analysis shows that de novo assembly from 50X read data requires only 6–40 GB RAM depending on the genome size
and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing
experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.
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Introduction

Traditionally, Sanger sequencing was used to sequence the

genomes of organisms of interest. Due to the cost and technology

limitations in generating the sequence data, genomes were

sequenced at approximately 6–10X coverage in order to generate

draft genome assemblies [1;2]. Using Sanger sequencing technol-

ogy, the human genome was sequenced at 6–8X average coverage

and cost of about $ 2.7 billion and required efforts from over 3000

scientists from 6 different countries [3]. The complexity, cost and

time involved in the human genome project, highlighted the dire

need for the development of sequencers with higher throughput

and lower cost of sequencing. This need culminated in the

development of multiple high throughput or massively parallel

sequencing technologies collectively referred to as the Next

Generation Sequencing (NGS) technologies. Current NGS systems

generate data in the form of millions of short (75–300 bp) reads

[4;5] and produce data ranging from 1 GB to 600 GB depending

on the sequencing platform used. Additionally, the cost of

sequencing on NGS systems is much lower as compared to the

automated Sanger sequencing method. According to the data

released by the National Human Genome Research Institute, the

cost of sequencing a human sized genome using the NGS

technology is a little less than $10000 and this includes library

preparation, sequencing and data analysis (http://www.genome.

gov/sequencingcosts/).

As a result, NGS systems have drastically accelerated the

research involving large scale sequencing and globally researchers

have now undertaken large sequencing projects involving de novo

genome assembly [6;7;8] and metagenomic studies [9;10] for new

species, resequencing [11], exome sequencing [12;13;14], tran-

scriptome profiling [15;16] and methylation profiling [17;18;19]

for known genomes. Since NGS technologies produce sequence as

short reads and have a higher error rate (0.1–1% depending on the

sequencing platform) [20;21], higher depth of sequencing is

recommended. Moreover using current NGS platforms, 60X to

100X coverage for large genomes and a few 100X coverage for

small genomes can be easily achieved. However, sequence

generation is only one aspect of sequencing projects and the
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analysis of large quantum of data generated by NGS platforms,

presents a significant bioinformatics and computational challenge,

particularly for de novo genome assembly (which involves genera-

tion of a novel previously unknown sequence entirely from the

available sequence read data). The outcome of performing de novo

genome assembly is a draft ‘‘reference sequence’’ of the genome of

the organism of interest and availability of reference sequence for a

variety of organisms by de novo assembly is important for the

advancement of genomic research.

Higher read depth for NGS (as compared to Sanger sequencing)

seems to be a prerequisite, but there have been no systematic

efforts to identify the optimum read depth that would be sufficient

to assemble a genome. This is an important question to answer as

de novo assembly of millions of short reads is a computationally and

bioinformatically challenging task. Recently, some studies have

evaluated the impact of sequence coverage, error rate and average

read length on genome assembly [22] as well as compared the

currently available assembly tools [23;24], however, these evalu-

ations were performed using simulated datasets and not using real

data sets. One obvious limitation of using simulated datasets is

that, it presents a best case scenario for analysis where variables

such as coverage, error rates and read length that are known to

impact genome assembly are carefully controlled. On the other

hand, assembly using real datasets is complicated by factors such

as non-uniformity of coverage [25], variable error rates (with

higher errors towards the end of the read) [20] and variable read

length [26;21].

In the present study, we attempt to identify the optimum

average depth required to generate a ‘‘good’’ whole genome

assembly using five De bruijn graph based short reads assemblers;

SOAPdenovo [27], Velvet [28], Meraculous [29] IDBA-UD [30]

and ABySS [31]. Even though we have selected these five

assemblers for this study, there are several other excellent assembly

algorithms such as ALLPaths LG [32], Celera [33], RAY [34],

SSAKE [35] and VCAKE [36] that are available for assembling

genomes. The five algorithms we have used in this study were

selected because Velvet, SOAPdenovo and ABySS are widely

used, whereas Meraculous and IDBA-UD are recently published

and claim to outperform the previously published algorithms. The

sequence data used in this study was from Illumina GA at an

average depth of 990X for E.coli, 275X for S.kudriavzevii [37] and

200X for C.elegans [38]. We focused on Illumina data as it is the

most widely used platform for generating sequence data and its

high throughput enables deep sequencing of genomes, particularly

small genomes. We chose the De bruijn graph based algorithms as

they are best suited for assembling short reads generated by

majority of the current NGS systems [39]. Commonly, De bruijn

graph based assembly algorithms break reads into k-mers of

specified length as originally proposed by Pevzner [40] and

overlapping k-mers are identified as the nodes of the graph and a

directed edge between nodes indicates that the k-mers of these

nodes occur sequentially in one or more reads. Stretches of DNA

sequence with non-ambiguous bases form non-branching paths in

the De bruijn graph and these can be easily converted into contigs

by reading along the path.

Our results suggest that, considering metrics such as genome

coverage, N50 (the length of the smallest contig which when added

to a set of larger contigs yields at least 50% of the genome) [41],

maximum contig size, number of contigs and errors in assembly,

read depth of 50X is enough to get a ‘‘good’’ genome assembly

and sequencing at a depth greater than 100X does not provide any

additional benefits. Additionally, we observed that computational

resources required for assembling read data of 20 X–100 X depth

is between 6–40 GB, for small genomes of E.coli and S.kudriavzevii.

Methods

Assembly algorithms
Five graph-based short read assemblers; SOAPdenovo (Release

1.05, 14-02-2011) [27], Velvet [28], Meraculous [29] IDBA-UD

[30] and ABySS [31] were selected for this study. All these

assemblers are based on De bruijn graph approach. They are

publically available and are widely used for de novo assembly of

short reads generated by NGS platforms such as Illumina Genome

Analyzer, HiSeq and SOLiD. All of them support assembly using

paired end data and were run with default parameters.

All the genome assembly work was carried out using a dual

Quad-core (2.4 GHz) Linux server with 128 GB RAM.

Data Sets
The short read data for E.coli strain MG1655 (ERR022075;

Read length: 2X100 bp and Insert size: 311 bp), S.kudriavzevii

(SRR173086; Read length: 2 X 114 bp and Insert size:

226623 bp) and C.elegans (SRR065388; Insert size: 206 bp and

SRR065390; Insert size: 356 bp. Read length for both data set:

2X100 bp) was obtained from Sequence Read Archive (SRA),

NCBI. The data was generated on Illumina Genome Analyzer

from paired end libraries and have read depth of 990X, 275X and

200X respectively.

Sub Sizing the Data
The data downloaded from SRA had depth of coverage of

990X for ERR022075 (E.coli), 275X for SRR173086 (S.kudriavzevii)

and 200X for SRR065388 and SRR065390 (C.elegans). Since, our

aim was to identify optimum read depth to produce a good quality

genome assembly, we randomly sub-sized the datasets. Perl script

was written for randomly sub-sizing the data to generate a range of

depth of coverage; 20X, 35X, 50X, 100X, 150X and 200X. We

performed assembly for each of the sub-sized blocks within each of

the datasets and did not find significant difference between the

assembled genomes (data not shown). This indicates that sub-

sizing the data had no impact on the final outcome.

Metrics for accessing the quality of de novo assembled
genome

For each of the depth and each of the assemblers, we used

genome coverage (after comparing with the reference genome) and

N50 values as the deciding criteria for identifying a ‘‘good’’

assembly. The metrics were obtained on scaffolds generated by the

respective assemblers. The depth of coverage that provided the

best genome coverage and N50 was identified as the optimum

depth of sequencing. Genome coverage is an especially useful

metric if the reference sequence of the organism itself or a relative

is known. Additional metrics such as number of contigs and

average contig size were also tracked.
Genome coverage. The assembly validation script designed

for the GAGE (Genome Assembly Gold-Standard Evaluations)

[42] assembly comparison project was used to evaluate the validity

of the assemblies produced in this study. The assembly validation

scripts make use of MUMmer [43] alignment tool to compare the

assembled contigs to the reference genome. MUMmer is a

modular system for fast whole genome alignment of finished or

draft genome sequences. It can easily handle hundreds to

thousands of contigs; align them to another set of contigs or a

genome using the NUCmer program [43]. For alignment with

NUCmer, the default parameters used were; Minimum match –

20, % identify –95 and % coverage –95.

For E.coli, the reference genome used was NC_000913 and for

S.kudriavzevii the reference genome used was ZP_591. The C.elegans
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reference genome was NC_003279.7, NC_003280.0,

NC_003281.9, NC_003282.7, NC_003283.10 and NC_003284.8

whereas the mitochondrial genome used was NC_001328.1

N50, Number of contigs and Average contig size. The

N50 (the length of the smallest contig which when added to a set of

larger contigs yields at least 50% of the genome) value is widely

used for assembly algorithm comparison [23;24] and higher the

N50 value better the assembly, provided high genome coverage is

achieved. Number of contigs and average contig size give an

estimate of the size of the pieces that make up the assembly.

Therefore small number of contigs and high average contig size

are indicators of a good genome assembly.

Accuracy of the assembly. The GAGE script that was used

to identify genome coverage also generates metrics such as number

of SNPs and InDels that can be used to evaluate the accuracy of

the assembled genome. Presence of high number of SNPs in the

assembled genome would indicate an incorrect consensus base

incorporated in the assembled genome.

Results and Discussion

There has been an increase in the number of de novo genome

assemblies generated using NGS data [8;27] as well as the number

of assemblers available to assemble this data [27;28;32]. All of the

short read assemblers are based on De bruijn graph approach and

a number of studies evaluating the performance of these assembly

algorithms for genomes of different sizes have been published in

recent years [22;23;24]. However, majority of these studies were

conducted using simulated data sets with defined error rates and

uniform depth of coverage. Moreover, these studies were focused

on metrics such as time required for genome assembly, compu-

tational resources utilized and effect of read length, genome size

and error rate on genome assembly. With increasing throughput of

NGS systems, it is important to understand how much sequencing

is needed for ‘‘good’’ genome assembly, so as to minimize the cost

of sequencing per sample while fully utilizing the potential of the

sequencers through multiplexing. Additionally, the sequencing

chemistry of NGS systems is continuously improving thus reducing

the error rate; hence it may not be necessary to sequence DNA at

a very high depth.

The objective of this study was to identify the optimal

sequencing depth required to assemble small to mid-sized genomes

(up to 100 MB) using some of the most commonly used as well as

recently published assemblers. We obtained data generated on

Illumina Genome Analyzer for three genomes of varying size;

E.coli MG1655 (4.63 MB), S.kudriavzevii (11.18 MB) and C.elegans

(100 MB) at 990X, 275X and 200X respectively, randomly sub-

sized the data and assembled them using five graph based

assembly algorithms; Velvet, SOAPdenovo, Meraculous, ABySS

and IDBA-UD. We used the GAGE scripts to compare the

assembled genomes with the reference genome to identify the

genome coverage. In some cases, the genome coverage was greater

than 100%, which we believe could be because of the presence of

repeat region in the genome. Importantly, we were able to

generate good genome assembly (95% or greater genome covered

after comparative analysis) with Velvet, SOAPdenovo, ABySS and

IDBA-UD (not in case of C.elegans), but not Meraculous, with as

low as 20X depth of coverage (Tables 1, 2 and 3; See below
for detailed discussion). This is the first time that it has been

shown, using experimental data that such low coverage can yield

an acceptable genome assembly for small organisms such as

bacteria, yeast and worm. At the same time, we have

demonstrated that increasing the depth of sequencing does not

provide significant advantage when using Velvet, ABySS,
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SOAPdenovo and IDBA-UD but increasing the depth of

sequencing significantly improves the assembly generated by

Meraculous. However, even in the case of Meraculous, sequencing

depth .100X does not provide a significant benefit for small

genomes such as E.coli and S.kudriavzevii. Additionally, computa-

tional resources required for assembling read data of 20 X–100 X

depth ranges from 6–40 GB, for small genomes depending on the

assembler used.

E.coli MG1655 de novo assembly
E.coli Illumina reads at 20X, 35X, 50X, 100X, 150X and 200X

were assembled using SOAPdenovo, Velvet, ABySS, Meraculous

and IDBA-UD. The De bruijn graph based algorithm use a subset

of read called k-mer in order to identify overlaps between reads.

The k-mer value has a significant impact on the final assembly,

hence reads at each read depth were assembled using a range of

k-mer (55–91 for 50X–100X and 31–97 for 35X with steps of 2) to

identify the optimal k-mer for a given read depth (Data not

shown). K-mer corresponding to the maximum genome coverage

was taken as the optimum k-mer. The % genome covered (after

comparing with the reference genome) and N50 at the best

performing k-mer at each read depth was used to identify the

optimum read depth for assembling E.coli genome. Our analysis

reveals that in the case of this particular dataset, with as low as

20X, we could achieve .97% coverage with all assemblers, except

for Meraculous (Table 1). The N50 value also did not change

significantly from 35X to 200X for all assemblers except for

Meraculous where there is an approximately 2 fold increase in the

N50 value from 35X to 100X and approximately 3 fold increase

from 35X to 150X and 200X (Fig. 1A). Moreover, when

additional metrics such as average contig size, number of contigs,

maximum contig length and number of SNPs and InDels

(Table 1) in the assembled genome are considered, 50X read

depth appears to be optimum read depth for assembling E.coli

genome using all assemblers except for Meraculous. In case of

Meraculous, there is a 2 fold decrease in the number of contigs

and a 2 fold increase in the average contig length as well as a 1.5

fold increase in the maximum contig length when the read depth is

increased from 50X to 100X with no significant increase in these

metric thereafter (Table 1). Moreover, in case of Meraculous

there is a 2 fold decrease in the number of InDels present in the

assembled genome from 50X to 100X (Table 1). On comparing

genome assembled using Velvet, SOAPdenovo, ABySS and

IDBA-UD with the known reference (SNPs and InDels generated

by the GAGE script) there was a decrease in SNPs when the

sequencing depth increased to 150X, with the number of SNPs

actually increasing at 200X read depth (Table 1). Assembly

generated by Meraculous has only 1-2 SNPs at all of the

sequencing depth (Table 1).

We also measured the memory requirements for assembling

read data at different depth and found that the read data of up to

50X depth can be assembled with 6–16 GB RAM depending on

the assembly algorithm (Fig. 2A). Velvet and ABySS were the

most memory efficient in assembling the E. coli genome followed

by SOAPdenovo. Meraculous was the least memory efficient

assembly algorithm. Thus, for assembling E.coli genome using

Illumina sequence data, 50X coverage was sufficient to provide

.98.5% coverage of the genome using Velvet, SOAPdenovo,

ABySS and IDBA-UD, whereas to achieve same coverage a

sequencing depth of 100X was required when using Meraculous.

S.kudriavzevii de novo assembly
For S.kudriavzevii, Illumina reads at 20X, 35X, 50X, 100X,

150X and 200X were assembled using SOAPdenovo, Velvet,
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ABySS, Meraculous and IDBA-UD. Reads at each read depth

were assembled using a range of k-mer (55–91 for 50X–100X and

31–97 for 35X with steps of 2) to identify the optimal k-mer for a

given read depth. Our analysis revealed that for this dataset, with

as low as 20X, we could achieve .95% coverage with all

assemblers, except for Meraculous (Table 2). Genome coverage of

greater than 99% was obtained for Velvet, SOAPdenovo, ABySS

and IDBA for as low as 35X coverage and there was a negligible

increase in genome coverage with increasing sequencing depth

(Table 2). The N50 value however painted a slightly different

picture. The N50 value increased gradually for all assemblers

(except IDBA-UD) from 35X to 100X with non-significant

increase thereafter (Fig. 1B). The N50 value for assemblies

generated by IDBA-UD seems to plateau at 35X depth of

coverage. The maximum contig length and average contig size did

not change substantially from 35X to 200X depth of coverage for

Velvet, SOAPdenovo, ABySS and IDBA-UD, but the number of

contigs decreased by 2 fold only for Velvet. Additionally, for

Meraculous, there was a 3 fold decrease in the number of contigs

and a 3 fold increase in both, average contig length and maximum

contig length when depth was increased from 50X to 100X

(Table 2). We also evaluated the accuracy of the assembled

genomes by analyzing the number of SNPs and InDels found in

the genomes. There was no consistent pattern in the number of

SNPs and InDels found in the assembled genomes across all the

different depth and the assemblers (Table 2). Measurement of

computational requirements showed that read data of up to 100X

depth can be assembled with 12–40 GB RAM depending on the

assembly algorithm (Fig. 2B). ABySS was the most memory

efficient in assembling the yeast genome followed by Velvet.

Meraculous was again the least memory efficient assembly

algorithm requiring as much as 96 GB RAM to assemble the

S.kudriavzevii genome from the 200X dataset.

C.elegans de novo genome assembly
For C.elegans, Illumina reads at 20X, 35X, 50X, 100X, 150X

and 200X were assembled using SOAPdenovo, Velvet, ABySS,

Meraculous and IDBA-UD. Reads at each read depth were

assembled using a range of k-mer (55–91 for 50X–100X and 35–

95 for 35X with steps of 2) to identify the optimal k-mer for a given

read depth. Our analysis revealed that for the dataset used in this

study, we could achieve approximately 95% coverage with Velvet,

SOAPdenovo and ABySS, but only 24% with Meraculous and

approximately 90% with IDBA-UD (Table 3). Meraculous seems

to be particularly poor at assembling moderate sized genome as

the genome coverage achieved at even at 150X depth was 93%

(Table 3). Due to this inconsistent performance, we did not

generate C.elegans genome assembly using data with 35X read

depth. Velvet, SOAPdenovo, ABySS and IDBA-UD were able to

generate genome with approximately 95% coverage with as low as

35X read depth (Table 3). The N50 value increased by

approximately 3 fold and 1.8 fold for Velvet and ABySS

respectively, from 35X to 50X with gradual increase thereafter.

On analyzing the SNP and InDel data, we observed that Velvet

generated assembly had the highest number of SNPs and InDels,

whereas ABySS produced assemblies with least number of errors

(Table 3). Measurement of computational requirements showed

that assembly of C.elegans genome requires a large amount of RAM

at all the read depths. Approximately 24 GB, 32 GB, 36 GB,

40GB and 62 GB RAM is required by ABySS, SOAPdenovo,

Velvet, IDBA-UD and Meraculous respectively for 20X read data.

On the other hand, approximately 110 GB RAM is required by

ABySS, SOAPdenovo, Velvet and IDBA-UD, whereas 128 GB

RAM was required by Meraculous to assemble C.elegans genome
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from 200X read data (Fig. 2C). Thus, for assembling C.elegans

genome using Illumina sequence data, 50X depth was sufficient to

provide approximately 99% coverage of genome using ABySS,

100X depth was sufficient to provide approximately coverage of

the genome using SOAPdenovo, whereas with the data set used in

this study, Meraculous was able to achieve only 93% genome

coverage with 150X read depth.

Conclusions

Unlike large mammalian genomes where the depth of coverage

achieved is typically low (between 20X and 60X) [8;27] due to the

small size, genomes of small organisms get sequenced at a much

higher depth. Sequencing at higher depth without any benefit to

the outcome is wasteful not only from computational resource

perspective, but also of sequencing resources perspective.

Our results show that 35X–50X data obtained from NGS

platforms such as Illumina is sufficient to get good coverage of

small genomes such as bacteria and yeast. For moderate sized

genome such as C.elegans, read depth greater than 50X provides

good coverage of the genome and large contigs. As all of the

current NGS technologies allow multiplexing, a 50X or lower

depth of coverage provides opportunity for sequencing multiple

samples per run thereby further reducing the cost of whole

genome sequencing.

Figure 1. N50 value for the genomes assembled by Velvet, SOAPdenovo, ABySS, Meraculous and IDBA-UD. A) N50 for assembled E.coli
genome: N50 is the length of the smallest contig which when added to a set of larger contigs yields at least 50% of the genome. The N50 values for
IDBA-UD, Velvet and SOAPdenovo seemed to reach a plateau at 35X, ABySS at 50X depth of coverage. On the other hand, the N50 value of
Meraculous generated assembly increased till 150X depth of coverage. B) N50 for assembled S.kudriavzevii genome: IDBA-UD and SOAPdenovo
attained peak N50 value at 35X and 100X depth of coverage respectively, whereas the N50 value of Velvet, ABySS and Meraculous generated
assembly increased till 150X depth of coverage. C) N50 for assembled C.elegans genome: SOAPdenovo, ABySS and IDBA-UD reached peak N50 value
at 100X depth of coverage, whereas the N50 value of Velvet generated assembly increased approximately 1.5 fold until 150X with no change
thereafter. Velvet generated assembly had the best N50 values of all the 4 assemblers.
doi:10.1371/journal.pone.0060204.g001
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