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Abstract
The pathogenesis of both diabetic retinopathy (DR) and rheumatoid arthritis (RA) has recently been considered to involve 
autoimmunity. Serum and synovial fluid levels of anti-type II collagen antibodies increase early after the onset of RA, thus 
inducing immune responses and subsequent hydrarthrosis and angiogenesis, which resemble diabetic macular edema and 
proliferative DR (PDR), respectively. We previously reported that DR is also associated with increased serum levels of anti-
type II collagen antibodies. Retinal hypoxia in DR may induce pericytes to express type II collagen, resulting in autoantibody 
production against type II collagen. As the result of blood-retinal barrier disruption, anti-type II collagen antibodies in the 
serum come into contact with type II collagen around the retinal vessels. A continued loss of pericytes and type II collagen 
around the retinal vessels may result in a shift of the immune reaction site from the retina to the vitreous. It has been reported 
that anti-inflammatory M2 macrophages increased in the vitreous of PDR patients, accompanied by the activation of the 
NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity. M2 mac-
rophages promote angiogenesis and fibrosis, which might be exacerbated and prolonged by dysregulated innate immunity.
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NOD-like receptor family pyrin domain-containing 3 (NLRP3) · Pyroptosis · Efferocytosis · Specialized pro-resolving 
mediators (SPMs)

Introduction

It is generally accepted that diabetic retinopathy (DR) is 
one of the chronic inflammatory diseases [1]. The clinical 
findings of DR include (1) increased blood levels of inflam-
matory biomarkers, such as C-reactive protein, fibrinogen, 
and neutrophil count [2–4]; (2) increased vitreous levels of 
inflammatory cytokines, such as interleukin (IL)-1β, tumor 
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necrosis factor-alpha (TNF-α), and IL-6 [5, 6]; 3) infiltra-
tion of immune cells, such as macrophages, lymphocytes, 
and neutrophils, in the epiretinal and internal limiting mem-
branes obtained during vitrectomy [7, 8]; (4) increased 
expressions of leukocyte adhesion molecules in the blood 
vessels of the retina and choroid [9]; (5) neutrophil entrap-
ment in the retinal microcirculation [10]; (6) neutrophil infil-
tration in the choroidal capillaries [11]; and (7) activation of 
the renin-angiotensin system that enhances chronic inflam-
mation [12]. These findings indicate that DR has a chronic 
inflammatory etiology. In addition to chronic inflammation, 
the involvement of autoimmunity in the etiology of DR has 
recently attracted considerable attention [13, 14]. It has 
been reported that HLA-DR and HLA-DQ antigens, types 
of HLA class II molecules, are related to the development 
and progression of DR [15, 16]. The presence of autoan-
tibodies in the serum of DR patients [14, 17–22] and the 
effectiveness of immunosuppressants, such as methotrexate, 
sirolimus (rapamycin), cyclosporin A, TNF-α inhibitors, and 
corticosteroids in treating diabetic macular edema (DME) 
[23–27], may also indicate the possibility that DR arises 
from autoimmunity.

In spite of poor glycemic control, diabetic patients who 
do not always develop DR after a long duration of the dis-
ease and patients with non-proliferative DR (NPDR) do not 
necessarily progress to proliferative diabetic retinopathy 
(PDR). Although many other factors, such as genetics, reti-
nal ischemia and comorbidities, and myopia, may contribute 
to the onset and progression of DR, the individual differ-
ences may be due to the interplay of the various pathophysi-
ological factors, including immune response.

We measured anti-type II collagen antibodies in the 
serum of DR patients and found that they were higher com-
pared with the non-diabetic control group [20]. Based on 
the results of that study and a review of the previously pub-
lished literature, we wish to herein discuss the likely role of 
immune response in the development of DR.

Striking similarities between diabetic 
retinopathy and rheumatoid arthritis

Rheumatoid arthritis (RA) is a typical disease with chronic 
inflammatory and autoimmune features [28]. The pathologi-
cal conditions of RA are characterized by chronic inflam-
mation of the joint associated with angiogenesis and fibro-
blast proliferation [29]. Similar to the vitreous body, type II 
collagen and hyaluronic acid are abundant in the articular 
cartilage and joint space, respectively [30]. Autoimmune 
reactions to type II collagen have been shown to be involved 
in the pathogenesis of RA [31, 32], where Arthus reaction, 
a type of local type III hypersensitivity, occurs in the joint 
[33, 34], thus causing inflammation and destruction of the 

articular cartilage [28]. Persistent chronic inflammation of 
the joint causes hypoxia of synovial cells lining the inner 
surface of the joint capsule as well as angiogenesis induced 
by vascular endothelial growth factor (VEGF) and prolif-
eration of synovial cells [34, 35]. As a result, fibrovascular 
tissues called “pannus” are formed in the joint [36]. Similar 
findings to the advanced stage of RA are present in PDR 
patients, including retinal hypoxia, VEGF-induced angio-
genesis, and proliferation of glial cells [37], resulting in the 
formation of proliferative membranes in the vitreous and 
vitreoretinal interface [38].

In this current review, we focused on the similarity of 
the anatomical structure and macromolecular composition 
between the vitreous body and the joint and the pathophysi-
ological similarity between DR and RA (Fig. 1).

Cartilage‑affecting diseases and anti‑type II 
collagen antibody

The assumption that the autoimmune responses to type II 
collagen may be involved in the pathogenesis of RA is sup-
ported by increased serum and synovial fluid levels of anti-
type II collagen antibodies in the early stage of RA [32, 39] 
and by the observation that immunizing animals with type 
II collagen results in the formation of RA-like joint lesions 
[40, 41]. As type II collagen-containing tissues such as the 
articular cartilage and vitreous body are avascular, type II 
collagen is considered to be a sequestered antigen that can 
escape immune surveillance, resulting in immunological 
tolerance [42, 43]. Autoantibodies to type II collagen will 
be formed by the loss of immunological tolerance in RA 
patients, causing the progression of autoimmune-mediated 
joint destruction [43].

Increased serum levels of anti-type II collagen antibodies 
have been observed in other diseases affecting cartilaginous 
tissues of the joints (e.g., osteoarthritis, relapsing polychon-
dritis, systemic lupus erythematosus, chronic gouty arthri-
tis, and temporomandibular joint disturbance syndrome) 
[31, 44–47]. Besides serum anti-type II collagen antibodies 
and animal models using type II collagen immunization, 
the administration of a small amount of undenatured type 
II collagen reportedly induces oral immune tolerance to 
ameliorate the symptoms of RA, as described later in detail 
[48–50]. Altogether, this evidence suggests that anti-type II 
collagen antibodies might have a causative role as opposed 
to being a bystander of the diseases. Cartilaginous tissues 
are also present in the inner ear (and a part of auditory ossi-
cles), and increased serum levels of anti-type II collagen 
antibodies have also been detected in the diseases affecting 
the inner ear, such as Meniere’s disease, autoimmune ear 
disease (AIED), and otosclerosis [51–53]. The administra-
tion of type II collagen has been shown to cause Meniere’s 
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disease- and AIED-like conditions in animals [54, 55], thus 
raising the possibility that autoimmunity to type II collagen 
may be involved in the development of these diseases that 
affect the inner ear.

Diabetic retinopathy and anti‑type II 
collagen antibody

Balashova et al. firstly reported that increased levels of anti-
type II collagen antibodies and immune complexes were 
observed in the serum and lacrimal fluid of DR patients [19]. 
We also measured the serum levels of anti-type II collagen 
antibodies in DR patients and found significantly higher levels 
of autoantibodies to type II collagen in DR patients compared 
to control subjects (Fig. 2) [20]. Remarkably, the serum lev-
els of anti-type II collagen antibodies were higher in patients 
without DR than in patients with DR [20]. These results 
suggest that anti-type II collagen antibodies, which already 
increase in serum before the symptoms of DR are manifested, 
may be one of the factors involved in the onset of DR.

As mentioned above, the vitreous body, along with the 
joint and inner ear, is one of the few tissues that contain 
type II collagen, a component of cartilage. Since it has been 
considered that the autoimmunity to type II collagen is a 
causative factor in the pathogenesis of the cartilage-affecting 
diseases, such as RA and Meniere’s disease, we assume that 
the similar mechanism may be involved in the development 
and progression of DR, a disease affecting the vitreous body 
in which type II collagen is abundantly present.

Although the mechanism by which the serum levels of 
anti-type II collagen antibodies increase in diabetic patients 
remains unclear, it has been shown that hypoxia and hyper-
glycemia caused blood-ocular barrier breakdown in those 
patients [56, 57], which may induce macrophages to migrate 
into the ocular tissues and to phagocytize type II collagen 
that is normally sequestered from the immune system. The 
peptide fragments of type II collagen presented by mac-
rophages can be recognized by helper T cells, resulting in 
the production of anti-type II collagen antibodies by acti-
vated B cells [58]. Since activated microglia are capable of 

Fig. 1   Schematic images showing that anatomical structure and macromolecular composition of the joint and vitreous body. These images illus-
trate the pathophysiological similarity between the advanced stage of rheumatoid arthritis (RA) and proliferative diabetic retinopathy (PDR)

Fig. 2   This graph shows the serum levels of anti-type II collagen 
antibodies (units/ml) in diabetic retinopathy (DR) patients. The serum 
levels of anti-type II collagen antibodies in DR patients are signifi-
cantly higher than those in control subjects. Notably, the levels are 
higher in the group of patients with non-diabetic DR than in the 
group of patients who already had DR
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phagocytosis and antigen presentation, the involvement of 
retinal microglia in anti-type II collagen antibody production 
is undeniable [59, 60].

Proposal of an anti‑type II collagen 
antibody‑associated disease

The vitreous body, joint, and inner ear, all of which con-
tain type II collagen, are filled with liquid, namely the vit-
reous humor, synovial fluid, and endolymph, respectively. 
It is interesting to note that all of these tissues have also 
barrier mechanisms to the blood, i.e., the blood-ocular 
barrier, blood-joint barrier, and blood-labyrinth barrier, 
respectively [61–63], which separate type II collagen in 
these tissues from circulating immune cells. It seems likely 
that the disruption of these barriers results in the loss of 
immunological tolerance to type II collagen and the subse-
quent development of DME in DR, hydrarthrosis in RA, and 
endolymphatic hydrops in Meniere’s disease [64, 65]. We 
have recently reported that the serum levels of anti-type II 
collagen IgG antibody were significantly higher in patients 
with epiretinal membrane than in control patients [66]. Con-
sequently, chronic disorders affecting the vitreous body and 
cartilaginous tissues, including the above three diseases, are 
supposed to be in the same spectrum of immune tolerance 
breakdown to type II collagen, causing anti-type II collagen 
antibody production.

Immunological divergence between diabetic 
retinopathy and rheumatoid arthritis

Despite the speculated involvement of immune responses 
to type II collagen in the pathogenesis of both DR and RA, 
it seems rather uncommon that these two diseases develop 
simultaneously. In fact, it was previously reported that 
patients with RA were less predisposed to develop DR 
[67]. A number of studies have indicated the frequency 
of HLA-DR and -DQ antigens that were associated with 
disease susceptibility were different between DR and RA 
patients [15, 16, 68]. For example, HLA-DRB1*0401 and 
*0405 alleles are reportedly strongly associated with RA 
susceptibility [69–72], while these single alleles are non-
susceptible to DR. Conversely, it has been shown that the 
HLA-DRB1*0402 allele was associated with resistance to 
developing RA [73, 74], although a strong positive correla-
tion between B1*0402 and DR susceptibility were reported 
[75].

A possible explanation for that finding is that there may 
be structural differences of collagen molecules recognized 
by lymphocytes between these two diseases. It has been 
reported that autoantibodies against citrullinated type II 

collagen were produced in RA patients [76, 77]. Meanwhile, 
collagens including type II are reportedly glucosylated in 
diabetic patients [78, 79]. Bassiouny proposed that gluco-
sylated collagen may increase antigenicity to initiate auto-
immune responses leading to diabetic complications, pre-
sumably indicating that T cells recognize glycosylated type 
II collagen as “not self” [80]. Although autoantibodies to 
native type II collagen are also found in the serum of DR 
and RA patients [19, 20, 81, 82], autoimmune reactions to 
modified type II collagen seem to be critical for the onset 
of these diseases, because the coincidence of DR and RA is 
uncommon as mentioned above.

Conversely, Mimura et al. reported that the frequency of 
the HLA-DR4-DQ4 haplotype, which was associated with 
RA, especially in more severe cases [83, 84], was signifi-
cantly higher in PDR patients than in a non-DR group [85, 
86]. HLA-DR and HL-DQ are class II major histocompat-
ibility complex (MHC) antigens, expressed on the surface 
of antigen-presenting cells, such as macrophages, dendritic 
cells, and B cells, and determine the productivity of the spe-
cific antibodies against proteins. Thus, it is therefore pos-
sible that HLA-DR4-DQ4, which are frequently observed 
in patients with progressed stages of DR and RA, might be 
involved in the production of some specific autoantibodies. 
Banerjee et al. found that high levels of anti-native type II 
collagen antibodies in the serum of RA patients were associ-
ated with HLA-DR4 [82]. Matsushita et al. reported that 94 
putative DQ4-binding motifs (i.e., amino acid sequences) 
were detected in the native type II collagen molecules [83]. 
Cook et al. observed that the presence of antibodies to native 
type II collagen was associated with the activity of RA and 
severity of symptoms [32, 45]. As described above, a consid-
erable number of HLA-DQ4-binding motifs were reportedly 
found in native type II collagen [83], presumably implying 
that immune response to native type II collagen could be 
involved in the progression of DR and RA.

Diabetic retinopathy and Arthus reaction

The joint lesions of RA have been considered to be caused 
by Arthus reaction, as evidenced by neutrophil infiltration, 
increased serum and synovial fluid levels of complements 
and immune complexes, and tissue deposition of immune 
complexes [33, 87, 88].

The pathological features of Arthus reaction are bleed-
ing, thrombosis, and edema [89], then followed by fibrinoid 
deposition, as observed in the RA joint [90]. Fibrinoid is 
mainly composed of fibrin and immune complexes [91], of 
which deposition has reportedly been detected in the joint 
tissues of RA patients [92].

We assume that DR in the early stage may also have 
pathological features of Arthus-like reaction as following 
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reasons: (1) neutrophil infiltration into the retinal tissue [10], 
(2) increased serum levels of complements and immune 
complexes [19, 93], (3) deposition of immunoglobulins and 
complements, components of immune complexes, in the ret-
ina [94, 95]. Fu et al. observed that co-staining for oxidized 
low-density lipoprotein (oxLDL) and IgG was present in 
the diabetic retina, presumably indicating the deposition of 
anti-oxLDL immune complexes [96]. Giusti proposed that 
immune complex deposition in the retina was implicated in 
the pathogenesis of DR [97]. Retinal bleeding, thrombosis, 
and edema, all of which are symptoms of Arthus reaction 
[87], are frequently observed in the relatively early stage of 
DR [98].

It is sometimes described that hard exudates consist of 
lipids and/or lipoproteins [99]. However, proteins including 
fibrin were also reportedly present in hard exudates [100]. 
Liu et al. demonstrated that lipoprotein (a) [Lp(a)] bound 
covalently to fibrin, contributing to the deposition of Lp(a), 
colocalized with fibrin in atheroma [101]. Smith insisted 
that fibrin was a factor in lipid accumulation in the athero-
sclerotic plaque, because fibrin is bound to Lp(a) with high 
affinity and also bound to low-density lipoprotein (LDL) 
[102]. Nogornev proposed that the atherosclerotic plaque 
was formed by the deposition of immune complexes contain-
ing lipoproteins [103]. We assume that fibrin and immune 
complexes, components of fibrinoid, may form hard exu-
dates along with lipoproteins by a similar mechanism as 
atheroma plaque formation.

Pericytes and type II collagen

Pericytes are considered to have mesenchymal stem cell 
(MSC)-like properties being able to differentiate into chon-
drocytes, osteoblasts, and adipocytes [104, 105]. Farrington-
Rock et al. demonstrated that when cultured at high density 
in the presence of a defined chondrogenic medium, pericytes 
expressed mRNA of Sox9, a chondrocyte marker, and type 
II collagen [106].

Ihanamäki et al. have shown that the expression of Sox9 
and type IIA procollagen mRNA increased in the develop-
ing and aging retina in mice [107]. Swinscoe et al. reported 
that type II collagen was a major component of the bovine 
retinal microvessel extracellular matrix [108]. MSCs report-
edly tend to undergo chondrogenesis under hypoxia [109, 
110]. Hypoxic chondrocytes are also known to produce an 
increased amount of type II collagen [111, 112]. Besides, 
high glucose reportedly induces chondrogenesis in MSCs 
[113]. Chondrogenic differentiation culture medium contains 
high concentrations of glucose [114]. Accordingly, MSC-
like pericytes around the retinal vessels may produce type II 
collagen especially under hypoxia and high-glucose condi-
tions in the diabetic retina.

As mentioned previously, type II collagen produced by 
pericytes in the diabetic retina will be phagocytized by cir-
culating monocytes/macrophages or retinal microglia, simu-
lating B cells to produce anti-type II collagen antibodies 
[58–60]. Hypoxia and high-glucose conditions of diabetic 
retina cause disruption of the blood-retinal barrier [56, 57]. 
As a result, anti-type II collagen antibodies in the serum may 
come into contact with type II collagen around the retinal 
vessels, forming immune complex deposition in the retina.

Selective loss of pericytes occurs in the early stage of 
DR [115]. It has been reported that increased serum levels 
of anti-pericyte antibodies were observed in DR patients 
[14, 17, 18]. In addition to autoimmune responses to type II 
collagen, anti-pericyte antibodies may injure the pericytes, 
causing a loss of pericytes in the diabetic retina. A continued 
loss of pericytes and type II collagen around retinal vessels 
could result in a shift of the immune response site from the 
retina to the vitreous and vitreoretinal, where type II col-
lagen is abundantly present [116].

Vitrectomy had been frequently performed to treat DME 
before anti-VEGF therapy was clinically available [117, 
118]. The proposed mechanisms underlying the efficacy of 
vitrectomy for DME include the elimination of inflamma-
tory cytokines from the vitreous body and the release of 
vitreoretinal traction [119, 120]. It has also been shown that 
vitrectomy significantly increased intraocular oxygen ten-
sion for prolonged periods after surgery [121]. Stefánsson 
proposed that vitrectomy improved retinal oxygenation to 
reduce DME [122]. Hard exudates, which are lesions that 
are often observed in DME, can be gradually reduced only 
by removal of the vitreous body (Fig. 3) [117]. According 
to the aforementioned assumptions, hard exudates might be 
anti-type II collagen immune complex deposition along with 
fibrin and lipoproteins. We speculated that the increased 
retinal oxygen tension after vitrectomy would suppress the 
chondrogenic differentiation of pericytes producing type II 
collagen, resulting in the disappearance of hard exudates 
containing anti-type II collagen immune complexes.

Müller cells and type II collagen

Müller cells are the predominant glia of the retina with an 
elongated shape, spanning across the entire retina [123]. 
Müller cells not only serve as mechanical support of the neu-
ral retina, but also play an important role in the maintenance 
of its metabolic and physiological homeostasis, including 
regulation of extracellular environment [123, 124], removal 
of debris [125], and antigen presentation manifested after 
removal of suppressive activity [126].

Müller cells have been shown to be capable to phago-
cytize type II collagen [127, 128], which scarcely exists 
in the retina under physiological conditions except for the 
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perivascular area [109]. Removal of type II collagen by 
Müller cells may suppress autoimmune reactions against 
it [127, 128]. On the other hand, the in vitro experiment 
showed Müller cells synthesized the various collagens of 
the vitreous and vitreoretinal interface including type II 
collagen [129]. Müller cells also reportedly expressed the 
transcription factor Sox9, which directly regulates COl2A1, 
the gene encoding type II collagen, during development and 
injury [130]. We tentatively identified immature Müller cells 
around the foveola, in which GFAP and vimentin were colo-
calized [131]. We presume that these immature Müller cells 
might dedifferentiate and produce type II collagen under 
hypoxia and high glucose conditions in the diabetic retina, 
forming foveal hard exudates containing anti-type II colla-
gen immune complexes after a loss of pericytes.

As described above, there is some corroborating evidence 
that type II collagen is involved in the pathogenesis of DR; 
however, there are presently limitations to making a specific 
determination.

Dysregulated innate immunity and multiple 
autoantibody production in diabetic 
retinopathy

As described previously, we observed the serum levels of 
anti-type II collagen antibodies were higher in patients with 
non-diabetic DR than in patients with DR [20], indicating 
that humoral immunity to type II collagen might decrease 
with the progression of DR. Balashova et al. and Danilova 
et al. found that cellular immunity was suppressed in DR 
patients [19, 132]. Loukovaara et al. also reported that T 
cell-mediated responses did not dominate in PDR patients 
[133]. Meanwhile, Graves et al. and Xu et al. indicated that 
dysregulated innate immune responses associated with 
inflammation may contribute to the progression of DR [134, 

135]. It has been shown that activated innate immunity pro-
moted angiogenesis and fibrosis [136, 137]. We speculate, 
therefore, that innate immunity instead of acquired immu-
nity may mainly affect the inflammatory responses as DR 
progresses.

High levels of autoantibodies to oxLDL and to cardi-
olipin were observed in the serum of PDR patients [22, 
23], although innate immunity seems to be the predominant 
immune response in PDR as described above. Interestingly, 
elevated levels of anti-oxLDL and anti-cardiolipin antibod-
ies were also found in the serum of RA patients [138, 139], 
although anti-oxLDL antibodies in DR patients belonged to 
the IgA class [21]. These findings also appear to indicate the 
pathological similarity of DR to RA.

Multiple autoantibodies in the serum are frequently asso-
ciated with autoimmune diseases, which are caused by a phe-
nomenon called epitope spreading [140–142]. High serum 
levels of anti-type II collagen antibodies were reportedly 
associated with the early stage of RA [32, 39], while anti-
cyclic citrullinated peptide (anti-CCP) antibodies increased 
in the late stage [143], indicating that autoantigens involved 
in the autoimmune diseases may vary with their progression. 
Complicated immune responses, including activated innate 
immunity and multiple autoantibody production, may pro-
mote the progression of DR.

Activation of the NLRP3 inflammasome, 
a critical component of innate immunity, 
in diabetic retinopathy

NOD-like receptor family pyrin domain-containing 3 
(NLRP3) is a component of inflammasome and a key regu-
lator of innate immunity [144]. NLRP3 inflammasome acti-
vation leads to caspase-1-dependent production of IL-1β and 
IL-18 and to pyroptosis (caspase-1-dependent cell death) [145, 

Fig. 3   Ocular fundus photographs in a case of diabetic maculopathy 
with severe hard exudates before vitrectomy (a) and after vitrectomy 
(b). The hard exudates in the retina (or in the subretinal space) are 
gradually reduced only by removing the vitreous body. It is specu-

lated that the improvement of retinal oxygenation suppresses the 
chondrogenic differentiation of pericytes, resulting in the disappear-
ance of hard exudates containing anti-type II collagen immune com-
plexes
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146]. Subsequently, the above pro-inflammatory cytokines and 
damage-associated molecular patterns (DAMPs), such as high-
mobility group box 1 (HMGB1) and adenosine triphosphate 
(ATP), are released from pyroptotic cells [147, 148].

HMGB1 binds to its receptors, toll-like receptor (TLR)2, 
TLR4, TLR9, and RAGE (receptor for advanced glycation 
end products), then activating NLRP3 inflammasome [149, 
150]. Extracellular ATP mediates NLRP3 inflammasome 
activation through the P2X7 receptor [151]. The NLRP3 
inflammasome has reportedly been implicated in the patho-
genesis of various diseases, including autoimmune diseases 
such as RA, inflammatory bowel disease (IBD), multiple 
sclerosis (MS), and type I diabetes [152–154]. It has been 
demonstrated that the activation of NLRP3 inflammasome 
promoted pathological angiogenesis and fibrosis in animal 
experiments [155, 156].

High glucose and accumulation of ROS (reactive oxy-
gen species) and AGEs (advanced glycation end products) 
reportedly activate NLRP3 inflammasome [157–159], and 
these states are observed in the diabetic retina and vitreous 
body [79, 160, 161]. Increased DAMPs (e.g., HMGB1and 
ATP) released from necrotic and pyroptotic cells in DR may 
also activate NLRP3 inflammasome [148, 162, 163]. Chen 
et al. found that increased gene and protein expression of 
NLRP3 and caspase-1 was observed in peripheral blood 
monocytes of DR patients compared with that in normal 
controls [164]. Charmoy et al. reported that NLRP3 inflam-
masome mediated neutrophil recruitment [165]. Hao et al. 
indicated that NLRP3 inflammasome activation increased 
permeability of the blood-retinal barrier [166]. Therefore, 
exaggerated inflammatory responses, such as persistent 
leukocyte infiltration and leakage from the retinal vessels, 
observed in non-PDR with DME are considered to be at 
least partly caused by the activation of NLRP3 inflamma-
some [167, 168].

Loukovaara et al. found that the levels of inflamma-
some components, including NLRP3 and caspase-1, and 
inflammasome-related pro-inflammatory cytokines, IL-1β 
and IL-18, were increased in the vitreous of PDR patients 
[133]. HMGB1 and extracellular ATP, which activated 
NLRP3 inflammasome, were also reportedly increased in 
PDR vitreous [169, 170]. Consequently, innate immunity, 
in which NLRP3 plays a critical role, might be activated 
throughout all stages of DR, contributing to exacerbation 
and prolongation of inflammation.

Resemblance of diabetic retinopathy 
to chronic wound healing

We consider that the development and progression of DR 
may closely resemble a prolonged wound healing process. 
Wound healing is divided into four phases: hemostasis, 

inflammation, proliferation, and remodeling [171, 172]. 
Bleeding and blood clotting are observed in the hemostasis 
phase [173]. Fibrin is involved in clot formation [174]. The 
inflammation phase is marked by chemotaxis of immune 
cells, increased vascular permeability, and removal of cel-
lular debris by macrophages [175–177]. The proliferation 
phase is characterized by angiogenesis and fibroplasia/
fibroblast proliferation [178, 179]. The remodeling phase 
is where the synthesis of collagen and other extracellular 
matrix components increases the tensile strength of the 
wound as it matures [175, 179, 180]. Bleeding, fibrin deposi-
tion, and vascular leakage are frequently observed in NPDR 
[98, 100, 181], and angiogenesis and fibrosis are observed 
in PDR [182]. We speculate therefore that the former two 
and the latter two phases of the wound healing process cor-
respond to NPDR and PDR, respectively.

During the inflammation phase of wound healing, pro-
inflammatory M1 macrophages exert functions as antigen 
presentation, phagocytosis, and production of inflammatory 
cytokines [183, 184]. After that, during the proliferation 
phase, anti-inflammatory M2 macrophages stimulate angio-
genesis and fibroplasia [185–189]. Macrophage polarization 
similar to the wound healing process has been observed in 
DR as described as follows.

Omri et al. reported macrophages expressed inducible 
nitric oxide synthase (iNOS), a marker of M1 macrophage, 
migrated through the retina in the animal model of early-
stage DR [190]. Arroba et al. also found that microglia, the 
tissue macrophage of the retina, expressed iNOS increased 
in the animal model of non-PDR [191]. On the other hand, 
Kobayashi et  al. and Abu El-Asrar et  al. demonstrated 
that CD163-positive M2 macrophages were significantly 
increased in the vitreous of PDR patients [192, 193].

Reportedly, M1 macrophages produce pro-inflammatory 
cytokines (including TNF-α and IL-6), inducing neutrophil 
recruitment and vascular permeability [194, 195], while M2 
macrophages produce anti-inflammatory cytokines (includ-
ing IL-10 and TGF-β) and pro-angiogenic factors (including 
VEGF and PDGF) [196, 197], promoting angiogenesis and 
fibrosis [198]. Accordingly, the aforementioned skewing of 
macrophage phenotype may explain well the pathology of 
wound healing and DR.

Presumable mechanisms of prolonged 
inflammatory responses in the diabetic 
retina

As described above, M2 macrophages that increase in the 
advanced stage of wound healing release anti-inflammatory 
cytokines such as IL-10 and TGF-β [196]. M2 macrophages 
also possess high capacities to produce specialized pro-
resolving mediators (SPMs) such as lipoxins, resolvins, 
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protectins, and maresins [199]. SMPs are metabolites of 
ω3 and ω6 polyunsaturated fatty acids, which play key 
roles in the resolution of inflammation [200]. As a result, 
the inflammation and proliferation phases of physiological 
wound healing cease within a relatively short period of time. 
Namely, the inflammation phase of wound healing typically 
lasts a couple of days and the proliferation phase occurs up 
to 2–3 weeks after injury [178, 201]. It appears, meanwhile, 
that the resolution of inflammation is impaired in DR.

Inflammasomes, such as NLRP1, NLRP3, NLRC4, and 
AIM2, are cytosolic pattern recognition receptors control-
ling innate immunity [202]. Among them, NLRP3 is the 
predominant inflammasome activated by tissue injury, con-
tributing to wound healing in the early inflammation phase 
[203]. As described previously, M2 polarized macrophages 
produce SPMs, inhibiting the activation of NLRP3 inflam-
masome [200].

It has been shown that SPMs, such as lipoxin A4 (LXA4) 
and resolvin D1 (RvD1), possessed highly potent pro-resolv-
ing properties [204, 205], inhibiting the activation of NLRP3 
inflammasome and promoting the wound healing [206, 207]. 
However, it was reported that the levels of LXA4 and RvD1 
were reduced in diabetic serum [208–211]. Shi et al. dem-
onstrated high glucose induced a decrease in RvD1 levels in 
the retina of diabetic mouse [208]. Kaviarasan et al. found 
that a significant decrease in LXA4 levels was observed in 
PDR vitreous [211]. ALX/FPR2 and GPR32, the receptors 
for LXA4 and RvD1 [212], were reportedly downregulated 
by high glucose in the diabetic retina [209, 210]. Therefore, 
the NLRP3 inflammasome activation observed in PDR is 
presumably increased by high glucose-induced suppression 
of SPMs and their receptors, causing chronic inflammation 
with angiogenesis and fibrosis [213, 214].

It has been proposed that the transition from inflamma-
tion to proliferation is a critical step during wound heal-
ing [177] and that efferocytosis (removal of dying cells by 
macrophages) provides a key signal to this transition [215, 
216]. Efferocytosis reportedly induces macrophage polariza-
tion from pro-inflammatory M1 to anti-inflammatory/pro-
angiogenic M2 phenotype [217, 218]. Suresh Babu et al. 
demonstrated that high glucose conditions induced impair-
ment of efferocytosis in vitro [219]. Khanna et al. found that 
macrophages isolated from wounds of diabetic mice showed 
significant impairment in efferocytosis [220].

Freenstra et al. indicated that multiple forms of cell death 
including apoptosis, necrosis, and pyroptosis were observed 
in DR [221]. It has been shown that ineffective efferocyto-
sis led to the accumulation of necrotic and pyroptotic cells, 
releasing DAMPs such as HMGB1 and ATP, which induced 
vascular permeability [222–225]. DME is frequently sus-
tained without progression to PDR [226], in which high 
glucose conditions may impair clearance of dying cells 
by efferocytosis, resulting in the inhibition of macrophage 

polarization from pro-inflammatory M1 to anti-inflamma-
tory/pro-angiogenic M2 phenotype [217–220]. Thus, it 
can be concluded that NLRP3 inflammasome activation by 
downregulation of SPMs and their receptors as well as ineffi-
cient efferocytosis under high glucose conditions may cause 
persistent inflammation in DR.

Promising new approaches for diabetic 
retinopathy treatment targeting 
immunomodulation

As mentioned previously, various immunosuppressants 
including corticosteroids have been shown to be effective 
in treating DR, especially DME [23–27]. Since DR appears 
to have characteristics of an autoimmune disease, it might 
be worthwhile to investigate other immunosuppressive 
or immunomodulating therapies for the treatment of DR 
[227–230].

Orally administered autoantigens suppress autoimmune 
diseases in animal models, such as collagen-induced arthri-
tis, experimental allergic encephalomyelitis, uveitis, and 
type I diabetes, by inducing oral tolerance [48, 49, 231]. 
Autoantigens of these animal models are type II collagen, 
myelin, S antigen, and insulin, respectively [231]. Low doses 
of oral antigen induce antigen-specific T cell responses, 
especially those of regulatory T cells in the gut, releas-
ing anti-inflammatory cytokines including TGF-β, IL-4, 
and IL-10 [231, 232]. Human trials of orally administered 
antigen have shown positive findings in patients with RA 
and MS [231]. As described previously, anti-type II colla-
gen antibodies increase in the serum before DR is clinically 
manifested [20]; therefore, oral immune tolerance induction 
with type II collagen could prevent the onset of DR.

As previously mentioned before, it has been suggested 
that dysregulation of innate immunity associated with 
increased inflammatory responses contributes to DR pro-
gression [134, 135]. It has also been shown that the activa-
tion of the NLRP3 inflammasome, a key regulator of innate 
immunity, may cause the exacerbation of macular edema, 
angiogenesis, and fibrosis [155, 156, 166–168]. Several 
NLRP3 inhibitors have been investigated for the treatment of 
DR [233–235]. Zhang et al. demonstrated that MCC950 had 
protective effects against high glucose-induced human reti-
nal endothelial cell dysfunction [233]. Trotta et al. observed 
that β-hydroxybutyrate inhibited diabetic retinal damage 
through reduction of the NLRP3 inflammasome activation 
[234]. Isaji et al. reported that tranilast suppressed the prolif-
eration and migration of endothelial cells in vitro and angio-
genesis in vivo [235]. As numerous studies have revealed 
that inhibition of the NLRP3 inflammasome activation was 
an effective therapeutic approach for autoimmune diseases 
including RA, MS, and IBD, orally administrable NLRP3 
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Fig. 4   Schematic overview of our hypothesis on the pathogenesis of 
DR. Acquired immunity (mainly humoral immunity) is presumably 
involved in the onset of DR, in which glycosylated type II collagen 
will be recognized as “not self” by T lymphocytes to initiate immune 
response [78–80], followed by the deposition of immune complexes, 
causing Arthus reaction, a type of local type III hypersensitivity [33, 
87, 88]. Innate immunity enhances the inflammation, angiogenesis, 
and fibrosis in DR via the activation of the NLRP3 inflammasome, a 
key mediator of innate immunity and sterile inflammation [134–136]. 
High glucose suppresses acquired immunity and inhibits the functions 
of M2 macrophages, resulting in impaired efferocytosis (phagocytosis 
of dying cells by macrophages) and suppression of SPMs (promot-
ers of the resolution of inflammation) [219, 220], whereas hypoxia 
induces M2 macrophage polarization via IL-10 and TGF-β [253, 
254]. Both high glucose and hypoxia activate innate immunity through 
NLRP3 inflammasome [134, 135, 164]. a High glucose induces gly-
cosylation of type II collagen in the vitreous [80], along with plate-
let aggregation and vascular dysfunction that may result in the break-
down of BVB, normally sequestering vitreal type II collagen from the 
immune system [56, 57, 61]. The recognition of glycosylated type II 
collagen as “not self” by immune cells can cause the loss of immu-
nological tolerance to it [43, 56, 57]. b Epitope spreading, generally 
associated with autoimmune diseases such as RA and MS [255], is 
defined as an autoimmune response that extends from the initial to 
additional epitopes within the primary target antigen or from the initial 
autoantigen to unrelated secondary autoantigens [140–142]. Autoan-
tibodies against native type II collagen, type IV collagen, oxLDL, 
cardiolipin, and platelet other than glycosylated type II collagen are 
reportedly observed in the serum of DR patients [14, 17–22]. These 
multiple autoantibodies are probably generated by epitope spreading. 
c Oxidative stress, such as high glucose and hypoxia, transforms LDL 
into oxLDL (not self) [256], thus producing autoantibodies and form-
ing immune complexes containing oxLDL in the retina [96]. OxLDL 
also polarizes macrophages toward the M1 or M2 phenotype via the 
activation of NF-κB or PPARγ, respectively [257, 258]. Reportedly, 
low oxidation degree of oxLDL induces M1 macrophages, whereas 

high oxLDL induces M2 phenotype [259, 260]. d RA involves Arthus-
type hypersensitivity accompanied with bleeding, thrombosis, edema, 
neutrophil infiltration, complement activation, and deposition of 
immune complexes [33, 87, 88]. These clinical findings of RA are also 
observed in patients with NPDR [19, 93–95], and increased serum lev-
els of autoantibodies to type II collagen are detected in patients with 
both DR or with RA [20, 31, 32], indicating that these two diseases 
can have the same etiology. e Neutrophil infiltration into the retina is 
observed in NPDR [10]. The lifespan of infiltrated neutrophils is short 
and limited by programmed cell death, including apoptosis and pyrop-
tosis (caspase-1-dependent inflammatory cell death) [221, 261], fol-
lowed by efferocytosis [217–219]. Dying (or dead) neutrophils release 
inflammatory cytokines (e.g., IL-1β, IL-18) [5] and DAMPs (e.g., 
HMGB1, ATP) [169, 170], causing retinal inflammation and DME 
[57, 262]. f High glucose, hypoxia, and DAMPs released from dying 
cells activate the NLRP3 inflammasome in macrophages, resulting in 
the activation of caspase-1, which cleaves pro-IL-1β and pro-IL-18 
into their mature bioactive forms [133]. The activation of the NLRP3 
inflammasome also evokes increased levels of VEGF and TGF-β in 
PDR, promoting angiogenesis and fibrosis, respectively [155, 156, 
166]. g The development and progression of DR seem to resemble 
the process of cutaneous wound healing, although their time courses 
are different. The transition from the inflammatory to proliferative 
phase is a critical step of wound healing [177]. During the inflamma-
tory phase, neutrophils infiltrate and M1 macrophages produce pro-
inflammatory cytokines, whereas, during the proliferative phase, M2 
macrophages produce anti-inflammatory cytokines and growth fac-
tors, promoting angiogenesis and fibroblast proliferation [184–188]. 
Inflammatory and proliferative phases of wound healing seemingly 
correspond to NPDR and PDR, respectively. h Efferocytosis provides 
a key signal to M1 to M2 transition, thus inducing M2 macrophage 
polarization [217, 218]. M2 macrophages produce SPMs that pos-
sesses highly potent pro-resolving properties [199, 200] through inhib-
iting the activation of NLRP3 inflammasome [206, 207]; however, a 
high-glucose environment inhibits efferocytosis and SPMs production 
in DR patients
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inhibitors such as the abovementioned compounds might be 
promising candidates for the treatment of DR [236–238].

It has been shown that SPMs (including lipoxins and 
resolvins) and DHA (the precursor of SPMs) inhibited the 
NLRP3 inflammasome activity, thus being effective for the 
prevention of DR [239–243]. Since SPMs have short half-
lives [244], epimers and analogs of SPMs might be clinically 
more useful than SPMs for the treatment of DR [244–246].

Future issues

As described previously, the development and progression 
of DR appear to resemble cutaneous wound healing. NPDR 
and inflammation phase of diabetic wound healing, namely 
the early stages of both diseases, are prolonged, associated 
with persistent infiltration of neutrophils and with increased 
permeability of blood vessels [10, 56, 57]. Conversely, the 
proliferation phase of diabetic wound healing is impaired 
due to insufficient angiogenesis and inhibition of fibroblast 
proliferation [247–250], whereas exaggerated angiogenesis 
and fibrosis occur in PDR (Fig. 4) [38, 39].

In addition, the retina has been considered as an exten-
sion of the central nervous system (CNS) anatomically and 
developmentally [251], and the ocular fundus examination 
is regarded as the observation of non-invasively visualized 
CNS in cases of patients with hypertension and atheroscle-
rosis [251, 252]; however, angiogenesis never develops in 
the brain of diabetic patients. Further study is needed to 
elucidate what causes the difference of angiogenic activ-
ity between PDR and the proliferation phase of diabetic 
wound healing, and what is the anatomical discrepancy of 
the blood vessels between the retina and brain in relation to 
angiogenesis.
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