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Kinesins that influence the dynamics of microtubule growth and shrinkage

require the ability to distinguish between the microtubule end and the micro-

tubule lattice. The microtubule depolymerizing kinesin MCAK has been

shown to specifically recognize the microtubule end. This ability is key to

the action of MCAK in regulating microtubule dynamics. We show that the

a4-helix of the motor domain is crucial to microtubule end recognition.

Mutation of the residues K524, E525 and R528, which are located in the

C-terminal half of the a4-helix, specifically disrupts the ability of MCAK to

recognize the microtubule end. Mutation of these residues, which are con-

served in the kinesin-13 family and discriminate members of this family

from translocating kinesins, impairs the ability of MCAK to discriminate

between the microtubule lattice and the microtubule end.
1. Introduction
Kinesins are a superfamily of proteins characterized by a common highly con-

served motor domain [1,2]. Kinesin activity can be broadly divided into two

classes: (i) translocating activity, which is moving directionally along the micro-

tubule lattice; and (ii) microtubule-regulating activity, which is altering

microtubule growth and shrinkage dynamics, with some families displaying

activity from each class. All kinesins which regulate microtubule dynamics

studied to date have the ability to distinguish between the microtubule end and

the microtubule lattice. For example, the kinesin-5 (Eg5), which enhances micro-

tubule polymerization, pauses at the microtubule plus end [3]. The kinesin-7

(CENP-E) and the non-motile kinesin (NOD), are both suggested to promote

polymerization and have been shown to localize preferentially to microtubule

ends [4,5]. The kinesin-8 (Kip3), which depolymerizes microtubules, resides on

the microtubule plus end longer than its stepping time on the microtubule lattice

[6]. Thus, the ability to distinguish microtubule lattice from microtubule end

appears to be a common theme among microtubule-regulating kinesins.

The molecular mechanism underlying specific recognition of the microtubule

end by a kinesin is not clear. Here, we focus on the microtubule depolymerizing

kinesin-13 (MCAK), which has been shown to discriminate microtubule end from

lattice [7–9]. Depolymerizing kinesins play a crucial role in the control of micro-

tubule length distributions in the cell [10,11]. The ATP turnover cycle of MCAK is

atypical, with the rate-limiting step in the absence of tubulin being ATP cleavage

rather than ADP dissociation [8]. Tubulin in any form (unpolymerized, micro-

tubule lattice or microtubule end) accelerates ATP cleavage such that ADP

dissociation becomes rate-limiting. While the ATPase activity of MCAK is par-

tially stimulated by any form of tubulin, microtubule ends maximally stimulate

the ATPase by accelerating ADP dissociation (electronic supplementary material,

figure S1). Only microtubule ends have the ability to accelerate ADP dissociation

from the MCAK motor domain.
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Figure 1. (a) Microtubule depolymerization rates of WT-MCAK and three variants: K524A, E525A and R528A. Box plots show the distribution of depolymerization
rates for individual microtubules upon the addition of 40 nM WT-MCAK or MCAK variant and in the absence of MCAK (No Prot). A representative kymograph is
shown for each condition. Addition of MCAK is indicated by the black arrow. (b) Crystal structure of the motor domain of human MCAK (PDB ID: 2HEH). The locations
of the three residues of interest in the a4-helix are marked. A schematic of an a/b-tubulin heterodimer is included to show the orientation of tubulin when in
complex with the MCAK motor domain [14]. The a4-helix binds in the intradimer groove between the a- and b-subunits of the tubulin heterodimer.
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Here, we show that three residues (K524, E525 and R528),

which are located in the C-terminal half of the a4-helix, play a

crucial role in the ability of MCAK to distinguish between the

microtubule lattice and the microtubule end. Mutation of

each of these residues to alanine not only reduces the resi-

dence time of MCAK at the microtubule end, but also

impairs the ability of the microtubule end to accelerate

ADP dissociation from the MCAK motor domain.
2. Results
2.1. Mutations in the a4-helix impair depolymerization

activity and microtubule-stimulated ATPase
To better understand what differentiates translocating kinesins

from microtubule-regulating kinesins, we made mutations to

the MCAK motor domain based on a comparative protein

sequence alignment of the motor domains of the kinesin-1

and kinesin-13 families (electronic supplementary material,

figure S2). We screened these mutants for depolymerization

activity (electronic supplementary material, figure S3). The

most potent mutations were in sequence motifs previously

shown to impair microtubule depolymerization activity:

Loop 2 and a4-helix [12,13]. Mutations in Loop 8 and Loop

11 also had a significant effect on microtubule depolymeriza-

tion. However, many positions shown by comparative

alignment to discriminate between the kinesin-13 and kine-

sin-1 families had little effect on the depolymerization

activity of human MCAK.

We chose to study in detail three mutants in the a4-helix,

K524A, E525A and R528A, each of which reduced depolymer-

ization activity by over 80% relative to wild-type MCAK

(electronic supplementary material, figure S3). These three

residues are highly conserved across the kinesin-13 family

and their mutation to alanine has previously been shown to

impair both the depolymerization activity and the micro-

tubule-stimulated ATPase of a motor-domain-only construct
of Plasmodium falciparum MCAK [13]. In agreement with

this, depolymerization rates of individual microtubules for

K524A, E525A and R528A were significantly reduced relative

to WT-MCAK: 0.13+0.05 mm min21, 0.10+0.03 mm min21,

0.29+0.09 mm min21 and 2.12+0.17 mm min21, respectively

(figure 1a and table 1). We need to understand the mechanism

by which mutation of these residues, which are located

on the tubulin binding face of the a4-helix (figure 1b),

affects the activity of MCAK to better understand the

function of the a4-helix in the process of microtubule

depolymerization.

To understand the mechanism by which the mutations

K524A, E525A and R528A attenuate microtubule depolymeri-

zation activity, we measured their ATPase activity (product

produced per motor domain per second) in solution (basal

ATPase), in the presence of unpolymerized tubulin (tubulin-

stimulated ATPase) and in the presence of microtubules

(microtubule-stimulated ATPase; figure 2). The basal ATPase

for each mutant was measured by a discontinuous assay in

which the production of ADP was followed using HPLC

(figure 2a). We use this assay as it is sufficiently sensitive

to detect the low level of ATPase activity of MCAK in solution

(approx. 2 � 1023 s21). We then measured the ATPase for each

mutant in the presence of unpolymerized tubulin (figure 2b)

and of microtubules (figure 2c), using an enzyme-linked

assay to follow the production of ADP. None of the mutations

resulted in a major change in basal ATPase activity or in tubu-

lin-stimulated ATPase activity (figure 2d and table 1). By

contrast, the microtubule-stimulated ATPase for each mutant

was significantly reduced (figure 2d). The microtubule-

stimulated ATPases for K524A and R528A were 4.5-fold and

4.8-fold lower, respectively, than the microtubule-stimulated

ATPases for WT-MCAK: 0.72+0.23 s21, 0.66+0.15 s21 and

3.16+0.43 s21 (figure 2d and table 1). The mutation E525A

had a greater effect, reducing the microtubule-stimulated

ATPase by 20-fold to 0.16+0.05 s21.

Thus, each of the mutants turns over ATP in solution

and in the presence of unpolymerized tubulin at the same



Table 1. Compiled values for the depolymerization rate ATPase activities, microtubule-end residence time and mantADP dissociation for WT-MCAK and the
mutants K524A, E525A and R528A.

MCAK variants WT K524A E525A R528A

(mm min21) (mean+ s.d.)

depolymerization rate 2.12+ 0.17

(n ¼ 18)

0.13+ 0.05

(n ¼ 16)

0.10+ 0.03

(n ¼ 16)

0.29+ 0.09

(n ¼ 14)

ATPase activity ATPase (s21) (mean+ s.e.m.)

solution (basal) 2.11+ 0.31 � 1023

(n ¼ 4)

2.15+ 0.31 � 1023

(n ¼ 3)

2.21+ 0.04 � 1023

(n ¼ 3)

3.68+ 0.02 � 1023

(n ¼ 3)

tubulin-stimulated 0.204+ 0.041

(n ¼ 7)

0.184+ 0.035

(n ¼ 4)

0.195+ 0.043

(n ¼ 4)

0.205+ 0.054

(n ¼ 4)

microtubule-stimulated 3.16+ 0.43

(n ¼ 6)

0.72+ 0.23

(n ¼ 3)

0.16+ 0.05

(n ¼ 3)

0.66+ 0.15

(n ¼ 3)

(s) (mean+ s.e.m.)

microtubule-end residence time 2.03+ 0.13

(n ¼ 238)

0.59+ 0.02

(n ¼ 260)

0.59+ 0.02

(n ¼ 229)

0.65+ 0.02

(n ¼ 264)

mantADP dissociation rate constant (s21) (mean+ s.e.m.)

solution 0.125+ 0.003

(n ¼ 5)

0.128+ 0.001

(n ¼ 4)

0.125+ 0.003

(n ¼ 4)

0.133+ 0.006

(n ¼ 4)

tubulin-stimulated 0.132+ 0.006

(n ¼ 3)

0.123+ 0.001

(n ¼ 3)

0.118+ 0.003

(n ¼ 3)

0.120+ 0.002

(n ¼ 3)

microtubule-

stimulateda

first phase 2.84+ 0.26

(n ¼ 4)

0.75+ 0.08

(n ¼ 3)

n.a. 1.07+ 0.12

(n ¼ 4)

second

phase

0.266+ 0.037

(n ¼ 4)

0.172+ 0.003

(n ¼ 3)

0.178+ 0.003

(n ¼ 3)

0.207+ 0.005

(n ¼ 4)
aFor microtubule-stimulated mantADP dissociation the data for WT-MCAK, K524A and R528A were fitted to a double exponential function. Therefore, two rate constants
were obtained, labelled first and second phases. The data for E525A fit well to a single exponential and so only one rate constant was obtained for this mutant.
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or similar rate to WT-MCAK, indicating that these mutations

have altered neither the structure of the nucleotide-binding

site of the MCAK motor domain nor its ability to interact

with unpolymerized tubulin. By contrast, each mutation

significantly reduced the microtubule-stimulated ATPase

relative to WT-MCAK, indicating that their reduced depoly-

merization activity results from disruption of an interaction

between MCAK and microtubules which is not formed

with unpolymerized tubulin.

2.2. Mutations in the a4-helix do not affect interaction
with the microtubule lattice

The simplest explanation for the pattern of ATPase activities

observed for the mutants K524A, E525A and R528A is that

they have abolished the ability of MCAK to interact with the

microtubule. MCAK has two modes of microtubule inter-

action: (i) a diffusive interaction with the lattice [15,16], and

(ii) a tightly bound interaction with the microtubule end

[7,9,17]. These mutations may disrupt one or both of these

modes of interaction. To distinguish between the diffusive

interaction with the microtubule lattice and the tightly bound

complex at the microtubule end, we observed GFP-tagged

WT-MCAK and mutants at single-molecule concentrations

using TIRF microscopy. Numerous lattice interaction events

were observed for WT-MCAK and each of the mutants

(figure 3a). There was no significant difference in the duration
of lattice interaction events between WT-MCAK and the

mutants (electronic supplementary material, figure S4): neither

the mean lattice residence time nor lattice dissociation constant

(koff) was affected by these mutations (electronic supplemen-

tary material, table S1). Furthermore, there was no significant

effect on the microtubule association rate (kon) (electronic sup-

plementary material, table S1). Taken together these data

indicate that the mutations K524A, E525A and R528A have

not changed the affinity of MCAK for the microtubule lattice.

These data are contrary to previous work which showed that

kinesin-13 constructs containing one or more of the same

mutations did not bind microtubules [13,14]. This difference

is probably due to monomeric motor-domain-only constructs

previously used compared with full-length dimeric MCAK

used here.

2.3. Mutations in the a4-helix reduce residence time
at the microtubule end

As the interaction of MCAK with the microtubule lattice was

not altered by these mutations, we then focused on the inter-

action between MCAK and the microtubule end. For both

WT-MCAK and the mutants, many end interaction events

were observed (figure 3). However, the duration of these

events was dramatically different for the mutants relative to

WT-MCAK. Both WT-MCAK and the mutants had many end

interaction events lasting less than 2 s. However, in addition
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Figure 2. Microtubule-stimulated ATPase is reduced by mutations to the a4-helix. (a) Change in fraction of ATP upon addition of WT-MCAK or MCAK variants
K524A, E525A or R528A in solution (the absence of tubulin and microtubules). (b,c) Change in fluorescence intensity of NADH, which reports on production of ADP,
upon addition of WT-MCAK or the MCAK variants K524A, E525A or R528A in the presence of (b) 10 mM GDP.tubulin or (c) 10 mM GMPCPP-stabilized microtubules.
(d ) Bar chart showing ATPase (mean+s.e.m.) for WT-MCAK and K524A, E525A and R528A in solution, in the presence of unpolymerized tubulin and in the
presence of microtubules. Inset: ATPase in solution shown on a different scale.
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to these short interactions WT-MCAK also had many longer

interactions with the microtubule end. For WT-MCAK, 31.5%

of microtubule end interaction events were longer than 2 s

(figure 3b). By contrast, for K524A, E525A and R528A, only

0%, 0.9% and 0%, respectively, of observed microtubule end

interaction events were longer than 2 s (figure 3b).

The mean end residence times for WT-MCAK, K524A,

E525A and R528A were 2.03+0.13 s, 0.59+0.02 s, 0.59+
0.02 s and 0.65+0.02 s, respectively (table 1). Thus, each of

these mutations reduced the mean end residence time for

MCAK more than threefold. These mutations have caused

MCAK to lose the long end residence events observed for

the wild-type (figure 3b). The microtubule end residence

times for the mutants are not significantly different to the lat-

tice residence times for both WT-MCAK and mutants. These

data suggest that the mutations have impaired and possibly

abolished the ability of MCAK to discriminate between the

microtubule lattice and the microtubule end.
2.4. Microtubule-end-accelerated ADP dissociation is
slowed or abolished by mutations in the a4-helix

The microtubule end maximally activates the ATPase activity of

MCAK by accelerating ADP dissociation [8]. Only the
microtubule end accelerates ADP dissociation from MCAK;

therefore, tubulin in other forms only partially activates the

ATPase (electronic supplementary material, figure S1). Our

data indicate that the mutations K524A, E525A and R528A

disrupt the ability of MCAK to discriminate between the micro-

tubule end and the lattice. Thus, the ability of microtubule

ends to accelerate ADP dissociation should also be impaired

by these mutations. To test this, we measured the kinetics of

ADP dissociation by preloading the nucleotide-binding site

with a fluorescent ADP analogue (mantADP) and using rapid

mixing to observe the fluorescence decrease associated with

its dissociation from the motor domain (figure 4a–c) [18,19].

The rate constant for mantADP dissociation from MCAK in

solution and in the presence of unpolymerized tubulin

is unchanged by the mutations (figure 4d and table 1). By con-

trast, the kinetics of microtubule-stimulated dissociation of

mantADP are significantly altered relative to WT-MCAK

(figure 4d and table 1).

The decrease in fluorescence observed upon dissociation

of mantADP from WT-MCAK in the presence of micro-

tubules is well described by a double exponential function

(figure 4c; electronic supplementary material, figure S5).

The first (faster) phase results from microtubule end-

stimulated dissociation of mantADP. The second (slower)

phase reflects mantADP dissociation from molecules that
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fail to reach a microtubule end. These could be molecules

from which mantADP dissociates when in solution, in con-

tact with unpolymerized tubulin or in contact with the

microtubule lattice [8]. In support of this interpretation,

the rate constant of the second phase agrees with that for

mantADP dissociation from MCAK in solution and in the

presence of unpolymerized tubulin (figure 4d and table 1).

The decrease in fluorescence upon mantADP dissociation

from the mutants K524A and R528A in the presence of microtu-

bules remained well described by a double exponential function

(figure 4c; electronic supplementary material, figure S5). How-

ever, while the rate constant for the second phase was

unaffected, the rate constant for the first phase was significantly

reduced: 0.75+0.08 s21, 1.07+0.12 s21 and 2.84+0.26 s21 for

K524A, R528A and WT, respectively (figure 4d and table 1).

Thus, the microtubule-end-stimulated mantADP dissociation

constant is reduced 3.8-fold and 2.7-fold by K524A and

R528A, respectively.

The mutation E525A had the greatest effect on microtubule-

end-stimulated ADP dissociation. The fluorescence decrease

observed upon dissociation of mantADP from E525A in the

presence of microtubules did not require fitting to a double

exponential function but was well described by a single

exponential (figure 4c; electronic supplementary material,

figure S5). The first (faster) phase, attributed to microtubule-

end-stimulated mantADP dissociation, was not observed.

The rate constant determined for the single exponential was

0.178+0.003 s21, which is consistent with the rate constant

for the second phase of the double exponential traces observed

for WT, K524A and R528A (figure 4d and table 1). These data

suggest that the mutation E525A has affected the interaction of

MCAK with the microtubule end such that the microtubule

end does not accelerate ADP dissociation. Rather, for E525A,
microtubule-end-stimulated mantADP dissociation occurs

with the same rate constant as lattice tubulin or unpolymerized

tubulin-stimulated mantADP dissociation. Therefore, ADP dis-

sociation at the microtubule end is not distinguishable from

ADP dissociation on the microtubule lattice. Thus, the fluor-

escence decrease upon mantADP dissociation for this mutant

is described by a single exponential. These data indicate

that mutation of E525 eliminates the ability of MCAK to

discriminate between microtubule lattice and end.
3. Discussion
3.1. The a4-helix is critical for MCAK to distinguish

between the microtubule lattice and end
Each of the mutations to the a4-helix of the MCAK motor

domain significantly reduces the microtubule-end residence

time, while having no effect on the lattice residence time or

the affinity of MCAK for the microtubule lattice. This contrasts

with previous work in which kinesin-13 constructs containing

one or more of the same mutations do not bind any region of

the microtubule [13,14]. This difference is probably due to pre-

vious work using monomeric motor-domain-only constructs

rather than full-length dimeric MCAK. These observations

suggest that both motor domains of the MCAK dimer make

a contribution to lattice affinity and/or that regions outside

the motor domain are involved in the diffusive interaction

with the lattice. Previous work has shown that regions outside

the motor domain do play a role in regulating affinity for the

microtubule [20–22]. The data presented here indicate that

the motor domain (and in particular the a4-helix) is critical

for MCAK to discriminate the microtubule end from the lattice.
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In terms of residence time, there is a clear distinction between

the microtubule lattice and microtubule end for WT-MCAK,

whereas for the mutants K524A, E525A and R528A there is

no significant difference. Our data indicate that it is the dur-

ation, rather than the number, of end interaction events that

is altered by these mutations. This suggests that the short

(less than 2 s) interactions with the microtubule end are

mainly not productive for removal of tubulin.

3.2. Microtubule-end recognition via the a4-helix
promotes nucleotide exchange

Each of the mutations studied here significantly reduces

the microtubule-end-stimulated rate constant for ADP dis-

sociation. Indeed, E525A reduces this rate constant such that

it becomes indistinguishable from lattice-stimulated ADP

dissociation. These data indicate that the a4-helix is crucial to

microtubule-end-stimulated nucleotide exchange. By dimin-

ishing the ability of MCAK to recognize the microtubule end,

these mutations slow end-stimulated ADP dissociation and

therefore slow the exchange of ADP for ATP promoted by

the microtubule end. By reducing the probability of exchange
of ADP for ATP the tightly bound ATP.MCAK complex

formed at the microtubule end is disfavoured. This leads to

the observed reduction in microtubule-end residence time

and diminished depolymerization activity. Thus, our data

indicate that these residues in the a4-helix are crucial to the

interaction with the microtubule end which promotes ADP

release from the nucleotide-binding site.

3.3. MCAK resides at the microtubule end for many
rounds of ATP turnover

The lifetime of ATP.MCAK in the presence of microtubules is

0.1 s [8]. This suggests that, during the mean end residence

time for WT-MCAK of 2 s (table 1) [15], a single MCAK mol-

ecule remains associated with the microtubule end for on

average 20 cycles of ATP turnover. It remains to be determined

how MCAK maintains this association through rounds of ATP

turnover during which the motor domain will cycle between

states of high and low affinity for tubulin. It is probable that,

since MCAK is a dimer, the two motor domains are coordi-

nated such that one motor domain has high affinity for

tubulin when the other has low affinity.
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3.4. Structural basis of microtubule-end recognition
by MCAK

Available structures of kinesin-13 motor domains bound to

tubulin [14] or docked onto the structure of the microtubule

[12] shed light on why mutations in the a4-helix should dis-

rupt MCAK’s interaction with the microtubule end but not

with unpolymerized tubulin or the microtubule lattice.

A cryoEM structure of a Drosophila homologue of MCAK in

complex with tubulin, in the form of protofilament rings,

shows the a4-helix bound in the intradimer groove of a tubu-

lin heterodimer that is deformed by the interaction with the

kinesin-13 motor domain [14]. None of the residues equival-

ent to K524, E525 or R528 interact with tubulin in this

structure. Our observation that mutation of these residues

has no effect on the ATP turnover cycle of MCAK in the pres-

ence of unpolymerized tubulin but a large effect on the

turnover cycle in the presence of microtubules suggests that

the protofilament ring complex probably mimics the inter-

action of kinesin-13 with unpolymerized tubulin rather than

the complex formed at the microtubule end.

A model of the mouse MCAK motor domain docked in
silico onto a curved tubulin heterodimer, as is suggested to

exist at the microtubule end, indicates that the a4-helix

has the potential to fit well in the intradimer groove of curved

a/b-tubulin [12]. This is not the case when MCAK is docked

onto a straight tubulin dimer, as exists within the microtubule

lattice. The residues equivalent to K524, E525 and R528 (K520,

E521 and R524) form part of the binding interface in the com-

plex of MCAK with curved tubulin in this model. That the

a4-helix, and these residues in particular, form a better interface

with curved tubulin than straight tubulin suggests a mechan-

ism by which the a4-helix may allow MCAK to distinguish

between the microtubule end and the lattice.

3.5. Structural basis of microtubule-end-stimulated ADP
dissociation

Recently published structures of the kinesin-1 motor domain in

complex with tubulin have highlighted the interaction of the

a4-helix with tubulin as a major driver of conformational

changes in the nucleotide-binding site [23,24]. Here, we show

that the mutated residues, which are in the C-terminal half of

the a4-helix, are not important for either microtubule or unpo-

lymerized tubulin activation of the ATP cleavage step of ATP

turnover by MCAK. However, these residues are vital for the

activation of ADP dissociation by the microtubule end. This

suggests that the C-terminal half of the a4-helix is not involved

in driving the conformational change of the switch loops

(L9 and L11), which renders the nucleotide-binding site com-

petent to hydrolyse ATP, upon interaction with tubulin [24].

They are, however, vital to microtubule-end-stimulated release

of ADP, suggesting they drive opening of the switch loops

upon interaction with the microtubule end.

3.6. Implications for regulation of the activity of MCAK
The requirement to recognize the end of the microtubule to

facilitate depolymerization appears to be exploited by regu-

latory proteins to alter the activity of MCAK. For example, the

microtubule tip tracking protein EB3 increases the catastrophe-

causing activity of MCAK by localizing it to the microtubule
plus end via a direct interaction between EB3 and MCAK [25].

The increased activity of MCAK in the presence of EB3 is

probably due to an effective higher concentration of MCAK at

the microtubule end due to an increased end residence time.

By contrast, the microtubule-stabilizing protein XMAP215 sup-

presses the microtubule catastrophe-inducing activity of the

Xenopus MCAK orthologue, XKCM1 [26]. XMAP215 is a

microtubule þ TIP tracking protein which promotes microtu-

bule polymerization. XMAP215 may suppress the activity of

XKCM1 by occluding or eradicating the particular feature of

the microtubule end recognized by kinesin-13s.

3.7. Molecular mechanism of microtubule-end
recognition and depolymerization

MCAK reaches the microtubule end in an ADP-bound state

primarily via lattice diffusion (figure 5a). MCAK can also

directly bind the microtubule end; however, the larger

number of lattice binding sites versus end binding sites

suggests the majority of molecules reach the end via lattice dif-

fusion [15,16]. Upon reaching the microtubule end, MCAK

recognizes a structural feature associated with this region

(figure 5b). Available evidence suggests that this feature is

probably a particular degree of curvature or flexibility of tubu-

lin found only at or near the microtubule end [12,27]. Another

possibility is that MCAK recognizes the nucleotide state of

tubulin at the microtubule end; however, MCAK can dis-

tinguish lattice from end in microtubules containing only one

nucleotide type, suggesting that this is a less likely mechanism

of end recognition. It is also possible that the absence of a longi-

tudinal neighbour of the terminal tubulin is the feature by

which MCAK distinguishes the microtubule end. Whatever

the microtubule-end-specific feature, our data suggest that

the a4-helix plays a crucial role in its recognition. Interaction

of the motor domain with the microtubule end accelerates

ADP dissociation, stimulating exchange of ADP for ATP

(figure 5c). In the ATP-bound state, MCAK binds more tightly

to tubulin, forming a depolymerization-competent complex at

the end of the microtubule. This interaction probably promotes

microtubule depolymerization by the deformation of the

bound tubulin dimer (figure 5d). It remains to be determined

whether deformation of tubulin dimers is sufficient to cause

their dissociation from the microtubule or whether active

severing at the interdimer interfaces is also required. It could

be that structural features of the motor domain suggested to

contact the interdimer interface, such as Loop 2 and Loop 8

[12,14], destabilize longitudinal interactions.

It is possible that structural elements of the kinesin-13

motor domain in addition to the a4-helix are required for

microtubule-end recognition. However, it is clear from the

work described here that the a4-helix is critical to enable

discrimination of microtubule lattice from microtubule end.

It will be interesting to discover whether this role of the

a4-helix in microtubule-end recognition by kinesin-13s is

shared by other microtubule-regulating kinesins.
4. Material and methods
4.1. Proteins
Full-length human MCAK-his6, MCAK-his6-EGFP and all

variants of these proteins were expressed in Sf9 cells and
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Figure 5. Possible mechanism of microtubule end recognition and depolymerization. (a) MCAK reaches the microtubule end principally by lattice diffusion in the
ADP-bound state. (b) MCAK recognizes a structural feature found at or near the microtubule end (indicated by blue lines). The a4-helix (red circle) is critical to this
recognition. (c) The interaction between MCAK and the microtubule end accelerates dissociation of ADP, thereby promoting nucleotide exchange. ATP.MCAK binds
tightly to tubulin, forming a depolymerization-competent complex at the microtubule end. It is not currently known if and how the two motor domains of the
MCAK dimer are coordinated during this process. (d ) Binding of ATP.MCAK probably deforms the tubulin dimer, thereby promoting dissociation of tubulin.
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purified using cation exchange and Ni-affinity chromato-

graphy [15]. MCAK concentrations are given as the

concentration of monomer.

Porcine brain tubulin was isolated as described in [28].
4.2. Microtubules
Single-cycled, rhodamine-labelled, GMPCPP-stabilized micro-

tubules were prepared by incubating 2 mM tubulin containing

25% rhodamine-labelled tubulin in BRB80 (80 mM PIPES pH

6.9, 1 mM MgCl2, 1 mM EGTA) supplemented with 1 mM

GMPCPP for 2 h at 378C. Microtubules were pelleted using a

Beckman Airfuge Ultracentrifuge and resuspended in BRB80

buffer to be used directly.

Double-cycled, GMPCPP-stabilized microtubules were

made as described in [29]. These microtubules were stored

in liquid N2 and thawed at 378C immediately prior to use.

The concentration stated for microtubules is the

concentration of polymerized tubulin.
4.3. Microtubule depolymerization by fluorescence
microscopy

Single-cycled, rhodamine-labelled, GMPCPP-stabilized micro-

tubules were adhered to the surface of flow chambers prepared

from treated coverslips as described in [15,29]. Images of a field

of fluorescent microtubules were recorded on a DeltaVision

Elite microscope (Applied Precision/GE Healthcare) equipped

with a 100� objective (UPlanSApo/1.4NA oil, Olympus) and

an Evolve 512 EMCCD camera (Photometrics). Experiments

were performed at 258C. In total, 40 nM MCAK or MCAK

mutants were added in BRB20 pH 6.9, 75 mM KCl, 1 mM

ATP, 0.05% Tween 20, 0.1 mg ml21 BSA, 1% 2-mercaptoetha-

nol, 40 mM glucose, 40 mg ml21 glucose oxidase, 16 mg ml21

catalase to the channel 1 min after acquisition had commenced.

Depolymerization rates were determined from plots of the

length of individual microtubules versus time, obtained by

thresholding and particle analysis of images using FIJI [30].
4.4. ATPase activity
Assays were performed in BRB80 pH 6.9, 75 mM KCl, 2 mM

MgATP, 1 mM DTT, 0.05% Tween at 258C. Assays were

initiated by the addition of MCAK to the ATP containing

buffer. The concentration of MCAK or MCAK mutant used

was 3 mM for ATPase assays in solution and 0.1 mM for

assays in the presence of unpolymerized tubulin or microtu-

bules. ATPase rates in solution were measured by monitoring

the production of ADP using HPLC to separate ADP from

ATP as described in [8,18]. ATPase rates in the presence of

unpolymerized tubulin or microtubules were measured by

linking the production of ADP to the oxidation of NADH as

described in [31]. Unpolymerized GDP-tubulin was added at

a final concentration of 10 mM. Double-cycled, GMPCPP-

stabilized microtubules [29] were added at a final concentration

of 10 mM polymerized tubulin. The oxidation of NADH was

monitored via fluorescence (lex ¼ 340 nm, lem ¼ 460 nm).

The change in fluorescence intensity per unit time was

obtained by fitting the initial signal change to a linear function.

The change in fluorescence was converted into change in

concentration of ADP using a standard curve. The change

in concentration of ADP per unit time was then divided by

the concentration of MCAK to give the ATPase activity per

second per motor domain.
4.5. Single molecule TIRF
Single-cycled, rhodamine-labelled, GMPCPP-stabilized micro-

tubules were stuck onto the surface of flow chambers prepared

as described in [15,29]. MCAK-GFP or GFP-labelled MCAK

mutants at single-molecule concentrations (1–6 nM) were

added to a microtubule containing flow cell in BRB20 pH 6.9,

75 mM KCl, 1 mM ATP, 0.05% Tween 20, 0.1 mg ml21 BSA,

1% 2-mercaptoethanol, 40 mM glucose, 40 mg ml21 glucose

oxidase, 16 mg ml21 catalase.

Images were recorded using a Zeiss Observer Z1 micro-

scope equipped with a Zeiss Laser TIRF 3 module, QuantEM

512SC EMCDD camera (Photometrics) and 100� objective
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(Zeiss, alphaPlanApo/1.46NA oil). Experiments were per-

formed at 258C. Images of rhodamine-labelled microtubules

were recorded using a lamp as the excitation source (Zeiss,

HBO 100) and Zeiss filter set 20. TIRF data (measuring GFP

fluorescence emission) were collected using a 488 nm laser as

the light source (nominal power at the objective of 2 mW),

directed through the Zeiss TIRF 3 module and using Zeiss

filter set 38. For both rhodamine and GFP imaging, an exposure

time of 100 ms was used.

Images were collected using the following protocol: (i) a

single image of rhodamine-labelled microtubules, (ii) 200

images of MCAK-GFP with TIRF illumination and the

camera ‘streaming’ with a frame rate of 7.4 Hz and (iii) a

second single image of rhodamine-labelled microtubules (to

check that neither significant depolymerization nor movement

of the stage had occurred). For analysis, each frame of the

MCAK-GFP dataset was colour-combined with the corre-

sponding image of rhodamine-labelled microtubules in

FIJI [30] to enable identification of on-microtubule events.

Kymographs for individual microtubules were used to

measure the duration of individual GFP localization events at

the microtubule end and on the lattice, also in FIJI [30].

4.6. Dissociation of mantADP
MCAK or MCAK variants were preloaded with mantADP as

described in [18,19]. The kinetics of dissociation of mantADP

from MCAK were measured by rapidly mixing 1 : 1 v/v,

using an SX20 stopped-flow fluorimeter (Applied Photo-

physics) with an excess of unlabelled ATP at 258C. The

fluorescence of the mant group was excited at 365 nm and
the emitted fluorescence collected using a BP445/50 filter

(Zeiss). These assays were carried out either in solution, in

the presence of 10 mM unpolymerized GDP-tubulin or in the

presence of 5.7 mM double-cycled GMPCPP microtubules.

The concentration of microtubules was chosen such that an

equivalent number of microtubule ends were present in these

assays as in the microtubule-stimulated ATPase assays. The

same double-cycled GMPCPP-stabilized microtubules, which

have an average length of 2.1 mm [8], were used in both. How-

ever, microtubules break when pushed through the stopped-

flow, resulting in microtubules with an average length of

1.2 mm [8]. The resulting fluorescent transients were fitted

using IGOR PRO (Wavemetrics, Lake Oswego, OR, USA) to a

single or a double exponential function plus a line of constant

negative slope to account for photobleaching of the mant

group, as described in [19].
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