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OPEN Developing a high-resolution
patapescriptor  gridded rainfall product for
Bangladesh during 1901-2018

Ashraf Dewan?, Shamsuddin Shahid®?, Md. Hanif Bhuian3, Shaikh M. Jobayed Hossain*,

Mohamed Salem Nashwan(®?, Eun-Sung Chung %>, Quazi K. Hassan’ & Md Asaduzzaman(®?®

. Ahigh-resolution (1km x 1km) monthly gridded rainfall data product during 1901-2018, named

: Bangladesh Gridded Rainfall (BDGR), was developed in this study. In-situ rainfall observations retrieved

. from a number of sources, including national organizations and undigitized data from the colonial era,

. were used. Leave-one-out cross-validation was used to assess product’s ability to capture spatial and

© temporal variability. The results revealed spatial variability of the percentage bias (PBIAS) in the range

. of —2to 2%, normalized root mean square error (NRMSE) <20%, and correlation coefficient (R?) >0.88
at most of the locations. The temporal variability in mean PBIAS for 1901-2018 was in the range of
—4.5t0 4.3%, NRMSE between 9 and 19% and R? in the range of 0.87 to 0.95. The BDGR also showed
its capability in replicating temporal patterns and trends of observed rainfall with greater accuracy. The

: product can provide reliable insights regarding various hydrometeorological issues, including historical

. floods, droughts, and groundwater recharge for a well-recognized global climate hotspot, Bangladesh.

Background
. Located in a tropical monsoonal climatic region, Bangladesh receives nearly 2200 mm of rainfall every year,
. which supports agriculture, the environment and livelihood activities since time immemorial'~. However, the
country is susceptible to hydrometeorological hazards due to its flat topography and high rainfall seasonality**.
. For instance, nearly 70% of total rainfall occurs in the monsoon season (June to September), and <3% takes
. place in the dry season (December to February)®. Any change in rainfall patterns in terms of deficit/surplus or
even a subtle shift can lead to climatic extremes such as drought and floods. Ozaki” showed that the country
experiences economic damage of US$ 2.2 billion, equivalent to 1.5% of gross domestic product (GDP) during an
abnormal flood year. It experiences a reduction in crop production of 20 to 30% in a drought year®. Nearly 40%
. of total crops in the country are rain-fed, and the rest depend on groundwater irrigation’, meaning that rainfall
: variability, especially monsoonal amount (1500 mm), severely affects rain-fed agriculture, which has implica-
- tions for food security due to its large population. It is also a primary source of groundwater replenishment. For
. instance, a moderate rainfall deficit causes a decline in groundwater in subsequent years'®, causing an increase in
irrigation costs, reducing farmers’ profit, and overwhelming a vast majority of the rural population''. Since large
river networks of the country are fed by Himalayan snowmelt and local rainfall, high rainfall evidently affects
riverbank erosion'?, while low rainfall reduces freshwater flow towards coastal areas, causing salinity ingress
further inland" and affecting the livelihoods of millions.
With the increased concern of anthropogenic climate change, the demand for high-resolution gridded data-
sets of climate variables such as rainfall has increased over the last few decades'*. Consequently, a number of
daily and monthly gridded products have been developed at global'>-"7, regional'#!®!° and national scales?-*
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with spatial resolutions varying from 0.01 to 1.0°. Several interpolation methods, such as kriging, angular dis-
tance weighting®, minimum surface curvature®, thin plate splines?’, and inverse distance weighting®, are uti-
lized. Although global and regional gridded rainfall products have enhanced our knowledge of extreme events,
determining their space-time variability and pattern requires high-resolution datasets®!. Thus, existing global-
or regional-scale products may not support the evaluation of local-scale extreme events and spatiotemporal
variability??. Fine spatial resolution (~0.01°) is, therefore, a prerequisite to capture environmental variability!”.
Furthermore, high-resolution data can be instrumental to examine climate-impact studies on an area®.

While increases in near-surface air temperature have been well documented for Bangladesh®, lack of long-
term high-resolution rainfall data was an important constraint to determine changes in spatiotemporal rainfall
pattern. A dense rainfall monitoring network is needed to assess the spatiotemporal variability of hydrometeor-
ological hazards for developing mitigation measures. It is also important to examine how increased anthropo-
genic activities resulting from rapid urban expansion, forest loss associated with land use/land cover changes,
alteration of fluvial morphology and ever-increasing populations influence regional climate. However, such
studies in the country are few and far between. The unavailability of long-term rainfall data is thought to have
contributed to the nonexistence of a detailed regional-scale analysis of climatic conditions such as the spatio-
temporal pattern of rainfall variability.

The Bangladesh Meteorological Department (BMD) has 42 rainfall observation stations, but their distribu-
tion is not uniform across the country (http://live.bmd.gov.bd/). The majority of these stations were installed in
the 1960s, and therefore, data are available only since 1960s. The number of stations is also far below (one station
per 3428 km?) the recommended number by the World Meteorological Organization (WMO), which is one
station per 10—20 km? for climatic studies?. However, almost all studies employ BMD data and appear to pro-
vide coarse spatial detail regarding rainfall climatology and their trend for the country. Compared to BMD, the
Bangladesh Water Development Board (BWDB) maintains an extensive rainfall monitoring station. It currently
has 293 rain gauges over 130,170 km? of land area (www.ffwc.gov.bd). Combining rainfall records of BWBD and
BMD provides good coverage over the country, but the inhomogeneous distribution of stations and unavailable/
missing data during the last century inhibit long-term regional assessment.

Then, East Bengal (currently Bangladesh) used to experience frequent floods, droughts and cyclones; thus,
rainfall data were indispensable to better prepare against these hazards and to reduce the loss of lives and prop-
erty during the British Raj. The Public Works Department (PWD) during the colonial government therefore
installed rainfall monitoring stations in the region. The monthly rainfall records of those stations were later
published by the East Pakistan (present Bangladesh) Water and Power Development Authority in two separate
volumes of water supply papers (WSP)*%3!. The undigitized rainfall information from 1901 to 1959 is of high
value and is a reliable source to examine the rainfall distribution of the region since 1901. However, rainfall data
during that period have not been utilized in any of the studies due to limited access and/or their unavailability
in digital form. This work was motivated to harness the power of digital technologies by which more than a
hundred years of rainfall data were encoded to generate a high-resolution gridded product.

It is obviously a major challenge to develop a rainfall product, especially when the data were recorded by
different instruments and maintained by various origins. To make them useable, proper quality control and
homogenization are essential. Furthermore, selecting a suitable interpolation method to generate gridded data-
set with station data is also important. This study presented the development of a fine-resolution rainfall product
by using multiple sources of data. It is expected that the product would be of great value to advance climatic and
hydrological studies of Bangladesh, a global hotspot of anthropogenic climate change.

Geography and precipitation climatology of Bangladesh. Bangladesh, located between 20°34/~
26°38’ N and 88°01’-92°41’ E, covers an area of 147,570 km?. Approximately 90% of the land is a deltaic plain,
known as the lower Gangetic plain. The elevation of the country varies from 0m in the south to approximately
110 m in the extreme north®. Low hills and highlands in the southeast and northeast cover only 10% of the total
land. The maximum elevation of the hilly regions reaches 1010 m. The geographical position of the country in the
three mighty rivers, viz., the Ganges, Brahmaputra and Meghna (Fig. 1), made it highly prone to recurrent floods.

Rainfall of the country is controlled by differential heating of land and sea surfaces. Indian landmass heated
rapidly compared to its surrounding oceans, introducing a strong thermal contrast between land and sea®.
Therefore, air flows from the oceans towards heated land. The moist air from the sea enters Bangladesh from the
south and causes high monsoon rainfall from June to September. A reveres situation occurs during the winter
season from December to February, and air flows from land to the sea’***. The air flowing over the landmass is
dry and thus experiences almost no rainfall during winter. Between summer and winter, there are two transi-
tional periods, post-monsoon (October-December) and premonsoon (March-May). While the former is rela-
tively cool, the latter is hot with occasional downpour.

The monsoon of Bangladesh flows in two branches, one of which strikes western India, and the other travels
up to the Bay of Bengal before entering Bangladesh via the southeast. The monsoon from the Bay of Bengal
crosses the plain to the north and northeast before being turned to the west and northwest by the foothills of the
Himalayas6’36. As monsoon air moves farther inland, its moisture content decreases, resulting in decreased rain-
fall towards the northwest and west of the country”’. However, the additional uplifting effect of the Meghalaya
Plateau increases rainfall to the northeast. The premonsoon is a transitional season between the northerly circu-
lation of winter and the southerly circulation of the monsoon. Thunderstorms are a major source of premonsoon
rainfall’®*. The precipitation mechanism indicates that topography and distance to coast can also have a large
influence on its spatial distribution and seasonality.
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Fig. 1 Location and topography of Bangladesh. Bangladesh, located between 20°34'-26°38’ N and
88°01'-92°41" E, covers an area of 147,570 km?. The elevation of the country varies from 0 m in the south to
approximately 110 m in the extreme north. Low hills and highlands in the southeast and northeast cover only
10% of the total land.

Data acquisition. Monthly rainfall records were acquired from three sources. They were:

(i) BMD: daily rainfall records of 33 stations were collected. Data for nearly 52% stations were available after
the 1960s, although only three stations had data since 1901.

(ii) BWDB: daily rainfall records of 293 stations between 1961 and 2018 were obtained and utilized in this
work. Note that data were available for 1961-2018 at 52% stations, while others provided data during
different temporal windows of 1961-2018.

(iii) WSP: The WSP rainfall records were available for 124 locations from 1901 to 1959°. These records were
available in printed form, and the digitizing process includes editing and proofreading before publication,
as in other government gazetteer reports. They were encoded with caution and cross-checked several times
to ensure high fidelity. However, only 45% of stations contain records from 1901 to 1959. The rest of the
stations have data for different temporal resolutions of 1901-1959.

Attributes of 124 stations (e.g., name and locations) are common for both BWDB and WSP, meaning that 124
stations have data for different temporal windows of 1901 to 2018. Compilation of a database using rainfall data
from all sources provides records of a total of 326 stations, crisscrossing over Bangladesh (Fig. 2). Furthermore,
a more or less homogeneous distribution of rain gauges can be seen (Fig. 2), except for southwestern dense and
southeastern forested mountainous regions.

Daily data were aggregated to generate monthly rainfall time series. The general rules in aggregating daily
rainfall to monthly rainfall differ for monsoon and nonmonsoon months. The monsoon month’s rainfall was
considered unavailable if rainfall in a single day was missing, while rainfall of a nonmonsoon month was consid-
ered missing if records for three consecutive days were missing*’. WSP data were available only at the monthly
scale, whereas BMD and BWBD had daily data. To bring them in a common temporal resolution, data were
aggregated to monthly time series using the rule-based procedures noted above.

Stations having observations for at least 25 years with random missing values were included in the pres-
ent study. Short-term records (<25 years) were removed to avoid noise. Few duplicates were identified due
to changes in station names or locations in the government gazetteers. In addition, few stations were adjacent
to each other. This was due to a slight change in the installation locations after decommissioning the previous
station. Duplicates were removed, and stations in close proximity (<500 m) were averaged. In the case of a loca-
tional change, the station was given a separate name. Thus, the new and old stations were considered as a single
station. The station’s new location is used for processing data recorded after locational shift.

Figure 3 shows the availability of data from different sources during 1901-2018. Missing data over the study
period range between 3.2% and 76.1% for different stations. The percent of missing records at different stations
is shown in Supplementary Figure S1. The number of stations with different percentages of missing data during
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Fig. 2 Distribution of rainfall stations and their records. Monthly rainfall records were acquired from three
sources: 33 stations from BMD for different periods, 293 stations from BWDB for different windows between
1961 and 2018, 124 stations from WSP for different windows between 1901 and 1959. Attributes of 124 stations
(e.g., name and locations) are common for both BWDB and WSP, meaning that 124 stations have data for
different temporal windows from 1901 to 2018. Compilation of a database using rainfall data from all sources
provides records of a total of 326 stations crisscrossing over Bangladesh.

1901-2018 is shown in Fig. 4, which shows that the highest number of stations (138) having missing rainfall is
in the range of 50 to 60%, and 66 stations had more than 60% missing records.

The Precipitation Bias CORrection (PBCOR)*!' data was used to evaluate the rainfall climatology of the
BDGR product. PBCOR is a global high-resolution (0.05°) precipitation climatology bias-corrected using
streamflow. It consists of bias-corrected precipitation climatologies of WorldClim V2 for the period 1970-
2000%, Climatologies at High Resolution for the Earth’s Land Surface Areas (CHELSA V1.2) for 1979-2013%,
and Climate Hazards Group Precipitation Climatology (CHPclim V1) for 1980-2009*. These WorldClim,
CHELSA and CHPclim climatologies underestimate precipitation in the broader Himalayas region, including
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Fig. 3 Availability of data from different sources. Number of available meteorological stations per year from
different sources during 1901-2018.
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Fig. 4 Missing records (%) during 1901-2018. The number of stations with different percentages of missing
data during 1901-2018. The highest number of stations (138) had missing rainfall in the range of 50 to 60%, and
66 stations had more than 60% missing records.

some parts of Bangladesh*. PBCOR corrected this bias to develop PBCOR WorldClim, PBCOR CHELSA and
PBCOR CHPclim to provide better estimates of the precipitation climatologies.

Methodology. Gap filling. In this study, multivariate imputation by chained equations (MICE) was used
to fill in missing rainfall data. The MICE was implemented considering missing data at all stations in the study
area. The MICE method estimates missing values of rainfall data from a station using rainfall data from its nearby
stations. In the first step, the MICE replaces missing values for each station of the set with the mean rainfall of the
station as initial estimates. It then sets back the first estimated missing value as missing while keeping the other
imputed values as original values and regresses them. The rest of the imputed missing values were regressed in the
same way. The regressed values were then subtracted from the initial set of data, which gives errors for missing
value estimates. Further steps generate errors in the same way by setting imputed values as missing one-by-one,
regressing them and subtracting them from the previously generated sets of data. The process was repeated until
the change in estimated error in predicting missing data is not significant. In the present study, the process was
repeated five times, as no noticeable improvement in the error matrix was found when multiple imputations were
more than five times. The preliminary analysis of filling in missing data of a station was performed using data
from 4 to 10 nearby stations. The results showed no improvement in prediction error if more than six nearby
stations were used. Therefore, rainfall data from six nearby stations were used to fill in the missing data of each
station.

The mice package*® of R program was used in this study to fill in missing data. Different classical models, for
instance, linear regression, logistic, Poisson, polytomous regression, and random forest, can be used in MICE for
imputation model development. This study evaluated the performance of different methods available in the mice
package in R and found the best performance using ‘random forest’ for the number of trees (ntree) equal to fifty.

The performance of MICE models was evaluated for filling both continuous and random missing data. The
results showed poor performance of the method in filling in continuous missing data for more than four years.
It should be noted that no data were available for 184 stations before 1961. Some of these stations also contain
continuous missing data for four years after 1961. Rainfall data with random missing values for these stations
were available for 29 to 56 years. Filling nearly 60 years of missing rainfall data with the model developed using
29 to 56 years of data would lead to large uncertainty. Therefore, these 184 stations’ data were not filled during
1901-1960. However, random missing data from these stations after 1961 were filled. The missing data at the
remaining 142 stations during 1901-2018 were between 3.2 and 54.4%. Continuous missing rainfall data at 70
out of these 142 were noticed for 4 to 26 years, which were also not filled. After leaving the continuous missing
rainfall for more than four years, the random missing rainfall data at all stations ranged from 3.2% to 28.8%.
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Fig. 5 Flowchart showing the procedures. Flowchart showing the procedures used for generating the BDGR
product. Leave-one-out cross-validation (LOOCV) was employed, where only a single observation was used for
validation and the remaining observation was used for model training. The process was repeated for N (number
of observations) time to cover all observations as a validation sample.

However, at nearly 90% of the stations, the random missing data were below 20%. These random missing data
were filled with the MICE model.

Homogenization of the rainfall series. Longer period rainfall series are significantly affected by inhomo-
geneities because of upgrading the instruments, relocation of stations and measurement error. These factors often
result in unexpected jumps or shifts, reflecting outliers in the data series. Therefore, the detection of inhomoge-
neities and homogenization of climate data is essential*’>*3. In this study, Climatol*, available in the statistical
package R, was used to homogenize the data series. Coll, et al.*s compared the break frequency results of different
homogenization methods and reported superior performance of Climatol than the other methods. Skrynyk, et
al* evaluated the uncertainty associated with Climatol’s adjustment algorithm and reported a better capacity of
Climatol to remove systematic errors related to jumps in the means. Domonkos, et al.>! also showed Climatol to
be effective for homogenizing climate data. Therefore, it has been widely used as an effective climate data homog-
enization tool in recent years®>>. Details of Climatol can be found in Guijarro®.

Climatol uses a standard normal homogeneity test (SNHT) both on overlapping windows and on the whole
rainfall series to detect inhomogeneities. It first uses the whole series to detect the break and then splits the series
based on breakpoints to reveal any other breaks in its subseries. Multiple checks provided a better capability of
Climatol to manage multiple inhomogeneities. Finally, it fills all missing values using the weighted ratio of data
from neighbouring stations to make the series homogeneous by using the reduced major axis model*, a kind of
orthogonal regression, j = x;, where x; is the mean (or the weighted mean) rainfall (mm) of nearby stations,
and y is the data (mm) containing missing values. Both x; and j are standardized based on available data before
developing the regression method.

It should be noted that Climatol fills the missing data with spatial interpolation. However, these filled values
were not used in generating BDGR data. Only the random missing data were filled using MICE before homog-
enization using Climatol. Missing data were filled with Climatol and replaced with NA before using the data for
generating BDGR and cross validation.

Product development procedure. Leave-one-out cross-validation (LOOCV) was employed, where only
a single observation was used for validation and the remaining observation was used for model training (Fig. 5).
This process was repeated for N (number of observations) time to cover all observations as a validation sample.
The LOOCYV approach required a large computation time. However, it provided error estimation for each station,
thus, quantifying errors both spatially and temporarily.

The process was repeated for all months for all years between 1901 and 2018. In each case, outliers or abnor-
mal values were examined using residuals. Nearby station data were checked to examine whether there are any
outliers or abnormal values. This was done for every station considered in this work. If the difference in rainfall
from all nearby stations was greater than 50% of the mean rainfall of a station, the data are outliers, possibly
caused by mechanical faults or human error, and were considered missing.

Thin-plate spline (TPS) interpolation. Observed rainfall data were interpolated using the TPS method*®. It is
a robust technique and is used for developing gridded air temperatures of China*, ‘climate surfaces’ of global
land areas'”*?, and high-resolution daily precipitation datasets of Europe®. Details about TSP can be found in
Hutchinson and Xu®. In TPS, N rainfall data are used to fit the spline model, and z, (mm) takes the following
formula®®:

z; = f(x;) + bTyi + ¢ (1)

wherei=1 ... N, fis a smooth function of the spline independent variables x; (mm), b is a vector of linear coef-
ficients for independent covariates, and y; and e; are independent, zero-mean error terms*. The models were
developed using different combinations of covariates, and the model producing the least error was finally used
for interpolation.

Rainfall data for each month of all years between 1901 and 2018 were interpolated separately to generate
gridded rainfall surfaces for individual months. All interpolated surfaces are then integrated to produce gridded
monthly rainfall time series for the study period over Bangladesh.
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Table 1. Description of statistical metrics used for evaluating data product.

Error metrics. 'The BDGR product, generated through the TPS model, was validated using the normalized
root mean squared error (NRMSE) in %, bias (PBIAS) in %, coefficient of determination (R?), Kling-Gupta effi-
ciency (KGE), Willmott’s modified coefficient of agreement (MD) and Perkins skill score (PSS). Besides, the
ratio of standard deviation (rSD) was used to assess the missing rainfall data estimation model. The equation of
the metrics, their range and optimum values are provided in Table 1. The NRMSE and PBIAS were widely used
metrics to estimate errors in the data product, while R? is a universal metric for showing an association between
two time series, i.e., observed versus gridded data. The KGE was an integrated metric that measures association,
similarity in the variance and mean between two variables®. The MD provides appropriate weight to error and
differences between two variables for measuring agreement®. Therefore, it provided a better estimate of associa-
tion in the case of extreme values. It was expected that gridded data should replicate the probability distribution
of observed rainfall. Therefore, PSS was used, which measures how the probability distribution function (PDF) of
two variables matches each other®!. In Table 1, r is Pearson’s correlation; 1 and o represent the mean and stand-
ard deviation of gridded (S) and observed (O) rainfall (mm); N is the sample size; and f, and f; are PDFs of the
observed and gridded rainfall (mm).

Technical Validation

Performance of gap filling. The MICE models were developed by randomly selecting 70 to 95% of the
available data and then validating the remaining 5 to 30% per data at each station. The model’s performance was
evaluated using statistical metrics at all stations and is presented in Fig. 6. The performance was evaluated for
5 to 30% of missing data to show the robustness of the MICE model developed in this study in filling different
amounts of missing values. The results showed that the mean bias in 5 to 30% missing rainfall was 0.1 to 0.9, and
the NRMSE was between 14.5 and 29.1%. For all cases, the mean R? was above 0.86, rSD was near 1 and KGE was
above 0.92. In particular, the metric values showed that the performance of the MICE model in missing rainfall
of less than 20% was near ideal values. This indicates perfect filling of random missing values of less than 20% at
nearly 90% of stations.

Homogenization of rainfall series. Data homogenization requires determination of optimum SNHT
values for overlapping windows and for the entire series. In this study, SNHT values were determined through
visualization of histograms. Figure 7(a,b) shows the varying SNHT values of 326 stations. Careful observation
of the histograms reveals an apparent minimum SNHT value after 28. Therefore, the SNHT value for both the
overlapping windows and the whole series was 28.

Figure 7(c) shows a histogram of normalized anomalies used for outlier detection. Anomalous values beyond
45 standard deviations (SDs) were considered outliers. A total of 972 outliers were observed. All outliers were
manually checked and compared with neighbouring station data. Few outliers resulted from data entry; how-
ever, most of the values seemed to have legitimate values. After correcting outliers associated with data entry, no
values are found beyond £18 SDs. Therefore, a threshold of 18 SDs was chosen to incorporate all extremes.

Figure 7(d) shows a correlogram of monthly rainfall between stations. The correlation for stations within a
50 km radius was >0.75 and decreases rapidly after 100km. A high correlation with nearby stations and grad-
ually a low relationship with increasing distance was expected due to synoptic—scale moist air circulation that
influences rainfall in Bangladesh. Overall, the correlogram indicates good quality of the observed data.

Climatol detected a total of 132 breaks in the whole rainfall series (i.e., 326). Some of the breaks can be
explained with the aid of literature. For example, Shahid® showed abrupt changes in rainfall at some stations
between 1973 and 1975. However, most of them could not be explained due to unavailability of metadata. All
the breaks were visually inspected and compared with nearby stations. Highly abnormal breaks were discarded,
while others were accepted. This study finally detected homogeneity of 322 out of 326 time series. These 322
series were finally employed to develop a high-resolution gridded product for Bangladesh.
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Fig. 6 Performance in filling missing values. Performance in estimating missing rainfall values in terms of: (a)
bias in % (PBIAS); (b) normalized root mean squared error (NRMSE) in %,; (¢) coefficient of determination
(R?); (d) ratio standard deviation (rSD); and (e) Kling-Gupta efficiency (KGE).

Development of gridded product. The initial assessment was conducted to select the covariates and inter-
polation method. Data from 80% of stations were used for model development and the rest for validation in
this stage. The present study evaluated similar covariates (topography and distance to coast) used in developing
WorldClim*? data to improve the performance of interpolation. Previous studies**** indicated the influence of
topography and distance to coast on rainfall in the country. High rainfall is generally recorded at elevated loca-
tions*. In addition, air moisture usually decreases from the coast to inland®2. These two covariates, i.e., elevation
and distance to coast, are accounted for in this study. The TPS models of the work were therefore developed:
(a) without covariates; (b) each of the covariates included separately; and (c) employing both covariates simul-
taneously. In addition, models are developed considering covariates as independent and linear. Since there is a
non-linear effect of elevation and distance to coast on rainfall in the country, data are transformed using log and
square root prior to inclusion in the TPS models. Prediction of multiple models developed with different combi-
nations of covariates, considering their linear and nonlinear effects. However, the results show no improvement,
and therefore, the model was developed without any covariates.

Kriging was one of the most efficient and widely used interpolation methods?. Therefore, the performance
of TPS was compared with kriging to justify the use of TPS in generating gridded products. A similar process as
the TPS was followed to validate the output of the kriging model. The results are presented in Figure S2 (supple-
mentary materials), which show a nearly 2 to 10% improvement in the median of the evaluation metrics using
the TPS method.

Performance of gridding method. The performance of TPS models without considering any covariates at
all stations is presented in Fig. 8. The model’s performance for the whole period (1901-2018), based on NRMSE,
PBIAS, R? KGE, MD and PSS, is shown in Fig. 8(a). The medians of KGE, MD and PSS were 0.87, 0.90 and 0.98,
respectively. The minimum values of the indices were 0.66, 0.83 and 0.96. The ranges of NRMSE and PBAIS were
9.310 20.2 and —9.7 to 11.7, and their medians were 17.2 and —0.9%, respectively. The median of rSD was 1.04.
The results indicate a good performance of the TPS model in reconstructing rainfall time series of all rainfall
stations (i.e., 322). The product was also evaluated by checking any abnormality in the generated surfaces com-
pared to known monthly rainfall patterns or small circular patterns by potential outliers. No abnormal rainfall
pattern was noticed for any month examined, indicating good homogenization of the series. LOOCV was used
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Fig. 7 Standard normal homogeneity test (SNHT) results. Optimum SNHT values were determined through
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Fig. 8 Performance of the thin-plate spline model. Performance of the thin-plate spline model in reconstructing
observed rainfall during 1901-2018. The boxplots show the model’s performance for the whole period
(1901-2018), based on normalized root mean squared error (NRMSE) in %, bias (PBIAS) in %, coefficient of
determination (R?), Kling-Gupta efficiency (KGE), Willmott's modified coefficient of agreement (MD) and
Perkins skill score (PSS).
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Fig. 9 The spatial distribution of BDGR performance. The spatial distribution of BDGR performance in terms
of (a) coefficient of determination (R?); (b) Kling-Gupta efficiency (KGE); (c) Willmott’s modified coefficient of
agreement (MD); (d) Perkins skill score (PSS); (e) ratio of standard deviation (rSD); (f) root mean squared error
(NRMSE) in %; and (g) bias (PBIAS) in %.

to estimate the performance of interpolated rainfall at each station to show the spatial and temporal variability
of the metrics.

Performance of BDGR. Statistical evaluation. The LOOCV approach provided error estimation for each
station, thus quantifying errors in estimated rainfall both spatially and temporarily. The performance of rainfall at
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Fig. 10 The mean performance of the BDGR. The temporal variability of the mean performance of the BDGR
over Bangladesh in terms of (a) coefficient of determination (R?); (b) Kling-Gupta efficiency (KGE); (c)
Willmott’s modified coefficient of agreement (MD); (d) Perkins skill score (PSS); (e) ratio of standard deviation
(rSD); (f) root mean squared error (NRMSE) in %; and (g) bias (PBIAS) in %.

each station was used to prepare the maps to show the spatial distribution of the performance metrics of BDGR
(Fig. 9). The association metrics, R? and MD, revealed high correlations of observed and interpolated rainfall time
series at most stations. The R? values were more than 0.88 at 79% of the stations and between 0.72 and 0.76 at
only 2.6% of the stations. The MD was more than 0.86 at 88% of stations and between 0.79 and 0.82 at only three
stations. The KGE was more than 0.8 at 98.5% of the stations. The PSS was above 0.96 at 93% of stations, while rSD
was between 0.94 and 1.06 at 83% of stations. Among the two error metrics, NRMSE showed less than 14% error
at 57% of the stations while between 20 and 30% only at 7% of stations. The PBIAS was between —2 and 2 at 78%
of stations. It was out of the range of —6 to 6 only at nearly 8% of stations. The spatial distribution of the metrics
showed a random distribution of high and low values over most of the country, except for the southwest and
southeast corners. This was due to the low density of observation data at these locations. The northwest region is
covered by dense forest, while the northwest corner is mountainous and less populated.
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Fig. 11 Spatial distribution of annual rainfall. Spatial distribution of annual rainfall: (a) BDGR product; (b)
PBCOR-CHELSA. The 0.01° resolution BDGR data are aggregated to the resolution of PBCOR-CHELSA
(0.05°) for comparison. The results show similarity between BDGR and PBCOR-CHELSA annual rainfall
climatology. The high and low regions and the transition of rainfall from the high to low zone from west to the
east are well captured by the BDGR product.
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Fig. 12 Density scatter plot. Density scatter plot showing the relative performance of the BDGR compared to
the observed monthly rainfall (n =255952). The observed and nearby grid rainfall data for the whole period
(1901-2018) are used for comparison. The red colour in the plot indicates dense data, and green shows low
density. The best-fit line of the gridded products was presented using a dashed red line. A close correspondence
of the regression line to the diagonal (solid black line) indicates better performance of the BDGR product.

The temporal variability in the performance of the BDGR over Bangladesh is shown in Fig. 10. The per-
formance metrics estimated at 322 stations for different years were averaged to show the temporal variable of
BDGR performance over Bangladesh for the period 1901-2018. The results showed the temporal variability of
R?in the range of 0.87 to 0.95 and md between 0.84 and 0.93 for the period 1901 to 2018. The KGE showed an
increase in performance with time. The mean KGE was 0.85 in the early period (1901-1960) and increased to
nearly 0.89 after 1960. Similar improvements were observed in all other metrics after 1960. This is due to the
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Fig. 13 Performance in reconstructing seasonal rainfall variability. Performance of the BDGR in reconstructing
seasonal rainfall variability, 1979—2010. All observations were averaged and compared with the average value
of all grids of BDGR. The BDGR monthly average rainfall line completely overlapped with the observed data,
indicating its ability to reconstruct the seasonal variation in rainfall for the country.
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Fig. 14 Performance in replicating annual rainfall. Performance of the BDGR product in replicating rainfall in
Bangladesh, 1901—2018. The annual rainfall line of the BDGR overlaps with the observed rainfall for the whole
study period (i.e., 1901—2018), indicating the ability of newly generated gridded data to estimate the long-term
climate variability of the country.

high number of stations used for interpolation after 1960 compared to the early period. It has been mentioned
earlier that no data were available at 184 stations until 1960. However, the overall performance of the interpo-
lated rainfall was sufficiently high for the whole period. The PSS was in the range of 0.93 to 0.99, rSD between
0.96 and 1.066, NRMSE between 9 and 19% and PBIAS in the range of —4.5 to 4.3%.

Boxplots of each error metric for different periods were prepared following Lucas, et al.® to show the
error spread in different periods. Metric values were grouped every five years and presented for 1901-2018 in
Supplementary Figure S1. The figure shows no apparent discontinuities in any of the error series.

Spatial variability. The annual and monthly BDGR climatologies of BDGR are compared with PBCOR
rainfall climatologies to show the performance of BDGR relative to PBCOR. The BDGR and PBCOR CHELSA
annual rainfall distributions for 1979-2013 are shown in Fig. 11, and WC and PBCOR CHPclim annual rainfall
for the periods 1970-2000 and 1980-2009 are shown in Supplementary Figure S4. In all cases, the 0.01° resolution
BDGR data are aggregated to the resolution of PBCOR datasets (0.05°) for comparison. The reason for comparing
different datasets is that they all together cover a longer period (1970-2013). The results show that the BDGR
annual rainfall climatology was correlated with PBCOR CHELSA by 0.91, WC by 0.89 and CHPclim by 0.88. The
high and low regions and the transition of rainfall from the high to low zone from west to the east are well cap-
tured by the BDGR product. The PBCOR rainfall climatology is developed with limited station data, and there-
fore, local heterogeneity in the distribution of rainfall is not visible. However, regional and local heterogeneity was
well captured by the BDGR product, indicating its ability to represent the spatial distribution of annual rainfall.

A similar analysis with PBCOR CHELSA was conducted for all months, and their spatial distribution is
shown in Supplementary Figure S5. The results showed correlations of BDGR climatology with PBCOR
CHELSA between 0.74 and 0.99 for different months.

BDGR and observed rainfall. The performance of the BDGR was also evaluated to (i) reconstruct temporal
patterns, (ii) reproduce seasonal variability, and (ii) estimate trends in different quantiles of observed rainfall.
These evaluations were conducted to show the reliability of the BDGR as a substitute for observed rainfall.

The relative performance of the BDGR compared to the observed monthly rainfall is shown using a scatter
plot in Fig. 12. The observed and nearby grid rainfall data for the whole period (1901-2018) are used for com-
parison. Red colour in the plot indicates dense data, and green shows low density. The best-fit line of the gridded
products was presented using a dashed red line in the plot. A close correspondence of the regression line to the
diagonal (solid black line) indicates better performance of the BDGR product. Figure 9 shows the regression line
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was closer to the diagonal line. The R? for the BDGR was 0.93, indicating better correspondance of the generated
product in replicating rainfall time series across Bangladesh.

The seasonal performance of the BDGR product is shown in Fig. 13. All observations were averaged and
compared with the average value of all grids of BDGR. The comparison was made for each month to demon-
strate BDGR’s ability in replicating observed variability of seasonal rainfall. The BDGR monthly average rainfall
line completely overlapped with the observed data, indicating its ability to reconstruct the seasonal variation in
rainfall for the country.

The annual rainfall series provides an estimation of the wet and dry years. In doing so, all observations were
first averaged and then converted to annual time series. Likewise, rainfall data of all BDGR grids were average
and converted to annual series. The observed and BDGR annual rainfall for the period 1901—2018 are presented
in Fig. 14, illustrating that the annual rainfall line of the BDGR overlaps with the observed rainfall for the whole
study period (i.e., 1901—2018). Furthermore, this study indicates the ability of newly generated gridded data to
estimate the long-term climate variability of the country.

Data Records

High resolution (0.01°) monthly total rainfall, in mm, for Bangladesh from January 1901 to December 2018, are
freely available at https://doi.org/10.6084/m9.figshare.16607912 in NetCDF®. The data records spatially, cover-
ing land area of Bangladesh. The records will be updated frequently in the upcoming years when more rainfall
records will be available. Temporal coverage of the data may be extended in the future when recent observations
are accessible.

Usage Notes

The BDGR product can be used for many applications at various temporal resolutions. The datasets can be used
to estimate spatial distribution of rainfall, temporal pattern, seasonality, and the trends more accurately than any
other datasets, presently available for the country. Furthermore, this high resolution (e.g., 0.01°) data can be used
for localized changes in long-term climate, including the changes in rainfall, and groundwater recharge, along
with other scientific and social benefits.

Code availability
A code is written using statistical package (R.4.1) to process data. The code is available online®* (https://doi.
org/10.6084/m?9.figshare.16607912).
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