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INTRODUCTION

Vagus nerve stimulation (VNS) constitutes a standard therapy for treating drug-resistant focal
epilepsy (Panebianco et al., 2015) and depression (Aaronson et al., 2013). However, its effects on
memory functions and disorders have scarcely been investigated. Three different forms of VNS can
be distinguished: invasive vagus nerve stimulation (iVNS) requiring surgery and two non-invasive
application forms: (1) auricular transcutaneous vagus stimulation (atVNS) (Frangos et al., 2015)
and (2) cervical transcutaneous vagus nerve stimulation (ctVNS) (Zobel et al., 2005). Being non-
invasive, economical, and patient-friendly atVNS and ctVNS seem to be superior to iVNS for
application in clinics. However, the efficacy between various stimulation types in healthy subjects
or patients has not been investigated. In particular, atVNS seems to be easier to use and has been
more often investigated than ctVNS. This article therefore focuses on atVNS effects on memory
functions in health. In addition, future potential applications in human brain diseases involving
memory dysfunctions are delineated.

MATERIALS AND METHODS

PubMed was systematically screened for this opinion article in July 2018 applying the items
(1) “transcutaneous vagus nerve stimulation” (n = 191), (2) “auricular vagus nerve stimulation”
(n = 123), (3) “non-invasive vagus nerve stimulation” (n = 111), (4) “transcutaneous vagus
nerve stimulation, and memory” (n = 7) (5) “transcutaneous vagus nerve stimulation and locus
coeruleus” (n = 11), “vagus nerve stimulation and locus coeruleus” (n = 70) and “vagus nerve
stimulation and memory” (n = 90). Relevant articles on this topic were selected based on articles’
abstracts (n= 15).

LOCUS COERULEUS ACTIVATION VIA TRANSCUTANEOUS
VAGUS NERVE STIMULATION

The nucleus tractus solitarius (NTS) is innervated by the vagus nerve and connected to the locus
coeruleus (LC) by the nucleus paragigantocellularis (Astier et al., 1990). The NTS-LC can be
activated by atVNS (Frangos et al., 2015; Yakunina et al., 2017) or deactivated (Kraus et al., 2013) in
humans depending on the atVNS paradigm (Figure 1). The atVNS electrodes can be put either
on the inner tragus or the cymba conchae to activate primarily vagus nerve’s auricular branch
(ABVN) and secondly NTS-LC system, as revealed by functional magnetic resonance imaging
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(fMRI) (Figure 1) (Frangos et al., 2015; Yakunina et al., 2017).
Markers of noradrenergic activity are known to be elevated after
moderate atVNS (25Hz, 1.3mA) in humans: (1) salivary alpha
and (2) memory processing-relevant P300b amplitude of the
event-related brain potential (Ventura-Bort et al., 2018) support
LC activation via atVNS.

Activation of Memory Relevant Brain
Structures by Transcutaneous Vagus Nerve
Stimulation
Anterior inner tragus-atVNS may lead to greater neuronal
activation and/or reduced neuronal deactivation of the anterior
cingulated cortex and the left frontal cortex (Kraus et al., 2007,
2013; Yakunina et al., 2017; Badran et al., 2018), as revealed in a
rised blood-oxygen-level dependent (BOLD) signal within these
structures (see Figure 1 for effects of inner tragus-atVNS and
cymba conchae-atVNS on memory relevant brain structures).
Surprisingly, cymba conchae- and inner tragus-atVNS increases
the neuronal deactivation and/or reduces the activation in
declarative memory-relevant structures such as hippocampus,
parahippocampus, anterior cingulated cortex, frontal cortex and
amygdala, as is evident in the weaker BOLD signal in these
structures (Kraus et al., 2007, 2013; Frangos et al., 2015; Yakunina
et al., 2017). Functionally speaking, the net decrease in neuronal
responses in these structures might reflect lateral inhibition to
prioritize neuronal activity in a subregion relevant for memory
processing (e.g., the dentate gyrus).

Advance in Transcutaneous Vagus Nerve
Stimulation Protocols
Cymba conchae-atVNS seems to be the more suitable position
for activating the LC-NTS rather than the inner tragus or
inferiorposterior wall of the meatus externus (Yakunina et al.,
2017). Their findings are in accordance with study results proving
that the cymba conchae is the auricular area supplied completely
with the ABVN, whereas the tragus receives less than half thereof
(Peuker and Filler, 2002). Although the ABVN innervates the
inner tragus only moderately, vagal afferents are activated by
atVNS, as is evident in fMRI (Badran et al., 2018), thus other
atVNS parameters apart from stimulus locationmight be decisive
for its effect. Rodent experiments showed that a stronger firing
rate of LC neurons is caused by a greater stimulus intensity
(range: 0.1–2.5mA) combined with a long pulse width (Hulsey
et al., 2017), whereas another study proved an optimal stimulus
strength for the memory-augmenting effect between a stimulus
intensity of 0.4–0.8mA (Borland et al., 2016). To apply these
findings to humans, a moderate instead of a strong stimulus
intensity and long pulse width should be used for optimal
atVNS tomodulate neuronal brain activity inmemory processing
structures.

Memory Modulation via Trancutaneous
Vagus Nerve Stimulation by Activating the
Locus Coeruleus
The hippocampus features a crucial function in memory
formation for events and facts (declarative memory) (Tulving

and Markowitsch, 1998; Deuker et al., 2016). VNS in rats is
known to potentiate long-term potentiation (LTP) in dentate
gyrus synapses (Zuo et al., 2007), a pivotal relay station
for information processing within the hippocampus. LTP is
a potential neuronal correlate of memory formation (Teyler
and Discenna, 1984). In light of these factors, VNS probably
modulates neuronal correlates of memory storage. VNS led
to increased noradrenaline in the hippocampus in rodents
(Raedt et al., 2011), suggesting that VNS activated the LC as a
major origin of noradrenaline (NA) in the brain (Amaral and
Sinnamon, 1977). Studies in humans support the LC’s important
role in arousal-enhanced and -prioritized episodic memory
formation (Clewett et al., 2018). Based on evidence from those
studies, activation or deactivation of the noradrenergic LC system
via atVNS would seem to be a potential method for modulating
human episodic memory. The amygdala (Fullana et al., 2018;
Orsi et al., 2018) and amygdalohippocampal neuronal ensembles
(Phelps, 2004; Chaaya et al., 2018) are critically involved in fear
memories. Thus the amygdala’s activation via atVNS (Liu et al.,
2016) is important for extinguishing fear memory.

Augmentation of Hippocampus-Dependent
Relational Memory
Memory formation of associations between items (relational
memory) is processed within the hippocampus (Cohen et al.,
1997; Horecka et al., 2018) and is known to be modulated
by atVNS in a study utilizing a face-name associative memory
paradigm (Jacobs et al., 2015). In that study, atVNS (5mA, 200
µs) was applied during the encoding and consolidation of face-
name associations. More accurate face-name associations (hits)
were observed after atVNS than sham atVNS (Jacobs et al., 2015).
Thus, atVNS seems to augment relational memory function in
humans (Figure 1).

Facilitation of Learning Fear Extinction and
the Attenuation of Fear Learning
Neuronal assemblies between the amygdala, hippocampus,
anterior cingulated cortex, and ventromedial prefrontal cortex
are important for consolidating and extinguishing fear memory
(Fullana et al., 2018; Marek and Sah, 2018). A neuronal
correlate of posttraumatic stress disorder (PTSD) is impaired
fear-memory extinction. Noradrenaline plays a major role in
the pathogenesis of PTSD (Hendrickson and Raskind, 2016).
AtVNS via LC activation might strengthen the impaired LC-
dependent noradrenergic transmission in PTSD modulating
fear-memory extinction. Experimental animal evidence suggests
that extinction-memory impairment in rats with PTSD-like
behavior is reversible by applying iVNS. In addition, PTSD-
like behavior in rats (e.g., hyperarousal) can be attenuated
by iVNS (Noble et al., 2017). However, to date, the atVNS
effect on extinction memory has only been investigated in
healthy subjects. Extinction memory can be facilitated in healthy
subjects, as two recent studies showed (Burger et al., 2016, 2017).
Similar concha cymbaatVNS parameters were utilized in both
studies (25Hz, ≤ 0.5mA) (Burger et al., 2016, 2017), and fear-
extinction learning in healthy students was facilitated (Burger
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FIGURE 1 | Effect of auricular transcutaneous vagus nerve stimulation on memory functions investigated by distinct memory paradigms in (A) and on brain activity

revealed by functional magnetic resonance imaging in (B). An arrow with upward direction indicates a greater neuronal activation or reduced neuronal deactivation of

the indexed brain structure, whereas an arrow with downward direction suggests a reduced activation or increased neuronal deactivation of the corresponding brain

structure. A, amygdala; FC, frontal cortex; Hipp, Hippocampus; LC, Locus coeruleus; NTS, nucleus tractus solitaries; PHC, parahippocampus. The effects on

memory and brain activity in this figure are based on the following references (Kraus et al., 2007, 2013; Frangos et al., 2015; Jacobs et al., 2015; Burger et al., 2016,

2017; Yakunina et al., 2017; Badran et al., 2018).

et al., 2016) (Figure 1). However, the storage of extinction
memory one day later was unaffected by atVNS (Burger
et al., 2016). Another working group demonstrated no atVNS-
dependent modulation of anxiety extinction (Genheimer et al.,
2017) being likely based on various stimulation parameter such
asmean intensity (1.2mA) (Genheimer et al., 2017) and timing
of atVNS. Overall, these studies reveal promising potential
for atVNS as a tool for modulating extinction memory in
anxiety disorders.

Memory Modulation by Invasive Vagus
Nerve Stimulation in Brain Diseases
Involving Memory Dysfunction
Two main brain diseases often characterized by memory and
cognitive dysfunctions are temporal lobe epilepsy (TLE) as
well as Alzheimer’s disease (AD). There is evidence that iVNS
improves memory functions in AD patients, as revealed by
higher or not worse ADAS-cog and MMSE scores within the
disease’s distinct time courses (Sjögren et al., 2002; Merrill et al.,
2006). MMSE and ADAS-cog scores reflect several aspects of
memory-related dysfunctions (Magni et al., 1996; Alexander
et al., 2016). Nonetheless, as there was no sham condition,
memory fluctuations might explain some of the patients’ test
results. More investigations have addressed the impact of
iVNS on declarative memory function in conjunction with

epilepsy (Helmstaedter et al., 2001; Ghacibeh et al., 2006). A
benefit from iVNS was observed in epilepsy patients in several
memory aspects, i.e., figural (Helmstaedter et al., 2001), verbal
(Clark et al., 1999) and working memory (Sun et al., 2017)
as well as subjective memory performance (McGlone et al.,
2008).

Future Challenges and Perspectives for
Transcutaneous Vagus Nerve Stimulation
Summing up, a few pilot studies in healthy subjects have
demonstrated atVNS’ potential for memory augmentation,
the facilitation of fear-extinction learning, and the attenuation
of fear learning by increasing extinction in healthy adults.
However, although no investigation has examined the effects
of atVNS in human memory disorders to date, iVNS research
has revealed beneficial effects from iVNS on memory function
in patients with AD and TLE. In particular, the modulation
of extinction memory is an interesting candidate for atVNS,
as an optogenetic investigation revealed that fear extinction
memory is dependent on a depotentiation—or long-term
depression (LTD)-like mechanism (Nabavi et al., 2014). LTD
is a potential mechanism of memory formation (Kemp and
Manahan-Vaughan, 2007; Dietz and Manahan-Vaughan, 2017).
Thus, LC activation via atVNS might induce an LTD-like
mechanism in fear-related neuronal networks, providing the
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stimulation protocol is adequate. Indeed, high-frequent electrical
LC stimulation in rats induced an LTD in the dentate gyrus
(Hansen and Manahan-Vaughan, 2015). Therefore, stimulation
parameters from animal investigations should be considered in
future human studies.

CONCLUDING REMARKS

Taken together atVNS is a safe, well-tolerated, inexpensive,
and handy tool with which to modulate fear and declarative

memory function in adults. Further large-scale, randomized,
and sham-controlled investigations are warranted to assess
whether atVNS can significantly alleviate memory dysfunction
incorporating demand stimulation considering disease states and
task performance in brain diseases.
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