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The eye of the fruit fly Drosophila melanogaster provides a highly tractable genetic model system for the study of
animal development, and many genes that regulate Drosophila eye formation have homologs implicated in
human development and disease. Among these is the homeobox gene sine oculis (so), which encodes a
homeodomain transcription factor (TF) that is both necessary for eye development and sufficient to reprogram
a subset of cells outside the normal eye field toward an eye fate. We have performed a genome-wide analysis
of So binding to DNA prepared from developingDrosophila eye tissue in order to identify candidate direct targets
of So-mediated transcriptional regulation, as described in our recent article [20]. The data are available fromNCBI
Gene Expression Omnibus (GEO) with the accession number GSE52943. Here we describe the methods, data
analysis, and quality control of our So ChIP-seq dataset.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Direct link to deposited data

Deposited data are available from the following link: http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52943.
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Experimental design, materials and methods

Tissue source

The external structures of the adult Drosophila head arise from a
larval precursor structure known as the eye–antennal imaginal disc.
The eye–antennal imaginal disc resolves into morphologically distinct
eye and antennal portions during the second larval instar stage, with
the anterior part fated to become the antenna, and the posterior part
fated to give rise to the compound eye of the adult; both the eye and an-
tennal discs also contribute to the adult head capsule [1]. During thefirst
and second instar, the eye disc consists of undifferentiated, proliferating
cells. At the onset of the third and final instar, a constriction known as
the morphogenetic furrow forms at the posterior margin of the eye
disc and then gradually sweeps across the eye disc toward the anterior
margin [2]. As the furrow advances, cells anterior to it undergo cell cycle
arrest, followed by the onset of retinal differentiation as cells enter
the furrow [3,4]. During late larval and subsequent pupal stages,
cells become progressively recruited to become photoreceptors, lens-
secreting cone cells, pigment cells, and bristles of the adult compound
eye [4].
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The dynamic nature of retinal development is reflected in the
expression pattern of Sine oculis (So), which is necessary for eye differ-
entiation [5]. Expression of the so-lacZ reporter allele can be detected in
the eye–antennal disc as early as the first larval instar [6]. During the
second instar, So expression is confined to the eye portion of the
eye–antennal disc, being strongest near the posterior margin [5]. As
the furrow progresses across the eye disc during the third instar, So
continues to be expressed in a band of cells anterior to the furrow, as
well as in the differentiating cells posterior to the furrow [5]. We
harvested the eye–antennal discs from wandering third instar larvae,
a stage at which the majority of the cells in the eye disc have passed
through the morphogenetic furrow and begun to differentiate. The
majority of the cells in the eye disc express So at this stage [5].

Weusedw1118 Drosophilamelanogaster larvae,which are homozygous
for a loss-of-function mutation in the white (w) gene. The w gene is re-
quired for pigmentation of the adult eye [7]. Aside from the wmutation,
the larvae used were not known to have homozygous mutations in any
genes affecting the eye, and the eyes of the adult flies of this strain are
morphologically normal.

Sample preparation

ChIP sample preparation was similar to the method previously
described [8]. We dissected eye–antennal disc complexes including
mouth hooks, but not brains, from wandering third instar larvae in
phosphate buffered saline (PBS). The antennal disc does not express
So [5], and hence its inclusion in the ChIP samplewould not be expected
to influence the So ChIP-seq profile. A total of 400 eye–antennal disc
complexes (800 discs) were used for each biological replicate. The
discs were transferred into 500 μL S2 media on ice for b30 min, fixed
by adding 20.25 μL 37% formaldehyde and incubating at room temper-
ature for 15 min, and quenched with 25 μL 2.5 M glycine, followed by
5 min incubation on ice. The discs were washed 3× in PBS and placed
on ice. Following the dissection and fixation, 200 disc pairs were
combined in a 1.5 mLmicrocentrifuge tubewith 600 μL ChIP lysis buffer
(50 mM K-Hepes [pH 7.8 adjusted with KOH], 140 mM NaCl, 1 mM
EGTA, 1 mM EDTA, 1% Triton X-100, 0.1% Na-deoxycholate) with a
Mini EDTA-free protease tablet (Roche) (1 tablet/10 mL buffer). Two
tubes with 200 disc pairs each were processed per replicate. The discs
were ground with a nuclease-free pestle, and passed 10× through a
25-gauge needle and 10× through a 27-gauge needle. The homoge-
nized discs were incubated 20 min at 4 °C on a nutator.

The resulting chromatin was sonicated with a Branson Digital
Sonifier 250 using the following settings: 15% amplitude, 15 s (0.9 s
on/0.2 s off), 15 rounds, and 2 min rest between rounds. A 5 μL aliquot
of the chromatin was run on a 1% agarose gel in order to test successful
shearing, indicated by a ~1.5–4 kbDNA smear. The rest of the chromatin
sample was centrifuged for 10 min, 13,200 rpm at 4 °C to remove cell
debris, and the supernatant from the two tubes (containing chromatin
from 200 disc pairs each) was combined in a single siliconized tube.
We set aside 10 μL of the supernatant at −20 °C as input sample.
We precleared the remaining sample by incubating at 3 h at 4 °C on a
nutator with 40 μL nProtein A Sepharose 4 Fast Flow bead slurry (GE
Healthcare, previously washed 3× with PBS and 1× with ChIP lysis
buffer). Following the incubation, the beadswere removed by centrifug-
ing for 1 min, 5000 rpm at 4 °C, and the supernatant was split into two
equal samples, experimental and control. 1:500 polyclonal guinea pig
anti-So antibody (gift from Ilaria Rebay; [8]) was added to the experi-
mental sample, and the two samples were incubated overnight at 4 °C
on a nutator. In parallel, 60 μL washed bead slurry was incubated
overnight at 4 °C on a nutator in blocking solution (30 μL 100× Bovine
Serum Albumin [NEB], 13 μL 10 μg/μL denatured salmon sperm DNA,
500 μL ChIP lysis buffer).

Following the overnight incubation, the blocked beads were centri-
fuged to remove the supernatant, and resuspended in 30 μL ChIP lysis
buffer to make 1:1 bead:buffer slurry. 20 μL bead slurry was added to
each chromatin sample, followed by 3–4 h incubation at 4 °C on a
nutator. After a brief centrifugation to remove the supernatant, each
bead sample was washed 3× with ChIP lysis buffer, 1× with high salt
ChIP lysis buffer (same composition as ChIP lysis buffer but with
500 mM NaCl), and 1× with TE (each wash was 1 mL, for 5 min at
4 °C on a nutator). We resuspended each bead sample in 150 μL
TE/SDS (10 mM Tris pH 8.0, 1 mM EDTA, 1% SDS), and added 140 μL
TE/SDS to the 10 μL input sample. The chromatin was eluted from the
beads by a 10min incubation in a 65 °Cwater bath, with brief vortexing
every 2 min. The samples were centrifuged for 1 min, 14,000 rpm at
room temperature. The supernatant was transferred to new tubes that
were sealed with Parafilm and incubated 5 h to overnight in a 65 °C
water bath to reverse crosslinks.We extracted the DNAwith a QIAquick
PCR Purification Kit (Qiagen), eluting the DNA in 30 μL Elution Buffer
(10 mM Tris–Cl, pH 8.5).

The purified DNA was tested using qPCR with primers flanking a
previously identified So-binding site 3′ of the atonal gene (3′ato), as
well as control primers flanking a site not expected to bind So in the
eye. If qPCR showed N4-fold enrichment in the experimental (+anti-
So) sample relative to the negative control (−anti-So) sample, we
proceeded with Illumina library preparation following manufacturer's
instructions. Briefly, ~10 ng of DNA was end-repaired using polynucle-
otide kinase and Klenow. The 5′ ends of the DNA fragments were phos-
phorylated and a single adenine base was added to the 3′ ends using
Klenow exonuclease. Illumina Y-shaped index adaptors were ligated
to the repaired ends, and the DNA fragments were PCR amplified for
21 cycles. Fragments in the 200–500 bp range were isolated by gel
purification. The libraries were quantified using the PicoGreen
fluorescence assay and their size distributions were determined by
the Agilent 2100 Bioanalyzer.

The library was tested again by qPCR to ensure N4-fold enrichment
prior to sequencing.

Data analysis

The libraries of two biological replicates were sequenced using the
Illumina Genome Analyzer IIx and a total of 21.9 million 35-bp single-
end readswere generated, including12.4 million from the first replicate
and 9.5 million from the second replicate. In order to maximize our
power in downstream data analysis, the reads from two biological
replicates were combined, and the combined reads were mapped to
the D. melanogaster reference genome (dm5) using Eland software.
Approximately 4.74 million reads were mapped to the dm5 genome.
Among them, about 3.4 million reads were uniquely mapped. There
were a total of over 19 million reads for control sample. Among them,
6.2 million reads were mapped to dm5 genome and 5.7 million reads
were unique.

Peaks were called from the mapped reads using Model-based
Analysis of ChIP-Seq (MACS) [9]. As default settings, peaks with less
than 3-fold enrichment or with P N 10−5 were filtered out. A total of
7566 peaks were then obtained and annotated using an in-house
bioinformatics tool (a Perl script, available upon request). The median
width of the resulting peaks is ~1 kb. Most (84.7%) of the peaks fully
or partially overlap an annotated Drosophila gene, with 52.4% of all
peaks being b1 kb from an annotated transcription start site (TSS).

Discussion

The So transcription factor is a necessary regulator of Drosophila eye
development, and its homologs have been implicated in cancer and
developmental disorders in human patients [10–14]. We have recently
presented a genome-wide profile of So binding to chromatin in devel-
oping Drosophila eye discs [2]. Our data set shows So DNA-binding
enrichment at enhancers previously shown to require So-mediated
regulation in the developing eye [15–19], as well as So binding to or
near genes that function in multiple aspects of eye development. The
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data suggest that a broad spectrum of genes may be regulated by So
during eye development and is expected to expand our understanding
of the genetic basis of eye formation.
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