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ABSTRACT: Layer-by-layer film (LbL) coatings made of polyelectrolytes are a powerful tool for surface modification, including the
applications in the biomedical field, for food packaging, and in many electrochemical systems. However, despite the number of
publications related to LbL assembly, predicting LbL coating properties represents quite a challenge, can take a long time, and be
very costly. Machine learning (ML) methodologies that are now emerging can accelerate and improve new coating development and
potentially revolutionize the field. Recently, we have demonstrated a preliminary ML-based model for coating thickness prediction.
In this paper, we compared several ML algorithms for optimizing a methodology for coating thickness prediction, namely, linear
regression, Support Vector Regressor, Random Forest Regressor, and Extra Tree Regressor. The current research has shown that
learning algorithms are effective in predicting the coating output value, with the Extra Tree Regressor algorithm demonstrating
superior predictive performance, when used in combination with optimized hyperparameters and with missing data imputation. The
best predictors of the coating thickness were determined, and they can be later used to accurately predict coating thickness, avoiding
measurement of multiple parameters. The development of optimized methodologies will ensure different reliable predictive models
for coating property/function relations. As a continuation, the methodology can be adapted and used for predicting the outputs
connected to antimicrobial, anti-inflammatory, and antiviral properties in order to be able to respond to actual biomedical problems
such as antibiotic resistance, implant rejection, or COVID-19 outbreak.

1. INTRODUCTION

Implants and prostheses have become common routes to treat
various medical pathologies. However, their use is often linked
to complications such as an averse immune response and
bacterial and fungal infections.1,2 In this context, new
approaches are urgently needed. However, development of
new biomaterial systems empirically entails significant costs
and time consumption.3,4

One of the approaches to modify implant surfaces consists of
layer-by-layer (LbL) film deposition, which is very versatile
and can be used for multiple biomedical applications5,6 via
antibacterial and anti-inflammatory films,7−9 osteogenic
films,10,11 drug delivery microcapsule fabrication,12 etc. Other
applications include food packaging,13 optical fiber sensing,14

and many electrochemical systems.15

However, despite the number of publications in the field,16

predicting film properties represents quite a challenge, and
variations from bulk behaviors are common. Film composition,
its component properties, ratios, pre-processing, environmental
factors, and a variety of other material-based parameters have
also been found to have a significant effect on film
properties.17,18 Polymer manufacturing is difficult to forecast
and model in general owing to the interdependence of
processing environments, polymer structures, and geometries.
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Process modeling usually entails large amounts of testing as
well as computational modeling and/or numerical simulation,
and such techniques are often cyclical, with many trial-and-
error runs, expensive and time-consuming experiments, and
material losses.19,20

Machine learning (ML) algorithms have been advocated to
solve complex modeling and optimization problems in
numerous engineering fields as numerical computational
power has increased.21 It is a subfield of artificial intelligence
(AI) concerned with the creation of models (knowledge) that
can efficiently learn from real data.22−24 Over the last few
decades, ML has evolved into a wide field of study, resulting in
a variety of different algorithms, hypotheses, methods,
implementation areas, etc.25 However, learning/algorithms
have been broadly classified into three categories:

• supervised learning, in which learning is dependent on
comparing computed output to desired output; the

algorithm creates a model that maps inputs to desired
outputs;

• unsupervised learning, in which learning is based solely
on the pattern of input; the algorithm is programmed to
derive structure from results;

• reinforcement learning, in which the algorithm learns
policies/rules on how to behave in order to produce the
best outcomes by trial and error.25,26

Today, the field of ML has proven useful in many industries
and scientific fields. ML algorithms have shown great promise
as effective methods for simulation and classification of
dynamic manufacturing processes27 and materials science
problems.28−30 When compared to traditional statistical
modeling techniques like linear regression and response
surface methodology, ML-based approaches have shown
dominance as modeling techniques for data sets with nonlinear
relationships.31,32 These techniques have demonstrated sur-
prising capability in recognizing patterns in complex systems

Table 1. Dataset Inputs for Predicting Film Thickness (nm)a

input name description (continuous/categorical/yes−no) variable
method OWLS AFM−CLSM AFM QCM-D profilometry

OFAR ellipsometry SEM NR
polycation PAH PEI CHI PLL PDADMA

PDADMAC glyc-CHI COL PTEMC PAni
iMAPA PAR

polyanion PGA HA PAA PSS ALG
CSA HEP PCBS PSSMA FUC
CARiota Pectin DEX CARkappa CARlambda

polycation unit MW, kDa continuous variable
polyanion unit MW, kDa continuous variable
polycation MW, kDa continuous variable
polyanion MW, kDa continuous variable
number of bilayers continuous variable
ending polymer none PGA HA PAA PSS

PDADMA CSA glyc-CHI PCBS HEP
PAH CARiota pectin COL CHI
PLL PEI FUC CARkappa CARlambda

concentration of polyanion, mg/mL continuous variable
concentration of polycation, mg/mL continuous variable
cross-linking no EDC/S-NHS EDC/NHS

GLUT genipin glutaraldehyde
duration of each layer deposition, min continuous variable
presence of negatively charged groups: COO− yes/no
charge density (charges per unit), polycation continuous variable
charge density (charges per unit), polyanion continuous variable
presence of negatively charged groups sulfonates: −SO3− yes/no
presence of negatively charged groups sulfates: −O−SO3− yes/no
pH polycation continuous variable
pH polyanion continuous variable
buffer no value HEPES MES + Tris Tris NaCl

KCl MgCl2 acetate NaNO3
buffer concentration, mM continuous variable
NaCl, M continuous variable

aAFM: atomic force microscopy; ALG: alginate; CARiota: ι-carrageenan; CARkappa: κ-carrageenan; CARlambda: λ-carrageenan; CHI: chitosan;
CLSM: confocal laser scanning microscopy; COL: collagen; CSA: chondroitin sulfate; DEX: dextran; EDC: 1-ethyl-3-(3-dimethylaminopropyl)-
carbodiimide; FUC: fucoidan; GLUT: glutaraldehyde; glyc-CHI: glycol-chitosan; HA: hyaluronic acid; HEP: heparin; iMAPA: insoluble multi-L-
arginyl-poly-L-aspartate; NR: neutron reflectometry; OFAR: optical fixed angle reflectometry; OWLS: optical waveguide light-mode spectroscopy;
PAA: poly(acrylic acid); PAH: poly(allylamine hydrochloride); PAR: poly(L-arginine); PAni: polyaniline; PCBS: poly[1-[4-(3-carboxy-4-
hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt; PDADMA: poly(diallyldimethylammonium chloride); PDADMAC:
poly(diallyldimethylammonium chloride); PEI: polyethylenimine; PGA: poly(L-glutamic acid); PLL: poly(L-lysine); PSS: poly (styrene sulfonate);
PSSMA: poly(4-styrenesulfonic acid-co-maleic acid); PTEMC: poly(trimethylammonium ethyl methacrylate chloride); QCM-D: quartz crystal
microbalance with dissipation monitoring; SEM: scanning electron microscopy; S-NHS: N-hydroxysulfosuccinimide.
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and capture interactions among input and output variables in a
system. They have also shown enormous performance in
quantitative structure−property relationship investigations.28
In the field of LbL films, which often take a long time to
fabricate, ML algorithms are promising to solve a problem of
film property prediction, from their physicochemical to
biological features. This would save time and allow accelerated
and improved LbL film development for various applications as
the production of well-controlled (nanoscale precision) LbL
films of 1 μm and higher can take at least several hours for each
pair of polyelectrolytes studied. However, up to now, the use of
ML is limited in the biomaterials field due to the lack of
normalized data, the multiparametric nature of the structure
function relationships, and also the lack of industrial processes
that are comparable in their nature.
As an iterative process, where parametrization is easily

achievable, LbL coatings provide an opportunity to transfer
ML techniques to functional biomaterial design. As such, in the
recent paper by Gribova et al., the authors used literature data
and in-house generated experimental results to analyze the
relative impact of 23 different coating parameters on the
coating thickness.33 This is the first time the authors utilized
ML in prediction of coating properties. However, in order to
simplify the modeling process, Gribova et al. assumed that
coating thickness has a linear relationship with the number of
bilayers. As a result, they have adopted eight bilayers as a basis
for calculation of coating thickness. On the contrary, in this
paper, we do not use a constant number of bilayers as input,
but rather a number of bilayers in the range of 1 to 125 is taken
as one of the features in prediction. Additionally, in this paper,
we develop a methodology for prediction of coating output
based on several ML algorithms, namely, linear regression,
Support Vector Regressor (SVR), Random Forest Regressor,
and Extra Tree Regressor. These algorithms do not assume
linearity and moreover include also nonlinear relationship with
input attributes. In general, nonlinear algorithms have many
advantages that make them ideal for forecasting regression
problems in a multiparameter production process.31 Following
the demonstration of the feasibility of the coating property
prediction, it is important to analyze the suitability of the
available algorithm options to ensure models with the least
overfitting and better predictive capacities.
The main contributions of the paper are reflected in several

aspects:

• ML algorithm selection is employed to the problem of
coating thickness prediction, utilizing advanced method-
ology for a problem that was not approached in such a
way before;

• reduction of number of experiments in finding the
optimal conditions (thickness of different coatings is
hard to control as they are a factor of many attributes,
thus leading to large material consumption and
repetitive experiments);

• predictive nature of the model that allows for fast
response in different applications (i.e., response to the
COVID-19 pandemic).

2. MATERIALS AND METHODS
2.1. Data Collection. The methodology for data

collection, both from the literature and experimental data,
was previously described in the paper by Gribova et al.33

Briefly, film thickness data from the literature were combined
with the in-house data produced using a Quartz Crystal
Microbalance with dissipation monitoring (QCM-D), and
different features such as polymer concentration, molecular
weight, charge density, etc., were included (Table S1).
2.2. Dataset. The whole dataset for prediction of coating

thickness included the 22 input features presented in Table 1
(method as a feature was excluded from analysis, so the used
attributes were polycation, polyanion, polycation unit MW,
polyanion unit MW, polycation MW, polyanion MW, number
of bilayers, ending polymer, concentration of polyanion,
concentration of polycation, cross-linking, duration of each
layer deposition, etc.). Targeted prediction output is film
thickness (measured by QCM-D, CLSM etc.) in nm. The total
number of instances was 98 from the literature and 33 from the
in-house experiments, resulting in a total of 131 instances.
Description of the dataset in the form of mean, standard

deviation, and minimal and maximal values is given:
• Mean of film thickness is 677 nm;
• Standard deviation of film thickness is 2051 nm;
• Minimum of film thickness is 3 nm;
• Maximum of film thickness is 15000 nm.
In the preprocessing stage, label encoding was used to

convert each categorical value in a column to a number, based
on a total number of unique values (i.e., polycation had 12
different values, meaning that these strings were coded as
numbers 1−12).
2.3. Workflow. The estimation of coating thickness was

based on 22 different input features, after which the machine
learning methods were introduced to employ automatic
methods for prediction of coating thickness and determine
the most relevant parameters in output thickness prediction.
The workflow for the proposed methodology is given in Figure
1. Combined experimental and literature data are forwarded as

Figure 1. Workflow for coating thickness prediction using machine learning.
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inputs to the ML models. As preprocessing methods, outlier
removal and missing data imputation are performed, after
which different regression models are employed (including
hyperparameter tuning and selection of K best predictors of
the output) to get the final output − predicted coating
thickness.
2.4. Machine Learning. Several linear and nonlinear

regression models are implemented to forecast the coating
thickness as a result of the 23 predictors. Standard division of
the whole dataset into training, validation, and test subsets is
performed. Randomized presentation of the instances in the
batches is also used to avoid overfitting.

2.4.1. Regression Algorithms. Linear regression is probably
one of the most widely used regression methods. One of its
main advantages is the ease of interpreting the results. When
implementing linear regression of a dependent variable y based
on a set of independent variables x = (x1, ..., xr), where r is the
number of predictors, a linear relationship between y and x is
assumed in the form

y x x0 1 1 r r= + + ···+ + (1)

This equation contains β0, β1, ..., βr, which are the regression
coefficients, and ε is the random error. The method works by
calculating the estimators of the regression coefficients. The
estimated or predicted response, y = f(xi) for each observation
i = 1, ..., n, should be as close as possible to the corresponding
actual response yi, in our case experimental or literature value
for coating thickness. The differences yi − f(xi) for all
observations are called the residuals. The purpose of regression
is to determine the best-predicted weights, meaning with the
smallest residuals. This is achieved by minimizing the sum of
squared residuals (SSR) for all observations:

y xSSR ( f( ))i i i
2= (2)

This approach is called the method of ordinary least
squares.34

Support Vector Regression (SVR) uses the same principle as
the Support Vector Machine (SVM) but for regression
problems. The goal is to find the hyperplane that represents
the decision boundary. Further, the points that are within the
decision boundary line are considered and we should
determine the best fit line (hyperplane) that has a maximum
number of points. In contrast to Ordinary Least Squares
(OLS), the objective function of SVR is to minimize the
coefficients�more specifically, the l2-norm of the coefficient
vector�not the squared error. The error term is instead
handled in the constraints, where we strive toward the absolute
error less than or equal to a specified margin, called the
maximum error, ϵ (epsilon). Epsilon is tuned to gain the
desired accuracy of the model.35

For the case of predicting a numeric variable, where linear
models produced not so great results, “model trees” are
proposed, meaning decision tree regressors. Decision tree
regression evaluates an object’s attributes and trains a model
with a tree structure to forecast data in the future to create
meaningful continuous output.
A Random Forest (RF) is a meta estimator that fits a

number of regression decision trees on various sub-samples of
the dataset and uses averaging to improve the predictive
accuracy and control over-fitting. Because there are several
trees and each tree is trained on a portion of data, the Random
Forest approach is less biased. Essentially, the Random Forest
algorithm depends on the strength of ″the crowd,″ which
reduces the system’s overall bias. Another advantage of the
algorithm is that it is very stable, meaning that if a new data
point is introduced in the dataset, the overall algorithm is not
affected much since new data may impact one tree, but it is
very hard for it to impact all the trees. The Random Forest
algorithm has also proven well when the dataset contains both
categorical and numerical features, which is the case in our
dataset. The Random Forest algorithm also works well when

Figure 2. Distribution of film thickness (nm) categories.
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data has missing values or it has not been scaled well, proving it
also suitable to implementation in our problem.36

Another advanced algorithm is the Extra Tree algorithm,
which is an ensemble of decision trees and is related to other
ensembles of decision trees algorithms such as bootstrap
aggregation (bagging) and Random Forest. The Extra Tree
algorithm works by creating a large number of unpruned
decision trees from the training dataset. Predictions are made
by averaging predictions from decision trees in the case of
regression.37

While described model parameters are learned during
training, i.e., slope and intercept in a linear regression,
hyperparameters must be initialized before training. In the
case of a Random Forest, hyperparameters include, i.e.,
number of decision trees in the forest and the number of
features considered by each tree when splitting a node. Scikit-
Learn in Python implements a set of sensible default
hyperparameters for all models, but these are not guaranteed
to be optimal for a problem. The best hyperparameters are
usually impossible to determine ahead of time, and tuning a
model is necessary. Among many methods for hyperparameter
tuning, we adopted RandomizedSearchCV to create a
parameter grid to sample from during fitting. In such a way,
a grid of hyperparameter ranges is defined and randomly
sampled from the grid, performing K-Fold CV with each
combination of values.38

2.4.2. Outliers Removal and Selection of K Best Features.
Besides implementing the specific models and their opti-
mization, we investigated outlier removal, in order to improve
the model accuracy. An outlier is a data point whose response y
does not follow the general trend of the rest of the data. A data
point has high leverage if it has ″extreme″ predictor x values.
With a single predictor, an extreme x value is simply one that is
particularly high or low. With multiple predictors, extreme x
values may be particularly high or low for one or more
predictors or may be ″unusual″ combinations of predictor
values (e.g., with two predictors that are positively correlated,
an unusual combination of predictor values might be a high
value of one predictor paired with a low value of the other
predictor). In statistics, Cook’s distance is a common
measurement of a data point’s influence. It is a way to find
influential outliers in a set of predictor variables when
performing a least-squares regression analysis. Therefore, we
have investigated the leverage vs studentized residuals plot to
detect any outliers.
As part of the proposed methodology and investigation of

the distribution of film thickness categories, it was seen that
more than half of instances (69) had the coating thickness less
than 100 nm (Figure 2). As a result, we will investigate if there
are potentially outliers that can be removed from the dataset in
order to improve the prediction.
Additionally, the Select K best method, which selects

features according to the k highest scores, is used to determine
the K best predictors of the output.39

2.4.3. Software and Libraries. The ML model for coating
thickness prediction is implemented in Python 3.7, Spyder
environment, using Scikit-Learn version 0.23.2 and Numpy
1.16.5.

3. RESULTS AND DISCUSSION
As described in the methodology section, several ML models
have been tested to determine which regression model
achieves the highest results. The results are given in the

form of R2, mean squared error (MSE), root mean squared
error (RMSE), and mean absolute error (MAE). For
regression models, R-squared-type goodness-of-fit summary
statistics have been constructed for particular models using a
variety of methods.40 The results are reported based on 5-fold
cross validation. The findings on the test dataset are given in
Table 2. It should be emphasized that these results are based
on data before any outlier removal investigation.

Extra Tree Regressor proved to be the best during training
and testing, achieving R2 score on a test set of 0.92, MSE of
242290.20 [nm], RMSE of 492.22 [nm], and MAE of 237.5
[nm].
In order to remove the outliers, the leverage vs studentized

residuals plot was investigated (Figure 3) and noticed that the
instance number 3 could be declared as an outlier (small
leverage and high residual).
After removal of instance 3 (Figure 4), the accuracy of the

model improved as well as R2, increasing from 0.92 to 0.98 on
a test set.
After outlier removal, a standard estimation of missing values

(data imputation) was applied in order to determine if data
imputation will increase the model accuracy. A total of 602
values were missing (number of missing values per attribute
were 0, 0, 3, 7, 9, 25, 0, 12, 1, 1, 114, 21, 31, 3, 6, 74, 63, 37, 37,
59, 62, and 37), and the applied method for data imputation
included

• a constant value that has meaning within the domain,
such as 0, distinct from all other values was imputed for
categorical variables;

• a mean or median value for the column (feature) was
imputed instead of the missing value, if the variable is
continuous.

This leads to the fact that attributes such as presence of
groups −SO3−/−O−SO3−, buffer, and cross-linking were filled
in with 0 in missing values, indicating no presence of that
group, effect, etc., and attribute values that are continuous,
both mean and median estimation (mean/median of that
column), were tested. The results when using Extra Tree
Regressor with mean imputation are given in Table 3. The
results when using median imputation were very similar to
results with mean imputation and therefore were not
presented. The results are reported based on 5-fold cross
validation.
It can be seen that, when comparing results before outlier

removal and data imputation and after these preprocessing
steps, the results for the test set improved drastically, from an
R2 score on the test set of 0.92 before data imputation and
outlier removal to an R2 score of 0.98 after data imputation and
outlier removal, with MAE of 116.06.

Table 2. Results from Regression Analysis Applied to
Prediction of Coating Thickness on an Original Test Set

Test subset

Regression model
R2
score MSE [nm]

RMSE
[nm]

MAE
[nm]

Linear regression 0.77 645691.52 803.55 485.94
Support Vector
Regressor

−0.17 3246351.92 1801.76 736.22

Random Forest
Regressor

0.85 419388.84 647.60 318.13

Extra Tree Regressor 0.92 242290.20 492.22 237.5

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c06471
ACS Omega 2023, 8, 4677−4686

4681

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06471?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


For hyperparameter optimization investigation via Random-
izedSearchCV, a grid of hyperparameter ranges is defined and
randomly sampled from the grid, performing K-Fold CV with
each combination of values. This was done to avoid the

overfitting problem, generally present in similar problems.
Also, the obtained results show a large difference between the
RMSE on a test subset in comparison to the training set,
indicating overfitting. Therefore, we have implemented
optimization of a number of hyperparameters such as number
of trees in a forest (search space sequence of evenly spaced
numbers in linear space with start = 95, stop = 111, and
number of elements = 400), features to consider at every split
(‘auto’ or ‘sqrt’), maximum depth of the tree (search space
sequence of evenly spaced numbers in linear space with start =
0, stop = 8, and number of elements = 100), minimum number
of samples required to split a node (‘none’, 1,2,3,4,5,6,7),
minimum number of samples required at each leaf node
(‘none’, 1,2,3,4), and bootstrapping method of selecting
samples for training each tree (true or false), which can be
tuned to stop early the growth of the tree and prevent the
model from overfitting. The best results were achieved with the

Figure 3. Leverage vs studentized residuals plot (original dataset).

Figure 4. Leverage vs studentized residuals plot (dataset after removal of instance number 3).

Table 3. Results with Mean Imputation Using Extra Tree
Regressor (after Outlier Removal)

Training subset
R2 score 1.000
MSE [nm] 4.13
RMSE [nm] 2.03
MAE [nm] 0.39

Test subset
R2 score 0.98
MSE [nm] 47633.85
RMSE [nm] 218.25
MAE [nm] 116.06
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number of trees in a forest = 104, features to consider at every
split = ‘auto’, maximum depth of the tree = 7, minimum
number of samples required to split a node = 2, minimum
number of samples required at each leaf node = 1, bootstrap =
‘false’. The results are presented in Table 4.

The results show that with optimal hyperparameters (with
missing data imputation), the results are the best among all
investigated solutions, which is expected. However, one of the
drawbacks of the RandomizedSearchCV methodology is the
defined search space for hyperparameters. There should be a
balance between the search space and memory/time for
optimization; as such, optimization relies on searching all the
combinations in the defined search space. Should the space
search be extended even more, better results may be achieved.
Determining optimal hyperparameters in defined search space
is a common challenge in ML.
Figure 5 presents the actual vs predicted values of coating

thickness for the instances in the test set. It can be seen that
even for larger values of coating thickness, the predicted values
are close to actual values, which means that the model
generalizes well to unseen data. It should be emphasized that
the larger RMSE is due to the fact that there are also values of

coating thickness, i.e., 5000−6000, meaning that these
differences in predicted and actual values are going to increase
the RMSE.
To illustrate the point, if the test dataset was extracted in

such a way that only instances with values for thickness are less
than 100 nm, the results achieved have improved in terms of
monitored statistics (MSE = 133.679, RMSE = 11.56, MAE =
8.06) (Figure 6). This means that some larger values of
statistics are due to the dataset diversity and large differences in
ranges in coating thickness.

In order to certify that there is no overfitting, we have
introduced the SMOGN oversampling41 and tested the same
methodology on the nonskewed dataset. The results indicate
that there is no overfitting, but rather larger values of RMSE
are due to the nature of dataset. With the use of SMOGN
oversampling, R2 was 0.980, MSE = 46933.204, RMSE =
216.64, and MAE = 111.414 on the test dataset.
In addition, Select K best was used to determine 6 best

predictors of coating thickness. By calculating the feature
importance scores, it was determined that 6 predictors had
higher scores than the rest of the attributes (by order of
magnitude higher scores). A higher score means that the
specific feature will have a larger effect on the model in
predicting the target variable (coating thickness). As a result,
these 6 predictors were adopted as the most influential
predictors:
1. polyanion
2. number of bilayers
3. ending polymer
4. presence of negatively charged groups: COO−

5. pH polycation
6. buffer concentration, mM
The results achieved with these 6 predictors on a whole

dataset during the training phase were R2 score = 0.989, MSE
= 36225.257 nm, RMSE = 190.329 nm, MAE = 48.020 nm.
This means that in the future, we can possibly use only these 6
predictors instead of 23 to accurately predict the coating
thickness. Among these predictors, the number of bilayers is
the most influential one; however, it also must be taken into
account as the thickness generated by different polymers may
vary significantly for the same number of bilayers as there are
polymer couples that lead to a linear or exponential film
growth regime.42 Regarding other predictors, the type of
polyanion and the presence of COO− groups underline the
importance of polyanion properties. This is associated to

Table 4. Results of Extra Tree Regressor with Default
Hyperparameters, Optimized Hyperparameters (No
Missing Data Imputation), and Optimized Hyperparameters
(with Missing Data Imputation)

Extra Tree Regressor

Default
hyperparameters

Optimized
hyperparameters: (no

missing data
imputation)

Optimized
hyperparameters (with

missing data
imputation)

Training
R2 score 1.00 R2 score 0.99 R2 score 0.999
MSE
[nm]

4.13 MSE
[nm]

42985.96 MSE
[nm]

3532.13

RMSE
[nm]

2.03 RMSE
[nm]

207.33 RMSE
[nm]

59.43

MAE
[nm]

0.39 MAE
[nm]

97.80 MAE
[nm]

39.16

Test
R2 score 0.98 R2 score 0.98 R2 score 0.983
MSE
[nm]

47633.85 MSE
[nm]

52948.79 MSE
[nm]

40598.73

RMSE
[nm]

218.25 RMSE
[nm]

230.10 RMSE
[nm]

201.49

MAE
[nm]

116.06 MAE
[nm]

110.55 MAE
[nm]

107.29

Figure 5. Predicted vs actual values of coating thickness for the
original test dataset (zoomed in figure shows the values of thickness
less than 450 nm).

Figure 6. Predicted vs actual values of coating thickness for the test
dataset with coating thickness less than 100 nm (model retrained
when using only data where thickness is less than or equal to 100
nm).
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polycation pH, which is also understandable, as the proper pH
creates the optimal conditions for polyelectrolyte assembly and
the level of assembly determines the coating thickness from the
efficacy of the process. In its turn, buffer concentration should
play on polymer conformation via ionic strength. The role of
the ending polymer for LbL film thickness is less obvious. Even
though, all these parameters are known for their effects on film
formation, their relative importance has not been demon-
strated in the literature and the proposed methodology enables
us to see the parameters that contribute most to the final
required properties and select the right zones of design space
for optimized coatings.
Compared to the previous work on LbL coating thickness

prediction,33 here, we use almost two times more instances
(131 vs 77) and do not need a complex step of molecular
descriptor generation; only coating-related parameters are
sufficient. Molecular descriptors provide a more in-depth
understating of the underlying parameters, but some of the
molecular descriptors are difficult to translate into actual
physicochemical properties in an exploitable manner. Reliable
models based on the weighted effect on controllable
macroscale parameters will enable new facilitated functional
coating design. In addition, the prediction looks more precise.
This work shows that ML is a powerful method that allows
accurate predictions using even small datasets containing
missing values.

4. CONCLUSIONS
LbL film coatings are a powerful tool for surface modification,
including in the biomedical field. However, their setup can take
a long time and be very costly. ML methodologies that are now
emerging can accelerate and improve new coating develop-
ment and can potentially revolutionize the field.
ML-based methods have recently been used by researchers

in many fields due to their special abilities in dealing with
dynamic, nonlinear, categorical, and multidimensional regres-
sion and classification problems, where analytical solutions are
difficult and time-consuming, if not impossible. As a result,
these tools have received a lot of interest in the materials
engineering community. ML algorithms demonstrated sub-
stantial benefits in reliably mapping polymer activity and
resolving all forms of significant content and processing
parameters. The current research has shown that ML
algorithms are effective in predicting the coating output
value, with the Extra Tree Regressor algorithm demonstrating
superior predictive performance, when used in combination
with optimized hyperparameters and with missing data
imputation. The best predictors of the coating thickness are
determined, and they can be later used to accurately predict
the coating thickness and aid in the development of coatings
with specific properties, avoiding the measurement of a large
number of different parameters.
The main limitations of this study were that the literature

dataset has many missing values, meaning that in the literature
papers, they were not defined or reported. We have overcome
this problem by using data imputation. Another limitation is
that the range of the coating thickness in literature data was
very wide, reflecting on the variance. However, the current
results show that even with these limitations, we managed to
set up good models for prediction, which can be further
upgraded and extended to other similar problems.
As a continuation, the methodology can be adapted and

used for predicting the outputs connected to the antimicrobial,

anti-inflammatory, and antiviral properties in order to be able
to respond to the actual biomedical problems such as antibiotic
resistance, implant rejection, or COVID-19 outbreak.
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