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Abstract: Gene regulation is a key factor in gaining a full understanding of molecular biology. microRNA (miRNA), a 

novel class of non-coding RNA, has recently been found to be one crucial class of post-transactional regulators, and play 

important roles in cancer. One essential step to understand the regulatory effect of miRNAs is the reliable prediction of 

their target mRNAs. Typically, the predictions are solely based on the sequence information, which unavoidably have 

high false detection rates. Recently, some novel approaches are developed to predict miRNA targets by integrating the 

typical algorithm with the paired expression profiles of miRNA and mRNA. Here we review and discuss these integrative 

approaches and propose a new algorithm called HCTarget. Applying HCtarget to the expression data in multiple 

myeloma, we predict target genes for ten specific miRNAs. The experimental verification and a loss of function study 

validate our predictions. Therefore, the integrative approach is a reliable and effective way to predict miRNA targets, and 

could improve our comprehensive understanding of gene regulation. 
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INTRODUCTION 

 Discovering gene regulation is one of the main goals in 
molecular biology. Specifically, uncovering the mechanisms 
underlying the expression of tumor related genes is a key 
factor in gaining a full understanding of cancer biology [1], 
which is also of great therapeutic significance. 

 While previously a great deal of study has focused on 
transcriptional factors (TFs), one crucial class of regulators 
at the transcriptional level, the post-transcriptional regulator 
microRNA (miRNA) has arrested much attention recently. 
miRNAs are a noval class of endogenous ~22nt noncoding 
RNAs. They down regulate gene expression through the 
following procedures. First, the primary miRNA are 
transcribed from “miRNA genes” or spliced from the 
intronic regions of their host genes. Then the primary 
miRNAs produce the miRNA precursors, and the final 
mature miRNAs. These miRNAs are combined with 
Argonaute (Ago) proteins to form RNA-induced silencing 
complexes (RISCs). RISCSs bind to the 3’- untranslated 
region of target mRNAs, which lead to their translational 
repression or degradation [2]. Hundreds of miRNAs have 
been annotated in human genome, and they are predicted to 
regulate up to one third of all protein-coding genes [3]. 

 Experimental analysis has recognized that miRNAs 
control the key cellular processes such as growth,  
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development and apoptosis [4]. It has been established that 
miRNAs make an important contribution to gene regulation 
in embryonic development and human disease, especially 
cancer [5-8]. Previous studies have verified that miRNAs 
can act as tumor suppressors or oncogenes and their 
dysregulation is widely involved in cancer initiation and 
progression [9], which enables their inhibition to be a novel 
therapeutic strategy for cancer [10]. 

 An essential step and major challenge in understanding 
miRNA regulatory function is the identification of their 
target genes [11]. Since it is infeasible to carry out high 
thoughput experiments, only a small fraction of miRNA 
targets have experimental supports [12, 13]. Typically, the 
target prediction is achieved by computational approaches 
based on sequence analysis. A great deal of target prediction 
programs have been developed [14-18]. Among them, 
TargetScan [3, 19], PicTar [20] and miRanda [21] are the 
most common ones. Generally, they use the following 
principles to recognize miRNA targets: 1) seed match: the 6-
8nt seed in miRNA 5’ part pair to the 3’ UTR region of their 
target mRNA; 2) thermodynamic stability: the free energy of 
the miRNA-mRNA hybrid is low; 3) conservation: miRNA 
target sites are conserved among several species. However, 
these sequence based approaches have high false-positive 
rate. It has been demonstrated that the false positive rate of 
TargetScan prediction is about 22-31% [22]. Since the seed 
match complementation could not discern the real targets 
effectively, great deals of fake targets are confounded. 

 With the development of high throughput technology, 
more and more miRNA and mRNA expression profiles have 
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been achieved to investigate miRNA’s role in biological 
processes, especially cancer [9, 23]. Previous studies have 
revealed that miRNA greatly repress their target mRNAs, 
and mRNAs have significant expression changes after 
miRNA transfection or inhibition. It has also been verified 
that the expression of mRNAs targeted by highly expressed 
miRNAs are negative shifted compared with other mRNAs. 
Therefore, the significantly negative correlated miRNA-
mRNA pairs have high potential to be the real target pairs 
[24]. 

 Based on this idea, some novel strategies have been 
developed to predict miRNA targets by integrative analysis. 
They mainly use the paired miRNA and mRNA expression 
data, which profile miRNA and mRNA expression levels 
simultaneously from the same sample, to supplement the 
sequence prediction for the detection of actual miRNA 
targets. 

 In this article, we review and discuss the most recent 
integrative approaches for miRNA target predictions. We 
also develop a new method called HCtarget. We apply 
HCtarget to the expression data in multiple myeloma and 
evaluate the performance of our predictions. 

REVIEW OF PREVIOUS APPROACHES 

 In the recent developed integrative approaches, there are 
roughly three ways to incorporate miRNA and mRNA 
expression profiles to the sequence prediction (Table 1): 1) 
directly consider the correlation between miRNA and mRNA 
expression; 2) formulate mRNA and miRNA expression with 
linear model with latent varialbes 3) use Bayesian network to 
model the miRNA-mRNA regulatory network. 

Table 1. Integrative Approach for miRNA Target Prediction 

 

Name URL Reference 

Correlation Based Approach 

MMIA http: //cancer.informatics.indiana.edu/mmia [25] 

Peng et al. - [26] 

mirConnX http: //www.benoslab.pitt.edu/mirconnx [27] 

MAGIA http: //gencomp.bio.unipd.it/magia [28] 

TargetMinner http: //www.isical.ac.in/ bioinfo_miu/ [29] 

ExprTarget http: //www.scandb.org/apps/microrna/ [30] 

miRGator http: //genome.ewha.ac.kr/miRGator/ [31] 

MirZ http: //www.mirz.unibas.ch [32] 

mimiRNA http: //mimirna.centenary.org.au [33] 

HOCTAR - [34] 

Linear Mode Approach 

GenmiR++ http: //www.psi.toronto.edu/genmir/ [24, 35] 

F. Stingo et al. - [36] 

J. Li et al. - [37] 

L. Lu et al. - [38] 

Bayesian Network Approach 

B. Liu et al. - [39] 

CORRELATION BASED APPROACH 

 Since miRNA generally repress their target mRNAs, a 
straightforward way to validate miRNA targeting mRNAs is 
detecting whether their expressions are inversely correlated. 
Based on this idea, some recent approaches have been 
developed to integrate the correlations between miRNA and 
mRNA pairs for the target predictions. 

 MMIA [25] (miRNA and mRNA Integrated Analysis) is 
an integrated miRNA and mRNA analyzing web server. It 
incorporates the common miRNA target prediction 
algorithms TargetScan, PITA and PicTar, and restricts the 
predictions on the significantly up (down) expressed 
miRNAs and the corresponding down (up) expressed 
mRNAs. MMIA is a feasible and simple tool for integrating 
miRNAs and mRNA expression profiles. However, it only 
takes into account the significantly up and down expression 
features, and loses the information of their whole expression 
patterns and their correlations. 

 X. Peng et al. [26] develop this approach by considering 
the inverse expression relationships between miRNAs and 
mRNA. They calculate the Pearson correlations between 
every miRNA-mRNA pair, and select the significant inverse 
expression pairs to construct a binary miRNA-mRNA 
correlation network. Meanwhile, they build a miRNA-
mRNA target network based on sequence analysis. Here they 
relax the prediction criteria to the seed match principle, 
without demanding phylogenetic conservation or 
thermodynamic stability, to provide a larger set of candidate 
targets. Finally, the correlation network and the target 
prediction network are intersected to provide an integrative 
miRNA-mRNA regulatory network. This approach proposes 
a new point of view for miRNA target prediction, which 
replaces some sequence criteria by the inverse expression 
relationships. 

 G. Huang et al. provide mirConnX [27], a web interface 
for inferring and displaying mRNA and miRNA regulatory 
network. It combines five prediction algorithms including 
PITA, miRANDA, TargetScan, RNAhybrid and Pictar to 
achieve an integrative target prediction score between each 
miRNA-mRNA pair. The experimental verified miRNA 
targets [12] are also incorporated. Meanwhile, mirConnX 
integrates the miRNA-mRNA expression profiles by 
calculating the correlations (Pearson, Spearman or Kendall) 
between miRNA-mRNA pairs. These correlations are 
converted to the probabilities of association. The target 
scores and the association probabilities are weighted 
summed to the final prediction scores, with a user defined 
weight. mirConnX has two innovations. First, besides 
Pearson correlation, it considers the non-parametric 
coefficients (Spearman or Kendal) and converts them to 
probabilities. When the sample size is small or there are 
outliers in the expression data, this correlation is more 
reliable. Second, the correlation network and the target 
network are weighted integrated instead of the simple 
intersecting. 

 MAGIA [28] (miRNA and genes integrated analysis) is a 
similar web tool for the integrative analysis. It extracts the 
target predictions from miRanda, PITA and TargetScan, and 
provide four approaches to integrate miRNA and mRNA 
expression profiles. 1)Similar to mirConnX, compute the 
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Pearson or Spearman correlation coefficients between each 
predicted miRNA-mRNA pairs, and convert them to a false 
discovery rate. 2) Calculate the mutual information between 
a miRNA expression and a mRNA expression based on 
nearest neighbor distance. It could be regarded as a 
generalization of the Pearson correlation. 3) GenmiR++, 
which would be described in the following part. 4) Meta-
analysis when miRNA and mRNA profiles are not paired. 
Users could select one or several approaches and take the 
intersection or union to display the combined regulatory 
network. 

 S. Bandyopadhyay et al. propose a new point of view to 
integrate the expression data [29]. Their approach 
TargetMiner is a support vector machine (SVM) classifier 
for miRNA target prediction. It incorporates expression 
profiles to construct a reliable training set. Previously, the 
training set are putatively extracted from experimentally 
verified miRNA targets (from Tarbase [12] and miRecords 
[13]), or sequence based predictions (from miRanda, 
TargetScanS, PicTar and DIANA-microT). However, the 
number of verified targets is pretty small, and the predictions 
have a significant number of false positive targets. 
TargetMiner propose a multi-stage filtering approach to 
identify the non-targets in these predictions. It first identifies 
tissue specific miRNAs and mRNAs by analyzing miRNA 
and mRNA expression profiles across several tissues, and 
then selects mRNA as non-argets if it is over-expressed in 
the same tissue with its corresponding miRNA. These 
candidate non-targets are further filtered by removing 
mRNAs with feasible miRNA-mRNA duplex stability or 
seed-site conservation. Combining the experimentally 
verified miRNA targets, TargetMinner achieve an integrative 
training data of miRNA targets and non-targets. A SVM 
classification model is built on this data, with 30 features 
extracted and selected from sequence site context 
information. The learned SVM classifier could efficiently 
predict miRNA targets. Generally, TargetMinner provide an 
integrative training data for learning a classifier. However, it 
only considering the expression pattern in the training 
procedure, without taking them as the classification features 
in the SVM model. 

 E. Gammazon et al. develop a new approach ExprTarget 
[30] by combining the sequence prediction approach and the 
expression features in the classification. Focus on a certain 
miRNA, ExprTarget constructs a logistic model as: 

logit(pi ) = log(
pi

1 pi

) = 0 + pxi
p

+ t xi
t
+ m xi

m
+ exi

e
 

 Here pi is the probability that mRNA i is a real target. 

xi
p

, xi
t
 and xi

m
 are the target prediction scores of mRNA i 

from Pictar, TargetScan and miRanda respectively. xi
e
 is 

expression feature, defined as the p value of the general 

linear model between mRNA i and the miRNA. Note that if 

the estimated coefficient in the model is positive, xi
e
 is set to 

1. The coefficients  describe the contribution weights of 

different prediction algorithms. Extracting the experimental 

validate miRNA targets as training data,  could be 

estimated using logistic regression. By this means, 

ExprTarget provide the target probabilities for each mRNA. 

ExprTarget extends TargetMinner by incorporate the 

expression features in the classifier. This feature xi
e
 could be 

regarded as a generalization of the Pearson correlation, so 

ExprTarget is also an extension of mirConnX, with the 

weights learned from experimental validate targets. 

 Beside the above approaches, there are some other web 
tools that combine miRNA-mRNA expression profiles with 
their target predictions. miRGator [31] integrates miRanda, 
PicTar and TargetScan target predictions, and displays the 
expression correlations between miRNA-mRNA pairs. The 
rank list of target mRNAs sorted by their correlations with 
the corresponding miRNA could also be provided. MirZ [32] 
incorporates smiRNAdb, a database containning miRNA 
sequencing profiles, and the ElMMo miRNA target 
prediction algorithm. It also integrates mRNA expression 
data and allow user to restrict the target prediction to specific 
mRNAs that expressed in a given cell type. mimiRNA [33] 
integrates expression data from human miRNAs and mRNAs 
across multiple tissues or cell types. It groups and separates 
miRNA or mRNA expression data into several tissues and 
cell types. The paired expression data could be visualized. 
mimiRNA also incorporates TargetScan, miRBase, RNA22 
and PicTar. User could search the targets and the inverse 
expressed mRNAs for a given miRNA. 

 In addition, when miRNA expression data are not 
available, HOCTAR [34] (host gene oppositely correlated 
targets) could be employed. It considers that most human 
miRNAs are intragenic and are transcribed as part of their 
hosting transcription units, so the expression of miRNA host 
genes could be used as a proxy of the expression of the 
miRNA itself. Based on this idea, HOCTAR extracts a great 
deal of mRNA expression profiles and provides an average 
inverse correlated score between each mRNA and miRNA 
host gene pair. These scores are then integrated with the 
miRanda, TargetScan, and PicTar predictions. 

LINEAR MODEL APPROACH 

 The previous approaches only consider the pairwise 
expression correlation between miRNA and mRNA. 
However, mRNA may be regulated by multiple miRNAs and 
its expression is affected synthetically by all the targeting 
miRNAs. Based on this idea, some novel methods have been 
developed to model miRNA’s combinatorial effect on their 
target mRNAs. 

 Among them, GenmiR++ (Generative model for miRNA 
regulation) is the most widely used approach [24, 35]. It 
characterizes mRNA expressions as a linear combination of 
the regulatory effects of their targeting miRNAs, and a 
variational Bayesian algorithm is used to learn the latent 
miRNA target indicators. It has been successfully applied on 
the paired miRNA and mRNA expression data among 
multiple tissues. 

 Let yit denote the expression level of mRNA i in tissue t 
and zjt denote the expression level of miRNA j in the same 
tissue, where i = 1, …, N, j = 1, …, M and t = 1, …, T. 
GenMiR++ take a linear model to formulate the mRNA 
expressions and the regulatory effects of their targeting 
miRNAs. A latent binary variable R is used to indicate the 
target relations, where rij = 1 if mRNA i is targeted by 
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miRNA j, and 0 otherwise. The relationship between mRNA 
and miRNA expressions is formulated as: 

 

yit = μt t j rij z jt + it
j=1

M

or yi = μ j rij z j + i
j=1

M

, i ~ N(0, )

 

here j  represents the regulatory effects of miRNA j, t 

accounts for the expression scaling in tissue t, and μt is the 

background effect of tissue t. 

 The latent variable R indicates the target relations 
between miRNA and mRNA. Integrating the target 
predictions C from TargetScan, as cij = 1 if mRNA i is 
predicted to be targeted by miRNA j, and 0 otherwise, 
GenmiR++ assign R a Bernoulli distribution depend on C. 
That is rij ~ bernoulli ( ) in the condition of rij = 1, and rij = 
0 when cij = 0. 

 Assigning the prior as t ~ N (1, s
2
) and j ~ exp( ), 

GenmiR++ use a variational Bayesian algorithm to estimate 
the posterior distribution of rij. Since its form is complicated, 
instead of learning the real posterior, the variational 
Bayesian algorithm provide a factorized variational posterior 
for approximation [40]. By this means, the computation is 
simplified and the target probability could be achieved. 

 GenMiR++ has also been developed to GenmiR3 [41], 
with an alternative prior distribution and the parameter  is 
modified by integrating the sequence information such as the 
hybridization energy and context score. 

 GenMiR++ has been widely used to integrate the 
miRNA-mRNA expression data with the target predictions. 
However, it has several restrictions. First, originating from 
the experiments of different tissues, GenmiR++ characterizes 
miRNA’s relative effects among all tissues as a constant. 
This assumption may not hold when considering the 
experiments of different cancer patients. Since patients have 
much more varieties, their miRNA’s relative effects could 
not be regarded as a constant anymore. Second, GenMiR++ 
uses variational Bayesian algorithm to learn the parameters. 
The variational posterior may deviated from the real 
posterior. Its convergence rate is highly depends on the form 
of the likelihood and priors and may be extremely slow. 

 F. Stingo et al. [36] propose a similar linear approach. 
Different from GenmiR++, they don’t take into account the 
tissue effect, and consider that miRNA has distinct 
regulatory effect on differet mRNAs. Based on this idea, 
they propose a linear model to fomulate miRNA and mRNA 
expressions: 

yi = ij rij z j + i , i ~ N(0, i
2 ), i = 1,...., N

j=1

M

 

here yi is the expression of mRNA i and zj is the expression 
of miRNA j. ij represents the effect of miRNA j on mRNA 
i, in GenmiR++ this term is uniformed to j. Meanwhile, the 
target indicator rij is assigned with Bernoulli distribution, 
with a modified parameter: 

ij =
exp[ + 1cij

1
+ 2cij

2
+ 3cij

3
+ 4cij

4
+ 5cij

5 ]

1+ exp[ + 1cij
1

+ 2cij
2

+ 3cij
3

+ 4cij
4

+ 5cij
5 ]

 

 where cij
1 ,cij

2 ,cij
3,cij

4
 and cij

5
 are the prediction scores of 

PicTar, miRanda, aggregate TargetScan, total TargetScan 

and PITA respectively. 

 With the prior ij ~ Gamma (1, c i) and 

i
1 ~ Gamma(

+ M

2
,
d

2
) , the posterior distribution could be 

estimated using Metropolis-Hasting algorithm. Thus the 

posterior target scores p(rij = 1 data)  are achieved to 

construct miRNA regulatory network. 

 However, since  are distinct for different miRNAs and 
mRNAs, the model has a great deal of parameters. 
Therefore, this approach is limited in high computational 
complexity. 

 J. Li et al. [37] also modify the model. They discretize 
mRNA expression to binary value yit = 1 or 0, which 
represent high or low expressions, then assume yit follow a 
logistic model: let qit = P(yit = 1), 

log(
qit

1 qit

) = j ri j z jt + t , i = 1,...., N
j=1

M

 

 Similar to GenmiR++, rij follow a bernoulli distribution 
depend on the TargetScan prediction cij with parameter . 

 With the prior j ~ exp( ),  ~ U(0, ), t ~ U( 50, 50) 
and  ~ beta(1, 1), the posterior could be estimated using 
Gibbs sampling. They also apply the similar approach to 
study the relation between miRNA expression and protein 
abundance. 

 In this approach, the binary mRNA values lose the 
information of the whole expression profile. 

 The above approaches use Bayesian methodology for 
parameter estimation. On the other hand, Y. Lu et al. [38] 
incorporate a lasso regression model to predict miRNA 
targets. Moreover, they pay attention to the role of RISCs 
and assume that mRNA expression follow a linear model 
with its targeting RISCs. The RISC level could be obtained 
through the expression of its comprising miRNA and Ago 
proteins. There are four Ago proteins in human, and Ago2 is 
the essential one. Therefore, the model is: 

yi = i0 + cij ij z j Ago2 +

j=1

M

cij ij z j Ago134 + i
j=1

M

 

 Here yi is the expression of mRNA i, zj is the expression 
of miRNA j, Ago2 is the expression of Ago2 mRNA and 
Ago134 is the combined expression of Ago1, Ago3 and Ago4 
mRNA. cij indicates the target prediction relation from 
TargetScan and PicTar. 

 Then a multi-run lasso regression procedure is produced, 
and miRNAs are ranked by their estimated coefficients. With 
these ranked scores, the targeting miRNAs could be 
achieved. 
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 However, this approach produces lasso regression for 
each mRNA separately. It will be time consuming when 
applying to a great deal of mRNAs. 

BAYESIAN NETWORK APPROACH 

 Beside the linear model approach, some novel studies are 
developed to model the whole miRNA-mRNA regulatory 
network. Bayesian network, a probabilistic graphical model, 
has been widely used to discover the structure of gene 
networks [42]. It could also be applied to study the 
regulation between miRNA and mRNA [43]. Liu et al. [39] 
develop a new approach which use Bayesian network to 
learn the miRNA-mRNA regulatory network by integrating 
miRNA target prediction and expression profiles. 

 Denote miRNA and mRNA as nodes and their target 

relations as directed edges, the regulatory network could be 

modeled as a discrete Bayesian network G. The miRNA and 

mRNA expressions X are discretized to binary values 1 and 

0, indicating high and low expressions. Let Nijk be the 

observed times that mRNA Xi is in state k (k = 1, …, ri, here 

ri = 2) with its parent miRNAs in state j (j = 1, …, qi), then X 

follow a multinomial distribution with parameter 

ijk = P(Xi = k parent(Xi ) = j) : 

p(X ,G) ijk
Nijk

k=1

ri

j=1

qi

i=1

n

 

 Assigning the Dirichlet prior to  as 

p( G) ijk
ijk 1

k=1

ri

j=1

qi

i=1

n

 

the Bayesian score of the network p(X G)  is given by [44]: 

p(X G) =
( ij )

(Nij + ij )

(Nijk + ijk )

( ijk )k=1

ri

j=1

qi

i=1

n

 

 Here Nij = k=1
ri Nijk , ij = k=1

ri
ijk  and ijk = N / riqi , 

N is the sample size. 

 Network with the maximum score is selected as the 
learned Bayesian network, which is putatively achieved by 
exhaustive searching algorithm such as hill climbing. The 
searching space could be reduced by constraining the target 
relations within miRBase, PicTar and TargetScan 
predictions. By this means, Liu et al. analyze miRNA-
mRNA expression profiles from multiple cell types and build 
Bayesian network for each cell type. These networks are 
then integrated to provide the significant miRNA-mRNA 
target relations. 

 Bayesian network is a reliable and accurate model for the 
regulatory network [42]. However, its learning algorithm has 
high computational complexity and is time consuming. 
Therefore, Bayesian network could not be applied to learn 
large-scale networks. 

HCTARGET METHOD 

 Based on the above discussion, we propose a new 
algorithm called HCtarget (High Confident targets) to 

integrate expression and sequence information to detect 
miRNA targets. Our approach extends GenMiR++ and 
overcomes its restrictions in the following two ways. First, 
GenmiR++ characterizes miRNA’s relative effects among all 
tissues as a constant. We improved this constrain by re-
defining the parameters of miRNA effects. Second, 
GenMiR++ uses variational Bayesian algorithm to 
approximate of the real posterior. Its convergence rate may 
be slow and the estimation is not stable. We use a classical 
Markov chain Monte Carlo (MCMC) algorithm to learn the 
posterior directly. 

MODEL 

 Incorporating the notations in GenmiR++, we propose a 
linear model to formulate the relations between mRNA 
expressions and the regulatory effects of their targeting 
miRNAs as: 

yit = 0t + rij z jt jt + it , it ~ N(0, t
2 )

j=1

M

 

here jt represents the regulatory effects of miRNA j at 
sample t (in GenMiR++, this term is factored into the 
product of the tissue effect and the miRNA effect t j), and 

0t is the background effect of sample t. 

 The goal of our model is to estimate the latent indicators 
R. Similarly, it follow a Bernouli distribution depend on the 
sequence prediction C. In the following discussion, we focus 
on the pair with cij = 1. The likelihood of R is: 

p(R ) cijrij (1 )cij (1 ri j )

ij

 

here  can be regarded as the accuracy of the sequence based 
predictions. This assumption enables our model to cut down 
the false positive rate of the previous prediction. 

 Let Bt = (rijzjt), At = [1, Bt], yt = (y1t, …., yNt)
T
, Z = (zjt), t 

= ( 0t, …, Mt)
T and 

t = ( 1t, …., Nt)
T
, we have the vector representation of our 

model: 

Yt = At t+ t 

MCMC ALGORITHM FOR STATISTICAL 

INFERENCE 

 Based on the above model, the likelihood of the observed 
data p(Y, Z, C, R| , 

2
, ) is: 

e
1

t
2 (yit j=1

M zjtrij jt 0 t )2

i,t

cijri j (1 )cij (1 rij )

i, j

 

 To estimate the parameters  = ( , 
2
, ) and latent 

variables R, we apply the Bayesian methodology and a 
MCMC algorithm [45]. With proper prior assumptions, the 
posterior of R and  have simple forms and could be directly 
computed using a MCMC algorithm as the following 
iterations [46,47]: (i) sample the parameters  conditional on 
the updated latent variable; (ii) sample the latent variable R 
conditional on the updated parameters. 
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UPDATE THE PARAMETERS 

 Given the non-informative prior p( t , t
2 ) t

2
, the 

posterior distributions of t  and t  are  

 
t t

2 ,Y ~ N( t , (At
T At )

1
t
2 ), t

2 Y ~ st
2 2

  

where = N M 1  and  

 
t = (At

T At )
1 At

TYt ,Y t

T
= At

T
t , st

2
=

1
(Yt Y t )T (Yt Y t ).  

 While for , with the conjugate prior  ~ Beta (a0, b0), 
the posterior distribution is 

 ~ Beta(n1 + a0, n0 + b0), where n1 = ij cijrij   

and n0 = ij cij (1 rij )  

UPDATE THE LATENT VARIABLE 

 The marginal distribution of the latent variable 

p(rij cij = 1,Y ,Z, )  

exp[
1

t
2 (yit zkt rik kt 0t )

2 ] cijrij (1 )cij (1 rij )

kt=1

T

 

 Since 

[yit zkt rik kt 0t ]
2

= [yit zkt rik kt 0t ]
2

+ qijt rij
k jk

 

here qijt denotes  

z jt
2

jt
2 2yit z jt jt + 2 zkt kt z jt jt rik + 2z jt jt 0t

k

 

 The first term doesn’t contain rij, so  

p(rij ) exp(
t=1

T qijt

t
2 rij )

cijrij (1 )cij (1 rij )
 

that is, rij has Bernoulli marginal distribution 

p(rij ) ~ bernoulli(pij )  with updated probability  

pij =
1

cij

1

cij

+ exp t=1
T qijt

t
2

 

THE ALGORITHM OF HCTARGET 

 Based on the above discussion, we use a traditional 
MCMC approach to estimate the parameters and the latent 
variable iteratively: 

1. Initial t, t, R as t = 1, t = 1 and 

rij cij = 1 ~ bernoulli(0.5) . 

2. Update t
2

 by sampling from st
2 2

, update t by 

sampling from 
 
N( t , (At

T At )
1

t
2 )  and update  by 

sampling from beta(n1 + a0, n0 + b0). 

3. Given the updated parameters, sample the latent 
variable rij from Bernoulli (pij). 

4. Repeat the above two steps until convergence. Here 
the convergence is evaluated by Gelman and Rubin 
criteria [47] 

 We output pij, which represents the probability that 
miRNA j targets mRNA i given the data, for our final 
prediction. miRNA-mRNA pairs with pij larger than a certain 
threshold are the putative target pairs of our model. In the 
analysis of cancer expression data, we specify the threshold 
as 0.8, so that our selected miRNA targets covered nearly 
50% of the sequence-based predictions, and they are 
comparable with GenMiR++ targets. 

RESULTS 

 We applied HCtarget to study miRNA’s role in cancer. 
The computational predictions were extracted from 
TargetScanHuman (release 5.1). Several paired miRNA-
mRNA expression datasets, such as breast cancer data 
(GSE19783), prostate cancer data(GSE7055) and multiple 
myeloma data(GSE17306) were downloaded from GEO 
database [48]. Since their results are similar, we took the 
multiple myeloma data as an example in our analysis. It 
profiled miRNA and mRNA expressions from 52 patients 
with multiple myeloma [9]. 

 We selected multiple myeloma related miRNAs and 
mRNAs for our predictions. Ten miRNAs with the highest 
expression level were picked up, they are: hsa-let-7g, hsa-
miR-142-3p, hsa-miR-148a, hsa-miR-16, hsa-miR-19b, hsa-
miR-21, hsa-miR-26a, hsa-miR-29c, hsa-miR-370 and hsa-
miR-494. Meanwhile 1000 mRNAs were selected, half with 
the highest expressions and half with the lowest expressions, 
since miRNA putatively repress gene expressions and may 
have secondary up-regulatory effects [49]. 

PERFORMANCE OF HCTARGET ON THE 

SIMULATION DATA 

 First, we generated a simulation data to compare the 
performance of GenMiR++ and HCTarget. The ten miRNA 
expression data Z were extracted from the real data from 
patients with multiple myeloma, where 1000 mRNA 
expressions Y were simulated from 

yit = 0t + rij z jt jt + it , i = 1,...1000, t = 1,....,52
j=1

10

 

here jt, 0t and  were generated from N( 0.3, 0.1), N(1,1) 
and N(0,1) respectively. The real target relations rij was 
obtained from Bernoulli(0.5) conditions on cij = 1, where cij 
represents the predictions in TargetScan. 

 Applying GenmiR++ and HCtarget on the simulation 
data, we computed their true positive rate and false positive 
rate with different cutoffs. Their ROC (Receiver operating 
characteristic) curves and AUC (the area under the ROC 
curve) values are shown in Fig. (1), which indicate that 
HCTarget has higher accuracy than GenMiR++. 

PREDICT miRNA TARGETS BASED ON CANCER 

EXPRESSION DATA 

 We then applied our HCtarget approach to the real 
miRNA-mRNA expression data to detect miRNA targets in 
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cancer. TargetScan provides 1401 target pairs for our 
selected miRNAs and genes. HCtarget cuts down these 
predictions to 647, while 699 target pairs are obtained by 
GenMiR++. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The ROC curves of HCTarget and GenMiR++ for 

simulation data. Their AUC values are 0.95 and 0.91 respectively. 

 To assess the robustness of HCtarget, we performed a 
series of permutation tests [24]. We permuted the gene labels 
1000 times and generated 1000 random data sets. In these 
sets, the relationship between miRNAs and mRNAs are 
destroyed and their predicted target probabilities could be 
regarded as background. These permutations allow us to 
evaluate whether our model would be affected by 
introducing a great deal of fake targets into the candidates. 
Comparing the predictions of HCtarget for both permuted 
and original data, we found the probabilities leaned from the 
real data are significantly higher than the background. The p 
value of one side wilcoxon test is 0.1. In addition, the 
proportion of the probabilities bigger than 0.8 for the real 
data (46.2%) is higher than permuted data (44.1%). It 
illustrates that HCtarget could successfully discriminate the 
real target from the fake ones, which ensures its robustness 
in target prediction. 

 Furthermore, we extracted experimentally supported 
miRNA targets from Tarbase (v.5c) [12] to evaluate the 
accuracy of our approach. To compare Tarbase with our 
predictions, miRNAs were all mapped to miRNA families 
using the annotations in miRBase [50] For the multiple 
myeloma related miRNAs and mRNAs, three miRNAs and 
their 17 target genes have biological verifications. Nine of 
them are detected by HCtarget, while GenMiR++ only 
identifies two. The numbers of verified targets predicted by 
TargetScan, GenMiR++ and HCTarget as well as their 
precisions are listed in Table 2, which show that HCtarget 
could identify more accurate targets than GenMiR++. For 
example, mir-15 has nine supported targets, seven of them 
are detected by HCtarget, while GenMiR++ failed to identify 
any of them. It also indicates that HCtarget has higher 
precision (2.78%, 18 out of 647) than the original 
TargetScan (2.43%, 34 out of 1401). 

Table 2. Comparison with Tarbase 

 

miRNA Family TargetScan GenMiR++ HCTarget 

let-7 7 (3.57%) 2 (2.02%) 2 (2.15%) 

mir-15 9 (4.02%) 0 (0) 7 (6.67%) 

mir-29 1 (0.51%) 0 (0) 0 (0) 

total 17 (2.76%) 3 (0.95%) 9 (3.01%) 

VALIDATE HSA-MIR-16 TARGETS 

 Previous analysis suggests that hsa-miR-16 can act as a 
tumor suppressor in multiple myeloma [51]. We extracted a 
loss of function study profile of hsa-miR-16 from GEO 
database (GSE24522). It provided gene expression levels 
before and after hsa-miR-16 deletion [51]. We focused on 
genes with fold change larger than 1.5 as different expressed 
genes. For our 1000 genes, 132 genes were selected. 

 To validate our prediction, we compared our detected 
targets with these different expressed genes. TargetScan 
identifies 224 targets for hsa-miR-16, 34 of them have 
different expression levels when hsa-miR-16 is deleted (the p 
value of hyper-geometric test is 0.14). HCtarget, which cuts 
down the target genes to 105, provides 22 validated targets 
(p=0.006) (Fig. 2). This represents that HCtarget has more 
confirmed targets than TargetScan. In addition, GenmiR++ 
only detects 11 different expressed genes (p=0.72), which 
also validates the accuracy of HCtarget. 

 

 

 

 

 

 

 

 

Fig. (2). Venn diagram. It shows the overlap of different expressed 

genes with the predicted targets of targetScan and HCtarget. 

GENE ONTOLOGY ENRICHMENT ANALYSIS 

 To have further investigation of our predicted targets, we 
analyzed their function annotations in Gene Ontology (GO) 
[52, 53]. For each miRNA target set detected by TargetScan 
and HCtarget respectively, we computed its GO enrichment 
p value using hyper geometric test. Considering multiple 
testing problems, these p values were corrected using FDR 
modification. For TargetScan, we found 107 (2.5%) 
functional target sets (with FDR<0.1). While there are 135 
(3.1%) functional sets of GenmiR++ and HCtarget increases 
the number to 158 (3.7%). The comparison exhibits that the 
targets of HCtarget have significantly more consistent 
functional annotations. 

 Meanwhile, we selected the GO functions that 
significantly enriched (FDR<0.01) in hsa-miR-19b, which 
has been experimentally verified to be a key regulator in 
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multiple myeloma [54]. They are: GO0034612 (response to 
tumor necrosis factor), GO0000723 (telomere maintenance), 
GO0006289 (nucleotide-excision repair), GO0006302 
(double-strand break repair) and GO0045732 (positive 
regulation of protein catabolic process). The first annotation 
is significantly associated with multiple myeloma, the latter 
three ones are crucial functions in cell division, a key cellular 
process in cancer, while the last one is putative important in 
metabolism. These findings demonstrate that HCtarget could 
successfully identify the functional miRNA targets. 

EXAMPLE 

 Based on the above findings, we further focused on a 
specific target pair to discover miRNA’s role in multiple 
myeloma. hsa-miR-19b was selected, and one of its targets 
detected by HCtarget is SULF1, which has been found to be 
a potent inhibitor of myeloma tumor growth [55]. We 
focused the patients with higher hsa-miR-19b expressions 
(with expression level larger than average), and discovered 
that the expression levels of SULF1 are significantly lower 
in these patients than in the other ones (the p values of the 
one side wilcoxon test is 0.1). Their cumulative distributions 
(Fig. 3) displays that the expression of SULF1 is negatively 
shifted when hsa-miR-19b is highly expressed. This example 
further confirms the significant down regulatory effects of 
hsa-miR-19b, and provides us a reliable target gene SULF1. 
We believe that this target pair plays a crucial role in 
multiple myeloma and could be served as effective 
candidates for the therapeutic treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The down regulatory effect of hsa-miR-19b on SULF1. 

The cumulative distributions of the expression level of SULF1 in 

the sample with or without highly expressed hsa-miR-19b (red solid 

line and blue dashed line respectively). 

CONCLUSION 

 In this paper, we review and discuss the integrative 
approaches that predict miRNA target genes by combining 
the sequence information and expression profiles. 

 We also propose a new algorithm, HCtarget. The 
simulation study and the robustness assessment confirm the 
accuracy of our approach. The investigations of the 
expression profiles in multiple myeloma also exhibit the well 
performance of HCtarget. Our model affords reliable targets 
of miRNA, which improve our understanding of miRNA’s 
roles in cancer. Such as the disease related target pair, hsa-
miR-19b and SULF1, is beneficial for the further discovery 
and clinical treatment of multiple myeloma. Furthermore, 
selecting some other proper miRNA and mRNA expression 
profiles, HCtarget could be generalized to provide miRNA’s 
whole genome target predictions, which is helpful for the 
comprehensive discovering of miRNA’s regulatory effects. 

 Generally, the integrative approaches improve miRNA 
target predictions. They could be directly generalized to 
detect the target genes of TFs. In addition, previous studies 
demonstrated that TFs, or their cis-regulatory modules, have 
widely cooperation with miRNAs. Their combinatorial 
regulatory modules play important parts in gene regulation 
[56]. With accurate target predictions of miRNAs and TF, 
the integrative approaches could effectively construct gene 
regulatory network, which helps us to uncover the 
mechanisms underlying gene expression. 
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