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Study of functional brain network (FBN) based on functional magnetic resonance imaging (fMRI) has proved successful in
depression disorder classification. One popular approach to construct FBN is Pearson correlation. However, it only captures
pairwise relationship between brain regions, while it ignores the influence of other brain regions. Another common issue existing in
many depression disorder classification methods is applying only single local feature extracted from constructed FBN. To address
these issues, we develop a new method to classify fMRI data of patients with depression and healthy controls. First, we construct
the FBN using a sparse low-rank model, which considers the relationship between two brain regions given all the other brain
regions. Moreover, it can automatically remove weak relationship and retain the modular structure of FBN. Secondly, FBN are
effectively measured by eight graph-based features from different aspects. Tested on fMRI data of 31 patients with depression and
29 healthy controls, our method achieves 95% accuracy, 96.77% sensitivity, and 93.10% specificity, which outperforms the Pearson
correlation FBNand sparse FBN. In addition, the combination of graph-based features in ourmethod further improves classification
performance.Moreover, we explore the discriminative brain regions that contribute to depression disorder classification, which can
help understand the pathogenesis of depression disorder.

1. Introduction

Asone of themost prevalent psychiatric disorders, depression
disorder is typically characterized by persistent depressed
mood, loss of motivation, and sleep abnormalities [1]. More-
over, it can lead to suicide at its worst. According to theWorld
Health Organization, an estimated 350 million people of all
ages suffer from depression disorder globally [2]. However,
the diagnosis of depression disorder mainly depends on cli-
nical symptoms, and its pathogenesis remains unclear [3].
Functional magnetic resonance imaging (fMRI) can contri-
bute to the diagnosis and a better understanding of the patho-
genesis of depression disorder [4, 5].This brain imaging tech-
nique provides an effective tool to explore functional abnor-
malities of depression disorder [6].

A large number of fMRI studies have reported abnormal
functional brain network (FBN) in patients with depression
[7, 8]. However, the models to construct FBN suffer from
several limitations. FBN is a mathematical representation of

brain. Brain regions are nodes and functional connectivities
between each pair of brain regions are edges. Pearson correla-
tion is themost commonly usedmodel for constructing FBN,
in which the functional connectivity (FC) value is estimated
by the correlation coefficient between brain regions [9]. Con-
nolly et al. use Pearson correlation to analyze the abnormal
FC between subgenual anterior cingulate cortex and other
brain regions in depressed adolescents [10]. However, it only
captures pairwise information between brain regions without
considering influence of other brain regions. Independent
Component Analysis (ICA) can also be used to construct
FBN by grouping brain regions into latent components. The
brain regions within the same component are believed to
have strong FC, while the FC between different components
is weak [11, 12]. Increased FC between subgenual cingulate
and thalamic is detected in patients with depression by ICA
[13]. The main drawbacks of ICA are the inaccessibility of FC
value and the uninterpretability of components. Recent work
tries to impose sparse prior to the models for constructing
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FBN. It is based on neurological findings that a brain region
usually only directly interacts with a few other brain regions
[14]. Huang et al. construct FBNby employing a sparsity prior
in the estimation of inverse covariance matrix [11]. Although
this sparse representation model calculates FC between each
pair of brain regions with consideration of all the other brain
regions, the sparsity prior is not enough to describe the struc-
ture of FBN.

As the functional abnormalities of depression can be
explored by FBN, many classification methods based on FBN
are developed for depression disorder classification. Feature
extraction plays a key role in the classificationmethods. FC in
FBN can be directly used as a feature for depression disorder
classification [15, 16]. Zeng et al. use multivariate pattern ana-
lysis to classify FC of patients with depression and FC of
healthy controls. In addition, regional homogeneity and amp-
litude of low frequency fluctuations are also commonly used
features for depression disorder classification [17, 18]. How-
ever, these features, which only consider the specific local
changes of FBN, are not effective for classification. A more
comprehensive feature extraction approach is needed for
depression disorder classification.

To overcome the limitations lying in construction of
FBN and feature extraction, we propose a new method
for depression disorder classification. In this paper, FBN
is constructed by sparse low-rank model and eight graph-
based features are extracted for classification. Sparse low-rank
model provides a much better FBN than Pearson correlation
or simple sparse representationmodel for three reasons. First,
FBN constructed by sparse low-rank model considers the
linear relationship between two brain regions given all the
other brain regions, in contrast with the pairwise Pearson
correlation. Secondly, imposing sparsity on FBN is inter-
pretable because a brain region only directly interacts with
a few other brain regions in neurological processes, which
has been supported by some neurophysiological findings
[14, 19]. Thirdly, low-rank constraint encodes a modular
structure to the FBN, which is closer to the real FBN [20, 21].
Sparse representation and dictionary learning can also be
used as a classifier for fMRI data. Our previous work pro-
poses a weighted discriminative dictionary learning (WDDL)
method for disease classification [22]. The model of WDDL
represents each test sample using two class-specific dictionar-
ies, respectively, and classifies it to the class with the smaller
representation error. However, in this work, we detect the
effect of a sparse low-rank model to construct FBN, which
is a part of feature extraction for classification.

Once the FBN is constructed by sparse low-rank model,
we extract eight graph-based features, which provide infor-
mation about the entire network other than specific local
changes [23, 24]. The eight graph-based features are from
the aspects of functional segregation, functional integration,
nodal centrality, and network resilience. We choose graph-
based features to measure FBN for two reasons. First, graph-
based features are effective in helping us understand the
functional organization of network and ranging from cells
[25] and tissues [26, 27] to the whole ecosystems [28, 29].
Secondly, recent researches have shown that graph-based fea-
tures, whichmeasure topological properties of FBN,make the

classification methods have good classification performance
[30, 31].

In short, the main contributions of this paper are as
follows: (1) FBN is constructed by sparse low-rank model,
which can calculate the relationship between two brain
regions given all the other brain regions. (2) We extract eight
graph-based features, which can effectively characterize the
FBN from different aspects. To our knowledge, this is the first
study of depression disorder classification, which extracts
graph-based features from sparse low-rank FBN. The exper-
imental results show that both sparse low-rank FBN and the
combination of graph-based features improve the classifi-
cation performance. Generally, the promising classification
result proves the effectiveness of our method. The overall
procedure of our method is shown in Figure 1.

2. Methods

2.1. Participants, Data Acquisition, and Preprocessing. 31 pati-
ents with depression (16 females, 15 males) and 29 age-,
sex-, and education-matched healthy controls (15 females, 14
males) are recruited from theDepartment of Radiology, Gua-
ng’anmenHospital of China Academy of Traditional Chinese
Medicine. The average age of patient group and control
group is 30.42 and 32.63, respectively. All subjects are right-
handed native Chinese speakers. Written informed consent
is obtained from all subjects. All the patients with depression
are diagnosed according to Structured Clinical Interview for
the DSM-IV, patient version (SCIDI/P) [32], by experienced
psychiatrists. They have no history of other neurological
illness or head injury. Healthy controls are interviewed using
the Structured Clinical Interview for DSM-IV, nonpatient
edition (SCIDI/NP). They have no current or history of
depression disorder or other psychiatric disorders.

The fMRI measurements are performed on a General
Electric (GE) signa 1.5T echo speed superconducting MRI
scanner. Functional images are acquired with an echo-planar
imaging (EPI) sequence: repetition time (TR) = 2000ms,
echo time (TE) = 30ms, flip angle = 90∘, field of view (FOV) =
24 cm, matrix = 64 × 64, thickness = 3mm, and slices = 41.
Subjects are instructed not to think of anything and keep their
eyes closed but not fall asleep during the resting-state fMRI
acquisition. For each subject, the fMRI scanning lasts for
four minutes and twenty-eight seconds and 144 volumes are
obtained.

The preprocessing of fMRI data is conducted using
Statistical ParametricMapping (SPM8, http://www.fil.ion.ucl
.ac.uk/), Resting-State fMRI Data Analysis Toolkit (REST,
http://restfmri.net/forum/index.php), and Data Processing
Assistant for Resting-State fMRI (DPARSF, http://www.rest-
fmri.net/forum/taxonomy/term/36). The first 10 time points
are discarded for subject’s adaptation to the scanning and the
scanner calibration. The remaining images are first corrected
for different slice acquisition timing and head motion. No
subject is discarded for excessive head movement (transla-
tion < 2.0mm or rotation < 2.0∘). Next, the images are spa-
tially normalized to the standard EPI template in SPM8
and resampled to a voxel size of 3 × 3 × 3mm3. After
this, the images are smoothed with an isotropic Gaussian

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://restfmri.net/forum/index.php
http://www.restfmri.net/forum/taxonomy/term/36
http://www.restfmri.net/forum/taxonomy/term/36
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Figure 1: The schematic diagram of our method for depression disorder classification. SVM: support vector machine.

kernel (FWHW = 4mm) and temporal band-pass filtered
(0.01Hz–0.08Hz). To further reduce the effects of nuisance
signals, regression of 6 head motion parameters, global mean
signal, white matter signal, and cerebrospinal fluid signal
are performed. Finally, we use the Automated Anatomical
Labeling (AAL) atlas [33] to segment brain signals.Themean
fMRI time series of 116 brain regions are obtained for further
analysis. After preprocessing, the final number of volumes is
134 as 10 volumes are discarded from the 144 volumes. The
dimensionality of data matrix is 134 ∗ 116 for each subject.

2.2. Construction of FBN. FBN is a mathematical representa-
tion of the system of brain, which is defined by a collection
of nodes and edges [24, 34]. In this paper, nodes represent
the brain regions obtained from AAL atlas. Edges linking
two nodes represent the FC between the two corresponding
brain regions. FC is defined as statistical dependency between
spatially remote brain regions [35, 36]. A high correlation
between the time series of the two brain regions reflects a high
level of FC between them.

FBN has many inherent structures, some of which can
guide to construct a better FBN. Sparsity and modularity
are two important structures of FBN, which can be used by
adding some constraints to the constructed model. Sparsity
means that a brain region only directly interacts with a few
other brain regions in neurological processes [14, 19]. The
sparsity prior can be used in FBN construction by adding
ℓ0-norm or ℓ1-norm constraint to the objective function. In
addition, modularity refers to that there exist some node
groups (communities) in the FBN [24]. The FC between
nodes from the same group is dense, while FC between
nodes from different groups is sparse. It has proved that the
combining of sparse and low-rank constraint can describe
the modularity of FBN [21]. Therefore, we use a sparse low-
rank model to construct FBN in this paper. The reasons for

choosing sparse low-rank model for FBN construction are
as follows: (1) the sparse low-rank model can construct FBN
with both sparse and modular structure, which is verified in
Results. (2) The classification performance can be improved
by sparse low-rank model, compared with the commonly
used Pearson coefficient model and sparse representation
model, as shown in Results.

The sparse low-rank model can be used to construct FBN
as follows. Assuming we have 𝑁 subjects, each of which
has 𝑚 brain regions. Let X = [x1, . . . , xm] ∈ R𝑡×𝑚 be
the fMRI data matrix of a subject, where 𝑡 is the number
of time points. For the time series of each brain region
xi, we use the time series of all the other brain regions
Xi = [x1, . . . , xi−1, xi+1, . . . , xm] ∈ R𝑡×(𝑚−1) as dictionary to
represent this brain region with coding coefficient ai, namely,
xi = Xi × ai.

The sparse low-rank FBN of the 𝑛th subject can be
formulated as the following objective function:

𝐽 (A)
= argmin

A
(‖X − XA‖2𝐹 + 𝜆1 ‖A‖0 + 𝜆2rank (A)) , (1)

where A = [a1, a2, . . . , am] is the coding coefficient matrix.
The 𝑗th element of ai denotes the relationship between xi and
xj given all the other x inXi.Then, thematrixA is a FCmatrix
of subject X. And the FC between two brain regions are
calculated given all the other brain regions, compared with
the pairwise Pearson correlation. This is also a reason that
we choose sparse low-rank model to construct FBN. 𝜆1 and𝜆2 are the regularization parameters for trade-off among the
three terms.The first term is the data-fitting term, the second
term is sparsity constraint, and the last term is low-rank
constraint on the FCmatrixA.With the introduction of those
two constraint terms, the constructed FBN is imposed to have
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sparse and modular structure. As the two constraint terms
are both nonconvex with respect to A, they are relaxed to ℓ1-
norm ‖A‖1 and trace norm ‖A‖∗, respectively. The objective
function in (1) can be written as follows:

𝐽 (A) = argmin
A

(‖X − XA‖2𝐹 + 𝜆1 ‖A‖1 + 𝜆2 ‖A‖∗) , (2)

where ‖A‖1 = ∑𝑖∑𝑗 |a𝑖𝑗|. The objective function can be opti-
mized via a proximal method [37]. Once the optimal FC
matrix A is obtained, we replace A with Ã = (A + A𝑇)/2
to obtain a symmetry FC matrix. The replacement is based
on a discovery that asymmetry of the FC matrix does not
contribute to the final classification performance [21]. In
addition, all the diagonal elements of the FC matrix (self-
connections) are set to zero.

2.3. Feature Extraction. To extract effective graph-based fea-
tures from the constructed FBN, the original FC matrices are
first converted to binary matrices by setting all the nonzero
connectivity to one. In this paper, eight graph-based features
are computed from the following four aspects: functional
segregation, functional integration, nodal centrality, and
network resilience [24].

2.3.1. Functional Segregation. Functional segregation mea-
sures how efficiently information is exchanged within inter-
connected groups of brain regions.

Clustering coefficient is defined as the number of neigh-
bors of a given node connected to its other neighbors, which
describes the level of local neighborhood clustering of a
network [38]. The clustering coefficient of node 𝑖 is defined
as

𝐶𝑖 = 2𝑟𝑖
𝑘𝑖 (𝑘𝑖 − 1) , (3)

where 𝑟𝑖 is the number of triangles around a node 𝑖 and 𝑘𝑖 is
the degree of node 𝑖 which will be described below.

Local efficiency describes how efficient is the communi-
cation between the first neighbors of node 𝑖 when the node
is removed [39]. The local efficiency is the average of inverse
shortest path length between the direct neighbors of a node.
It is defined as

𝐸loc,𝑖 = ∑𝑗,ℎ∈𝐺𝑖 [𝑑𝑗ℎ (𝐺𝑖)]
−1

𝑘𝑖 (𝑘𝑖 − 1) , (4)

where 𝐺𝑖 is the set of nodes that are neighbors of node 𝑖 and𝑑𝑗ℎ(𝐺𝑖) is the shortest path length between node 𝑗 and node
ℎ, which contains only direct neighbors of node 𝑖.
2.3.2. Functional Integration. Functional integration is used
to measure the ability of brain to rapidly integrate infor-
mation from distributed brain regions. Characteristic path
length [40] and global efficiency [39] are the two most
commonly used measures of functional integration. The

global efficiency is the average inverse shortest path length.
They are respectively defined as

𝐿 = 1
𝑛∑
𝑖∈𝑁

∑𝑗∈𝑁,𝑗 ̸=𝑖 𝑑𝑖𝑗
𝑛 − 1 ,

𝐸 = 1
𝑛∑
𝑖∈𝑁

∑𝑗∈𝑁,𝑗 ̸=𝑖 𝑑−1𝑖𝑗
𝑛 − 1 ,

(5)

where 𝐿 and 𝐸 are the characteristic path length and global
efficiency of the network, 𝑛 is the number of nodes in the
network,𝑁 is the set of all the nodes in the network, and 𝑑𝑖𝑗
is the shortest path length between node 𝑖 and node 𝑗.
2.3.3. Nodal Centrality. Degree and betweenness centrality
are used to measure the centrality of a node. Degree of a
node is defined as the number of links connected to the node,
which reflect the importance of a node. Degree of node 𝑖 is
defined as

𝑘𝑖 = ∑
𝑗∈𝑁

𝑔𝑖𝑗, (6)

where 𝑔𝑖𝑗 is the connection status between node 𝑖 and node 𝑗:𝑔𝑖𝑗 = 1 when link (𝑖, 𝑗) exists and 𝑔𝑖𝑗 = 0 otherwise.
Betweenness centrality of a node is defined as the fraction

of all shortest paths that pass through the node [41]:

𝑏𝑖 = 1
(𝑛 − 1) (𝑛 − 2) ∑

ℎ,𝑗∈𝑁

ℎ ̸=𝑗,ℎ ̸=𝑖,𝑗 ̸=𝑖

𝜌ℎ𝑗 (𝑖)
𝜌ℎ𝑗 , (7)

where 𝜌ℎ𝑗(𝑖) is the number of shortest paths between node ℎ
and node 𝑗 that pass through node 𝑖 and 𝜌ℎ𝑗 is the number of
all the shortest paths between node ℎ and node 𝑗.

Participation coefficient assesses the diversity of inter-
modular interconnections of individual nodes. The partici-
pation coefficient of node 𝑖 is defined as

𝑦𝑖 = 1 − ∑
𝑚∈𝑀

(𝑘𝑖 (𝑚)
𝑘𝑖 )

2

, (8)

where 𝑀 is the set of modules and 𝑘𝑖(𝑚) is the number of
links between 𝑖 and all nodes in module𝑚.

2.3.4. Network Resilience. Indirect measures of resilience
quantify anatomical features that reflect network vulnerabil-
ity to insult. Among these measures, a typical one is average
neighbor degree [42]:

𝑘𝑛𝑛,𝑖 = ∑𝑗∈𝑁 𝑔𝑖𝑗𝑘𝑗
𝑘𝑖 . (9)

Once we have obtained all the eight graph-based features,
we concatenate them to construct the final feature vectors.
Specifically, for each subject, the feature vector has a size of
698, which consists of 116 ∗ 6 local measures and 2 global
ones. The dimensionality of feature matrix is 698 ∗ 60, which
consists of the feature vectors of all the subjects. As leave-one-
out cross-validation (LOOCV) is used for classification, the
training matrix dimensionality is 698 ∗ 59 in each LOOCV.
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2.4. Feature Selection. The goal of feature selection is to
remove irrelevant or redundant features and retain discrim-
inative features, which can lead to a better classification
performance of the model. In this paper, we employ Fisher
score to select useful features. Fisher score is used to describe
the discriminatory power of a feature between two classes
[30, 43]. Fisher score for each feature is defined as

FS = 𝑝1 (𝑞1 − 𝑞)2 + 𝑝2 (𝑞2 − 𝑞)2
𝑝1𝜎21 + 𝑝2𝜎22 , (10)

where𝑝1 and𝑝2 are the numbers of samples in the two classes,
𝑞1 and𝜎21 are the featuremean value and variance of one class,
𝑞2 and 𝜎22 are the featuremean value and variance of the other
class, and 𝑞 is the feature mean value of all the samples.

A larger Fisher score indicates a more discriminative
feature. We rank all the features in the training set based
on Fisher score. Different feature sets can be obtained by
selecting different number of ordered features. The final
selected feature set is the one with the highest accuracy tested
on the validation set, which is picked out from the training
set.

2.5. Classification. In this study, we employ support vector
machine (SVM) [44–46] with a simple linear kernel to
evaluate the classification performance of our method. This
technique is widely used andworkswell in the field ofmedical
imaging classification [21, 30, 47]. The SVM is implemented
using LIBSVM toolbox [48] with default parameters (i.e.,𝐶 =
1). LOOCV is applied here due to limited sample size. One
sample is picked out as testing sample in turn and the rest
of the samples are treated as training samples. In this paper,
the following three quantitative measurements are used to
validate the effectiveness of our method:

Accuracy = TP + TN
TP + FN + TN + FP

,

Sensitivity = TP
TP + FN

,

Specificity = TN
TN + FP

,

(11)

where TP is the number of patients correctly classified, TN is
the number of healthy controls correctly classified, FP is the
number of healthy controls classified as patients, and FN is
the number of patients classified as healthy controls.

3. Results

3.1. Classification Performance. In this paper, to verify the
effect of sparse low-rank FBN on classification performance,
we conduct experiments on methods based on Pearson
coefficient FBN and sparse FBN. Additionally, the methods
with each single kind of features are also used for comparison,
in order to evaluate the effect of combination of the eight
graph-based features. Our method achieves the best classi-
fication performance compared with the contrast methods,
with accuracy of 95%, sensitivity of 96.77%, and specificity

Table 1: Classification performance of ourmethod (sparse low-rank
FBN).

Feature NSF Accuracy (%) Sensitivity (%) Specificity (%)
CC 8 83.33 80.65 86.21
LE 46 85.00 87.10 82.76
CPL — 60.00 70.97 48.28
GE — 60.00 70.97 48.28
D 22 83.33 80.65 86.21
BC 22 85.00 80.65 89.66
PC 20 83.33 83.87 82.76
AND 18 91.67 90.32 93.10
Eight features 12 95.00 96.77 93.10
NSF: number of selected features; CC: clustering coefficient; LE: local
efficiency; CPL: characteristic path length; GE: global efficiency; D: degree;
BC: betweenness centrality; PC: participation coefficient; and AND: average
neighbor degree.

Table 2: Classification performance of sparse FBN.

Feature NSF Accuracy (%) Sensitivity (%) Specificity (%)
CC 10 81.67 80.65 82.76
LE 10 83.33 77.42 89.66
CPL — 55.00 45.16 65.52
GE — 53.33 48.39 58.62
D 54 83.33 80.65 86.21
BC 113 73.33 77.42 68.97
PC 6 73.33 61.29 86.21
AND 10 68.33 74.19 62.07
Eight features 70 85.00 83.87 86.21

of 93.10%. We can see that the results of our method are
better than the methods based on Pearson coefficient FBN
and sparse FBN, from Tables 1, 2, and 3. As shown in
Table 1, our method performs better than the methods with
any single kind of features. Besides, the results of different
classifiers with sparse low-rank FBN are listed in Table 4.The
parameters of all the classification methods are selected by
LOOCV.

3.2. Effect of Regularization Parameters. The regularization
parameters involved in the sparse low-rank model may
significantly affect FBN construction and the classification
performance. The optimal parameters are obtained from
LOOCV. For our method, 𝜆1 and 𝜆2 are both in the range
[0.1–5] with an increment step of 0.1. The classification
accuracy of our method with different sets of parameters is
shown in Figure 2. We can see that the best classification
accuracy is achieved when 𝜆1 is 4.5 and 𝜆2 is 2.8. Therefore,
this set of parameters is selected for further analysis. 𝜆1 and𝜆2 are the regularization parameters for trade-off among
data-fitting, sparsity constraint, and low-rank constraint.This
optimal set of parameters indicates that the combination
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Table 3: Classification performance of Pearson correlation FBN.

Feature NSF Accuracy (%) Sensitivity (%) Specificity (%)
CC 17 73.33 70.97 75.86
LE 23 78.33 77.42 79.31
CPL — 55.00 58.06 51.72
GE — 56.67 51.61 62.07
D 46 78.33 77.42 79.31
BC 8 78.33 83.87 72.41
PC 86 81.67 83.87 79.31
AND 1 70.00 61.29 79.31
Eight features 65 83.33 83.87 82.76

Table 4: Classification performance of the most commonly used
classifiers.

Classifier NSF Accuracy (%) Sensitivity (%) Specificity (%)
NB 15 88.33 87.10 89.66
𝑘-NN 17 88.33 90.32 86.21
LDA 11 90.00 90.32 89.66
SVM (RBF) 11 90.00 93.55 86.21
SVM (linear) 12 95.00 96.77 93.10
NB: naive Bayes; 𝑘-NN: 𝑘-nearest neighbors; and LDA: linear discriminant
analysis.

of sparsity and low-rank improves the classification perfor-
mance. In addition, it can be observed that the classification
performance is sensitive to the regularization parameters.

3.3. Analysis of Sparse Low-Rank FBN. In this paper, FBN
is constructed by sparse low-rank model. Figure 3 shows
the FC matrix and topology structure of one patient with
depression, which are constructed by sparse low-rankmodel,
Pearson correlation model, and sparse representation model.
The parameters used in the FBN shown in Figure 3 are
optimally obtained from LOOCV. The parameters for sparse
low-rank model ((a) and (b)) are 4.5 (𝜆1) and 2.8 (𝜆2).
The threshold for Pearson correlation model ((c) and (d))
is 20%. The parameter for sparse representation model ((e)
and (f)) is 3.2 (𝜆). It can be observed that the FC inferred by
sparse representation model and sparse low-rank model can
automatically remove some weak connections. Compared
with sparse representationmodel, sparse low-rankmodel can
lead to a clearer modular structure in the FBN. Moreover,
the classification performance of methods based on sparse
low-rank FBN is better than methods based on Pearson
correlation FBN or sparse FBN, as mentioned in the last
subsection.

Furthermore, we use themodularity score [49] to evaluate
the modularity of FBN constructed by the three models.
Figure 4 shows the average modularity scores of FBN con-
structed by Pearson correlation model, sparse representation
model, and sparse low-rank model with different thresholds.
The modularity scores shown in Figure 4 are the average
modularity scores of all the subjects. Different thresholds are
used in the FBN to remove weak connections in varying
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Figure 2: The classification accuracy with different sets of parame-
ters.

degrees. And the thresholds are applied to the absolute value
of connections in order to obtain valid modularity scores.
The connection whose absolute value is less than a certain
threshold is removed. We can see from Figure 4 that sparse
low-rankmodel can lead to a clearermodular structure in the
FBN for two reasons. (1)The peak value is obtained by sparse
low-rank model, compared with Pearson correlation model
and sparse representation model and (2) the area under the
curve of sparse low-rank model is the largest among areas
of the three models. And the largest area under the curve
means the maximum sum of average modularity scores with
different thresholds.

3.4. Number of Selected Features. After extracting the eight
graph-based features, we obtain a feature vector with a size of
698 for each subject. Because of the high dimensionality of the
feature vector, feature selection is essential to remove redun-
dant features and improve the classification performance.
Fisher score is used in this study to sort different dimensions
of features based on the discriminatory power. We select
different number of ordered features with max Fisher score
to train and test the classifier.The number of selected features
that resulted in the best classification performance is applied.
The proportion of each kind of selected features in every
LOOCV is shown in Figure 5.

3.5. Discriminative Brain Regions. The selected graph-based
features are related to the specific brain regions, which
contribute to the classification. These related brain regions
are treated as discriminative brain regions of patients with
depression compared with healthy controls, as shown in
Figure 6. Specifically, we first use Fisher score to sort all
the 698 dimensions of graph-based features in each LOOCV.
Secondly, we use different sets with increased number of
sorted features to train and test the classifier. And the number
of features which results in the best performance is picked
out. The selected features from the 116 ∗ 6 local measures
are related to the specific brain regions. Finally, we count the
times that each related brain region is selected. In addition,
there are 12 brain regions which are picked out in all the
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Figure 3: FC matrix and topology structure of FBN from one patient with depression. (a) and (b) are the FC matrix and topology structure
of sparse low-rank FBN, (c) and (d) are those of Pearson correlation FBN, and (e) and (f) are those of sparse FBN.

LOOCV. The name of these brain regions and the number
of times they are picked out are listed in Table 5.The discrim-
inative brain regions include postcentral gyrus, paracentral
lobule, posterior cingulate cortex, calcarine, orbital superior
frontal gyrus, superior frontal gyrus, Heschl gyrus, superior
occipital gyrus, amygdala, middle temporal gyrus, orbital
inferior frontal gyrus, and insula.

4. Discussion

In this study, the proposed method, using sparse low-rank
model and graph-based features, provides promising result
for depression disorder classification. As shown in Table 1,
our proposed method achieves the best classification perfor-
mance, compared with using any single graph-based feature
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methods. PC: Pearson correlation model; SR: sparse representation
model; and SLR: sparse low-rank model.

based on sparse low-rank FBN. We can see from Tables
1, 2, and 3 that our method performs better than Pearson
correlation FBN and sparse FBN. In addition, the algorithm
combining all the graph-based features outperforms the
one with only one feature. Table 4 shows that linear SVM
used in our method is superior to other commonly used
classifiers. The highest accuracy of our method demonstrates
the capability of accurately discriminating patients with

0 85

Figure 6: The discriminative brain regions of patients with depres-
sion compared with healthy controls. The color bar indicates the
index of displayed brain regions.

Table 5: The discriminative brain regions of patients with depres-
sion and the number of times that they are picked out.

Brain regions NTPO Related studies
Postcentral L 151 Guo et al. [4]
Paracentral Lobule R 121 Kenny et al. [50]
Cingulum Post R 118 Zhu et al. [51]
Calcarine R 96 Zhang et al. [57]
Frontal Sup Orb L 62 Drevets et al. [58]
Frontal Sup R 60 Zhang et al. [57]
Heschl L 58 Amico et al. [53]
Occipital Sup L 49 Zhang et al. [6]
Amygdala R 2 Zhang et al. [6]
Temporal Mid L 1 Zhang et al. [57]
Frontal Inf Orb L 1 Drevets et al. [58]
Insula L 1 Liu et al. [3]
NTPO: number of times that they are picked out.

depression fromhealthy controls. Significant improvement in
sensitivity indicates the superiority of the proposed method
in identifying patients with depression based on fMRI data. It
is very important because misclassifying a patient to healthy
control may cause severe consequences such as delaying
critical treatment period.

The FBN is constructed by sparse low-rank model, which
can automatically remove the weak connections and retain
the modular structure. As illustrated in Figure 3, sparse low-
rank model obtains sparser connection matrix than Pearson
correlation model. However, the great sparsity of sparse low-
rank FBN does not affect the classification performance as
shown in Tables 1 and 3. On the contrary, the reserved
strong connections of sparse low-rank FBN can achieve
higher classification performance. Compared with sparse
representation model, sparse low-rank model can capture
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improved modular structure as shown in Figures 3 and 4,
which has been verified as an inherent property of FBN.

After constructing the FBN, we extract eight graph-based
features to characterize the network and classify patients
with depression and healthy controls. Because of the high
dimensionality of extracted features, Fisher score algorithm
is used to rank the features and select the feature set with
best classification performance. We can see from Figure 5
that average neighbor degree is the most commonly selected
feature in our method. However, degree and participation
coefficient are the most commonly selected features in the
method based on Pearson correlation FBN and sparse FBN,
respectively. This finding suggests that the kind of the most
effective feature is different for different methods.This is why
we consider a variety of graph-based features.

The brain regions related to the selected graph-based
features are the discriminative brain regions of patients with
depression. As shown in Table 5, the discriminative brain
regions are consistent with previous studies [4, 50], which
can further prove the effectiveness of our method. Most of
the discriminative brain regions are located at frontal lobe
(paracentral lobule, superior frontal gyrus, orbital superior
frontal gyrus, and orbital inferior frontal gyrus), occipital
lobe (calcarine and orbital superior frontal gyrus), and
temporal lobe (middle temporal gyrus and Heschl gyrus).
The most commonly selected brain region in our method
is postcentral gyrus, which is the primary somatosensory
cortex [4]. Another brain region with high discrimination
is posterior cingulate cortex, which has been reported as
having abnormal FC in patients with depression [51]. Previ-
ous studies have indicated that posterior cingulate cortex is
important for successful retrieval of self-relevant information
[52]. Heschl gyrus is a primary auditory cortex and a sub-
region of superior temporal gyrus, which plays a key role
in emotional processing and social cognition [53, 54]. It
has been reported that insula is associated with abnormal
interoception and pain processing in patients with depression
[55]. In addition, amygdala, an important area for processing
threat and orchestrating a complex set of emotional and
physiologic responses [56], is also detected as discriminative
brain region of depression in our study. These discriminative
brain regionsmay help us better understand the pathogenesis
of depression disorder.

5. Conclusion

In this paper, we develop a new method to classify fMRI
data of patients with depression and healthy controls. More
specifically, in order to calculate the relationship between
brain regions given all the other brain regions, we first
construct FBN with sparse low-rank model instead of the
conventional Pearson correlationmodel. Ourmotivation also
lies in that sparse low-rank model can describe the sparse
and modular structure of FBN. Secondly, we extract eight
graph-based features to effectively characterize the FBN from
different aspects.Thirdly, Fisher score is used to rank features
and select the optimal feature subset. Finally, the selected fea-
tures are input to SVM for depression disorder classification.
Experimental results demonstrate that our proposed method

yields improved classification performance compared with
the conventional methods based on Pearson correlation FBN
and sparse FBN. In addition, the combination of graph-based
features in our method further improves the classification
performance. The promising classification result indicates
our method can be used as an automatic tool to assist in
diagnosis of depression disorder.
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