
sensors

Communication

Gesture-Based Human Machine Interaction Using RCNNs in
Limited Computation Power Devices

Alberto Tellaeche Iglesias 1,* , Ignacio Fidalgo Astorquia 2, Juan Ignacio Vázquez Gómez 1 and Surajit Saikia 2

����������
�������

Citation: Tellaeche Iglesias, A.;

Fidalgo Astorquia, I.; Vázquez

Gómez, J.I.; Saikia, S. Gesture-Based

Human Machine Interaction Using

RCNNs in Limited Computation

Power Devices. Sensors 2021, 21, 8202.

https://doi.org/10.3390/s21248202

Academic Editor: Carina

Soledad González González

Received: 7 November 2021

Accepted: 6 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science, Electronics and Communication Technologies Department, University of Deusto, Avenida
de las Universidades 24, 48007 Bilbao, Spain; ivazquez@deusto.es

2 DeustoTech-Deusto Institute of Technology, University of Deusto, Avenida de las Universidades 24,
48007 Bilbao, Spain; ignacio.fidalgo@deusto.es (I.F.A.); surajit.saikia@deusto.es (S.S.)

* Correspondence: alberto.tellaeche@deusto.es

Abstract: The use of gestures is one of the main forms of human machine interaction (HMI) in many
fields, from advanced robotics industrial setups, to multimedia devices at home. Almost every
gesture detection system uses computer vision as the fundamental technology, with the already well-
known problems of image processing: changes in lighting conditions, partial occlusions, variations in
color, among others. To solve all these potential issues, deep learning techniques have been proven to
be very effective. This research proposes a hand gesture recognition system based on convolutional
neural networks and color images that is robust against environmental variations, has a real time
performance in embedded systems, and solves the principal problems presented in the previous
paragraph. A new CNN network has been specifically designed with a small architecture in terms
of number of layers and total number of neurons to be used in computationally limited devices.
The obtained results achieve a percentage of success of 96.92% on average, a better score than those
obtained by previous algorithms discussed in the state of the art.

Keywords: real time; deep learning; gesture detection; embedded systems

1. Introduction

Gestures are key elements in the fields of interaction, understanding, and commu-
nication with machines. In certain situations, where other kinds of communication fail,
such as speech recognition with environmental noise, gesture processing approaches have
demonstrated to be a valid strategy, also offering the benefit that they do not need the use
of additional elements or components to acquire extra data.

Gestures can be defined as natural movements made by humans, presenting many
variations when done, either when the same person is performing the same gesture for
several times, or when different people are doing it. Also, in the case of using images,
variable environmental conditions add more challenges to the gesture detection process.

A gesture recognition system must be also flexible enough to recognize new gestures
and must support the training of new ones, and because of these needed features, complex
processes are needed for gesture recognition like motion modelling or pattern recogni-
tion. Some efforts on gesture recognitions started in 1993, where some techniques were
adapted from other fields like speech or handwriting recognition. In this way, Darrell
and Pentland [1] adapted Dynamic Time Wrapping (DTW) to recognize dynamic gestures.
After that, Starner et al. [2] proposed to classify orientation, resultant shape and trajectory
information of the gesture, using Hidden Markov Models (HMM).

In specific gesture-detection applications, different wearable sensors have been de-
veloped, such as gyroscopes or accelerometers. In [3], the authors use magnetic and
inertial sensors placed in a glove to capture the movements of the hand and arm. In [4],
a stretch-sensing soft glove is presented to perform an interactive hand-position capture.
This method presents high accuracy without any other external optical system. They also

Sensors 2021, 21, 8202. https://doi.org/10.3390/s21248202 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9236-1951
https://orcid.org/0000-0001-6385-5717
https://doi.org/10.3390/s21248202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248202
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21248202?type=check_update&version=1

Sensors 2021, 21, 8202 2 of 14

demonstrate the way to make a calibrated low-cost version, using common components
available in most of the manufacturing labs. On the other hand, the use of image-processing
algorithms and point clouds for gesture and posture recognition is becoming possible by
using 3D cameras, sensors providing point clouds or more common color images. In [5],
the segmented skeleton joints are used in combination with a precise segmentation of
depth images to extract gesture information. On the other hand, in [6], the authors use
segmentation of color in 2D images to detect hands, head or tags. Ge et al. [7,8] introduce a
new method for a real-time pose estimation using 3 dimensional Convolutional Neural
Networks (CNNs). This approach takes a 3D volumetric representation of the hand, using
a depth image as input, and then it extracts three-dimensional features from the volumetric
input, capturing the 3D spatial structure of the hand, and in the same way obtaining the 3D
pose of the hand using a single pass. Finally, and in the same way, the Google Media Pipe
framework uses deep learning to track and detect gestures performed with both hands [9].

There are some methods that use a random forest algorithm [10,11] or autoencoders [12]
for the estimation of the structure of the hands. More recently, there are some works that
adopt a more computationally efficient methods based on these hierarchical structures [13].

In recent years, research works try to detect gestures by detecting hand and head of
persons. In [14], head and hands of the users are tracked using the 3-dimensional space. In
the same way, in [15], a color segmentation using 2D images is used to detect user’s hand.
In [16] the detection of the hands is performed by using both approaches.

Another field of interest in this research area is sign language recognition, which is
a sub-field of communicative gestures. Since this type of language is highly structural,
it is frequently used in computer vision algorithms. As an example, Cheok et al. [17]
proposed an alignment network to detect specific hand gestures with iterative optimization
for weakly supervised continuous sign language recognition. This solution presented
two different approaches working together: a 3D convolutional residual network for
feature learning and an encoder-decoder network used for sequence modelling. Also,
works presented in [18,19], present complete reviews of different algorithms and specific
approaches intended for gesture detection applications.

As exposed above in this introduction, deep learning algorithms represent the latest
big advancement in the artificial intelligence and pattern recognition fields. These tech-
niques are based on the construction of highly complex neural network architectures, with
the final objective of replicating the inference and abstraction capacities of the human
beings in varied tasks such as object recognition, scene interpretation or text and speech
recognition and generation.

The first Convolutional Neural Network, created for image processing tasks and
named AlexNet, was presented by the research group leaded by Geoffrey E. Hinton
at Toronto University. With it, they won the ImageNet Large Scale Visual Recognition
Challenge [20].

In this sense, the CNNs have become one of the best solutions to solve intricate image
processing problems among a great variety of applications fields [21]. Nowadays, it is
easy to find many different architectures, to perform image processing tasks, such as
GoogleLeNet [22] developed by Google, VGG [23], ResNet [24] engineered by Microsoft,
or RCNNs (Region based CNNs).

This last one is the most common approach based on CNN to detect objects in im-
ages. More concretely, the most common approaches for object detection applications
can be grouped as region proposal-based methods, such as RCNN and its derived algo-
rithms, SPP-net or FPN, or regression/classification methods as YOLO, Multibox, G-CNN,
AttentionNet, and so on [25].

The region proposal methods include multiple internal steps, such as proposal gener-
ation, feature extraction and classification and bounding box regression operations. The
RCNN based models are examples of this method [26]. In this specific case, it has three
main evolutions to obtain optimum results in object detection: RCNN, Fast RCNN, and
Faster RCNN.

Sensors 2021, 21, 8202 3 of 14

The original RCNN approach first generates region proposals using image processing
algorithms such as Edge Boxes [27]. In the paper defining the RCNN architecture, the
authors use tentatively 2000 regions for each image. Each of these generated regions
are cropped and resized to be classified by a CNN. In the last step, the bounding boxes
proposed are refined by a support vector machine (SVM) previously trained with the CNN
features. A schema of this system can be observed in Figure 1.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 15

RCNN based models are examples of this method [26]. In this specific case, it has three
main evolutions to obtain optimum results in object detection: RCNN, Fast RCNN, and
Faster RCNN.

The original RCNN approach first generates region proposals using image pro-
cessing algorithms such as Edge Boxes [27]. In the paper defining the RCNN architecture,
the authors use tentatively 2000 regions for each image. Each of these generated regions
are cropped and resized to be classified by a CNN. In the last step, the bounding boxes
proposed are refined by a support vector machine (SVM) previously trained with the
CNN features. A schema of this system can be observed in Figure 1.

Figure 1. Basic schema of the RCNN detector.

A refinement on the RCNN detector, is the Fast-RCNN detector [28]. Figure 2 shows
the new detector architecture. The principal difference with the basic architecture is that,
after the region proposal function, instead of cropping and resizing region proposals, Fast-
RCNN detector analyzes the complete image. The Fast-RCNN algorithm pools the fea-
tures of the proposed regions using a CNN. This makes Fast-RCNN more efficient, be-
cause there are not recurrent computations in overlapping regions.

Figure 2. Basic schema of the Fast RCNN detector.

The most recent evolution of the RCNN algorithm is the Faster-RCNN [29], shown
in Figure 3. In this case, a region proposal network is used in a direct way. With this, the
network is faster, and it is better adapted to the training data, offering faster, and better
results.

Figure 3. Final schema for the Faster RCNN detector.

Figure 1. Basic schema of the RCNN detector.

A refinement on the RCNN detector, is the Fast-RCNN detector [28]. Figure 2 shows
the new detector architecture. The principal difference with the basic architecture is that,
after the region proposal function, instead of cropping and resizing region proposals, Fast-
RCNN detector analyzes the complete image. The Fast-RCNN algorithm pools the features
of the proposed regions using a CNN. This makes Fast-RCNN more efficient, because there
are not recurrent computations in overlapping regions.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 15

RCNN based models are examples of this method [26]. In this specific case, it has three
main evolutions to obtain optimum results in object detection: RCNN, Fast RCNN, and
Faster RCNN.

The original RCNN approach first generates region proposals using image pro-
cessing algorithms such as Edge Boxes [27]. In the paper defining the RCNN architecture,
the authors use tentatively 2000 regions for each image. Each of these generated regions
are cropped and resized to be classified by a CNN. In the last step, the bounding boxes
proposed are refined by a support vector machine (SVM) previously trained with the
CNN features. A schema of this system can be observed in Figure 1.

Figure 1. Basic schema of the RCNN detector.

A refinement on the RCNN detector, is the Fast-RCNN detector [28]. Figure 2 shows
the new detector architecture. The principal difference with the basic architecture is that,
after the region proposal function, instead of cropping and resizing region proposals, Fast-
RCNN detector analyzes the complete image. The Fast-RCNN algorithm pools the fea-
tures of the proposed regions using a CNN. This makes Fast-RCNN more efficient, be-
cause there are not recurrent computations in overlapping regions.

Figure 2. Basic schema of the Fast RCNN detector.

The most recent evolution of the RCNN algorithm is the Faster-RCNN [29], shown
in Figure 3. In this case, a region proposal network is used in a direct way. With this, the
network is faster, and it is better adapted to the training data, offering faster, and better
results.

Figure 3. Final schema for the Faster RCNN detector.

Figure 2. Basic schema of the Fast RCNN detector.

The most recent evolution of the RCNN algorithm is the Faster-RCNN [29], shown
in Figure 3. In this case, a region proposal network is used in a direct way. With this,
the network is faster, and it is better adapted to the training data, offering faster, and
better results.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 15

RCNN based models are examples of this method [26]. In this specific case, it has three
main evolutions to obtain optimum results in object detection: RCNN, Fast RCNN, and
Faster RCNN.

The original RCNN approach first generates region proposals using image pro-
cessing algorithms such as Edge Boxes [27]. In the paper defining the RCNN architecture,
the authors use tentatively 2000 regions for each image. Each of these generated regions
are cropped and resized to be classified by a CNN. In the last step, the bounding boxes
proposed are refined by a support vector machine (SVM) previously trained with the
CNN features. A schema of this system can be observed in Figure 1.

Figure 1. Basic schema of the RCNN detector.

A refinement on the RCNN detector, is the Fast-RCNN detector [28]. Figure 2 shows
the new detector architecture. The principal difference with the basic architecture is that,
after the region proposal function, instead of cropping and resizing region proposals, Fast-
RCNN detector analyzes the complete image. The Fast-RCNN algorithm pools the fea-
tures of the proposed regions using a CNN. This makes Fast-RCNN more efficient, be-
cause there are not recurrent computations in overlapping regions.

Figure 2. Basic schema of the Fast RCNN detector.

The most recent evolution of the RCNN algorithm is the Faster-RCNN [29], shown
in Figure 3. In this case, a region proposal network is used in a direct way. With this, the
network is faster, and it is better adapted to the training data, offering faster, and better
results.

Figure 3. Final schema for the Faster RCNN detector. Figure 3. Final schema for the Faster RCNN detector.

We selected the different variations of the RCNN object detection algorithm in this
work because their structure is based on an internal CNN network that can be created
taking into account the computation capability available, making this approach fully
adaptable to limited hardware.

Section 2 exposes the precise use case presented in this article. Section 3 explains
the dataset used for the training stage of the proposed solution. Section 4 explains the

Sensors 2021, 21, 8202 4 of 14

proposed approach in this paper in terms of network architecture. Section 5 presents
the training procedure of the different RCNN alternatives, and in Section 6, the results
obtained after the evaluation tests are presented. Finally, the last section, Section 7, sum-
marizes the conclusions obtained from this research, highlighting the strong points of the
proposed method.

Main Motivation and Contributions

The main motivation of this work is to design an effective CNN architecture that
can be deployed and used in computationally limited devices, offering real-time gesture
detection capabilities in embedded devices with the previously cited limitation.

Following this motivation, this article presents a research work to analyze the perfor-
mance of the different RCNN approaches for the detection of hand gestures in real time,
with the final objective of obtaining a lightweight system that fits not only in desktop PC,
but also can be run in IoT (Internet of Things) devices like, Google Coral or Nvidia Jetson
platforms, providing a real-time response.

After the testing of different previously existing networks, the designed CNN presents
a very small architecture both in terms of number of layers and total number of neurons,
offering at the same time real time capabilities and a percentage of correctly detected
gestures of almost 97%, overcoming results in state of the art. This is the main contribution
of this work.

2. Problem Statement

One of the biggest problems that Deep Learning techniques present in general, and
CNNs in particular, is the high computational requirements. Several researchers pointed
out this problem, like [30] or [31].

When we face a problem that requires a short time response, like in this case, small
CNNs can be good candidate models to solve in the RCNN detectors when we try to
validate the system’s performance. Before analyzing several different networks present
in state of the art, small CNNs provide also smaller footprint, particularly if we compare
them with other architectures (e.g., Squeezenet [32], GoogleNet [22], and Mobilenetv2 [33]).
In Table 1, we present some of the principal features that these networks have. In the depth
column present in the table, we defined the largest number of layers (fully connected or
convolutional) on the path from the first to the last layer.

Table 1. Main small CNN networks for its use in the RCNN detector.

Network
Name

Year of
Creation Depth

Total
Number of

Layers

Size in
Memory

Parameters
(Millions)

SqueezeNet 2016 18 68 4.6 MB 1.24
GoogleNet 2015 22 144 27 MB 7.0

Mobilenetv2 2018 53 155 13 MB 3.5

The RCNN detectors will detect the different user hand positions and will return as
output the class of the gesture detected with the best accuracy.

Finally, as a summary, we can highlight three relevant features needed when develop-
ing a gesture detection system. These are the following:

• Capability to define new gestures quickly. This feature provides flexibility to the system.
• Flexibility to identify the same gesture made by different people, with a different

orientation, skin color, hand position, and other aspects of the environment, like the
light of the place or different distances to the performed gestures.

• Due to the real-time constraints in several scenarios, the system has to provide a
fast response.

Sensors 2021, 21, 8202 5 of 14

Despite having enough computation power to deploy systems based on small-sized
CNNs, the biggest issue with these embedded systems is related to the software. These
devices only support a limited version of the traditional Deep Learning frameworks, like
Tensorflow Lite, or new frameworks developed to maximize the performance of these
devices, like OpenVino. These reduced versions do not support all the CNN layers that are
available in the scientific literature.

According to these limitations, the developed architecture must fulfil different condi-
tions to be compatible with these devices:

• Use standard CNN layers to avoid the limitations of the lite version of the frameworks.
Due to the resources constraints, it is essential also to have a reduced size.

• Improve the response time, avoiding hardware constraints of these platforms.
• Compatibility with transfer learning techniques, with pre-trained models, to minimize

the training step.

3. Specific Dataset for Hand-Gesture Detection

There are a lot of gesture datasets already at researchers’ disposal, but, many of
them, due to their research purposes, do not represent the real-world conditions correctly,
especially in tasks that involve human-machine interaction. Some of these datasets are, for
example, the dataset created by the University of Padova using Kinect and Leap Motion
devices [34], The Hand-Gesture Detection Dataset, created by the Video Processing and
Understanding Lab [35], or the Hand Gesture Database [36]. In them, the authors have
already preprocessed the images, and the hands are segmented, performing different
gestures. Because of this, researchers do not need to locate hands in the overall scene.
Hence, these datasets do not have a feasible application in systems that want to detect real-
time gestures when working in an environment that has to be constantly under inspection.

The main application presented in this article is in the area known as “human-machine
interaction” (HMI). In this type of application, the number of gestures that these systems
need to identify is usually limited. For example, manual control of a robot operation needs
four or five principal commands, such as “stop”, “resume”, “start”, or “reset”. In other
application examples, the situation is just similar: in a television control based on gestures,
a few of them are needed, “switch on/off”, “volume up/down”, “program up/down”.
Using a great number of classes (i.e., gestures) makes the understanding of these systems a
hard task, and their practical usability decreases.

In this work, we present a dataset that consists of four different commands done by
gestures, defined assuming the typical interaction carried out between a collaborative robot
and a worker in an industrial setup [37]. The four different gestures: ‘Agree’, ‘Halt’, ‘Ok’
and ‘Run’. The position of fingers and the hand represent each gesture. Table 2 presents
the hand positions for each gesture.

Table 2. Hand position for each gesture.

Agree Halt Ok Run

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15

Table 2. Hand position for each gesture.

Agree Halt Ok Run

For each gesture, we recorded and labelled 100 different images. In each image, we
use both hands to perform the same gesture, so we labelled a final amount of 200 gestures
for each class, with a total of 800 gestures in our training dataset. Using both hands in each
image allows the learning generalization and adds more samples to the dataset. We also
labelled the gestures at different distances from the camera, adding more variability. Fig-
ure 4 shows an example of an image that has been labelled for the Halt gesture.

Figure 4. Image for the Halt gesture.

The dataset is created with both the image name and the coordinates of each labelled
gesture as bounding boxes, following this schema: (x, y, w, h), where x and y represent
the coordinates, using the upper left corner as a starting point, w is the width and h the
height of the bounding box. All 400 images (100 images for each of the 4 classes) in the
dataset have the same resolution: 1280 × 720 pix.

One problem that must be considered is the overfitting problem that can happen
when a small number of classes and a CNN with a small number of trainable parameters
are used. This situation, which is an important problem in generic gesture detection ap-
plications, can be assumed in HMI applications. Overfitting itself presents an over adjust-
ment to the dataset. In the HMI application configured with a specific dataset created by
the future users of the system, this over adjustment cannot be taken as a drawback, but
even as an advantage in scenarios where the operation security is critical.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15

Table 2. Hand position for each gesture.

Agree Halt Ok Run

For each gesture, we recorded and labelled 100 different images. In each image, we
use both hands to perform the same gesture, so we labelled a final amount of 200 gestures
for each class, with a total of 800 gestures in our training dataset. Using both hands in each
image allows the learning generalization and adds more samples to the dataset. We also
labelled the gestures at different distances from the camera, adding more variability. Fig-
ure 4 shows an example of an image that has been labelled for the Halt gesture.

Figure 4. Image for the Halt gesture.

The dataset is created with both the image name and the coordinates of each labelled
gesture as bounding boxes, following this schema: (x, y, w, h), where x and y represent
the coordinates, using the upper left corner as a starting point, w is the width and h the
height of the bounding box. All 400 images (100 images for each of the 4 classes) in the
dataset have the same resolution: 1280 × 720 pix.

One problem that must be considered is the overfitting problem that can happen
when a small number of classes and a CNN with a small number of trainable parameters
are used. This situation, which is an important problem in generic gesture detection ap-
plications, can be assumed in HMI applications. Overfitting itself presents an over adjust-
ment to the dataset. In the HMI application configured with a specific dataset created by
the future users of the system, this over adjustment cannot be taken as a drawback, but
even as an advantage in scenarios where the operation security is critical.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15

Table 2. Hand position for each gesture.

Agree Halt Ok Run

For each gesture, we recorded and labelled 100 different images. In each image, we
use both hands to perform the same gesture, so we labelled a final amount of 200 gestures
for each class, with a total of 800 gestures in our training dataset. Using both hands in each
image allows the learning generalization and adds more samples to the dataset. We also
labelled the gestures at different distances from the camera, adding more variability. Fig-
ure 4 shows an example of an image that has been labelled for the Halt gesture.

Figure 4. Image for the Halt gesture.

The dataset is created with both the image name and the coordinates of each labelled
gesture as bounding boxes, following this schema: (x, y, w, h), where x and y represent
the coordinates, using the upper left corner as a starting point, w is the width and h the
height of the bounding box. All 400 images (100 images for each of the 4 classes) in the
dataset have the same resolution: 1280 × 720 pix.

One problem that must be considered is the overfitting problem that can happen
when a small number of classes and a CNN with a small number of trainable parameters
are used. This situation, which is an important problem in generic gesture detection ap-
plications, can be assumed in HMI applications. Overfitting itself presents an over adjust-
ment to the dataset. In the HMI application configured with a specific dataset created by
the future users of the system, this over adjustment cannot be taken as a drawback, but
even as an advantage in scenarios where the operation security is critical.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15

Table 2. Hand position for each gesture.

Agree Halt Ok Run

For each gesture, we recorded and labelled 100 different images. In each image, we
use both hands to perform the same gesture, so we labelled a final amount of 200 gestures
for each class, with a total of 800 gestures in our training dataset. Using both hands in each
image allows the learning generalization and adds more samples to the dataset. We also
labelled the gestures at different distances from the camera, adding more variability. Fig-
ure 4 shows an example of an image that has been labelled for the Halt gesture.

Figure 4. Image for the Halt gesture.

The dataset is created with both the image name and the coordinates of each labelled
gesture as bounding boxes, following this schema: (x, y, w, h), where x and y represent
the coordinates, using the upper left corner as a starting point, w is the width and h the
height of the bounding box. All 400 images (100 images for each of the 4 classes) in the
dataset have the same resolution: 1280 × 720 pix.

One problem that must be considered is the overfitting problem that can happen
when a small number of classes and a CNN with a small number of trainable parameters
are used. This situation, which is an important problem in generic gesture detection ap-
plications, can be assumed in HMI applications. Overfitting itself presents an over adjust-
ment to the dataset. In the HMI application configured with a specific dataset created by
the future users of the system, this over adjustment cannot be taken as a drawback, but
even as an advantage in scenarios where the operation security is critical.

For each gesture, we recorded and labelled 100 different images. In each image, we
use both hands to perform the same gesture, so we labelled a final amount of 200 gestures
for each class, with a total of 800 gestures in our training dataset. Using both hands in
each image allows the learning generalization and adds more samples to the dataset. We

Sensors 2021, 21, 8202 6 of 14

also labelled the gestures at different distances from the camera, adding more variability.
Figure 4 shows an example of an image that has been labelled for the Halt gesture.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15

Table 2. Hand position for each gesture.

Agree Halt Ok Run

For each gesture, we recorded and labelled 100 different images. In each image, we
use both hands to perform the same gesture, so we labelled a final amount of 200 gestures
for each class, with a total of 800 gestures in our training dataset. Using both hands in each
image allows the learning generalization and adds more samples to the dataset. We also
labelled the gestures at different distances from the camera, adding more variability. Fig-
ure 4 shows an example of an image that has been labelled for the Halt gesture.

Figure 4. Image for the Halt gesture.

The dataset is created with both the image name and the coordinates of each labelled
gesture as bounding boxes, following this schema: (x, y, w, h), where x and y represent
the coordinates, using the upper left corner as a starting point, w is the width and h the
height of the bounding box. All 400 images (100 images for each of the 4 classes) in the
dataset have the same resolution: 1280 × 720 pix.

One problem that must be considered is the overfitting problem that can happen
when a small number of classes and a CNN with a small number of trainable parameters
are used. This situation, which is an important problem in generic gesture detection ap-
plications, can be assumed in HMI applications. Overfitting itself presents an over adjust-
ment to the dataset. In the HMI application configured with a specific dataset created by
the future users of the system, this over adjustment cannot be taken as a drawback, but
even as an advantage in scenarios where the operation security is critical.

Figure 4. Image for the Halt gesture.

The dataset is created with both the image name and the coordinates of each labelled
gesture as bounding boxes, following this schema: (x, y, w, h), where x and y represent the
coordinates, using the upper left corner as a starting point, w is the width and h the height
of the bounding box. All 400 images (100 images for each of the 4 classes) in the dataset
have the same resolution: 1280 × 720 pix.

One problem that must be considered is the overfitting problem that can happen when
a small number of classes and a CNN with a small number of trainable parameters are used.
This situation, which is an important problem in generic gesture detection applications,
can be assumed in HMI applications. Overfitting itself presents an over adjustment to the
dataset. In the HMI application configured with a specific dataset created by the future
users of the system, this over adjustment cannot be taken as a drawback, but even as an
advantage in scenarios where the operation security is critical.

4. Proposed Network Architecture

We propose a new optimized CNN architecture, evolving the Darknet reference model
presented in [38]. This Darknet architecture’s main feature is the speed on the detection
stage while having a relatively contained number of trainable neurons and a simple network
architecture. Despite the limitations exposed in Section 2, this model suits our application.
Using this model allows us to minimize the training process, using a transfer learning
approach with a pre-trained model of the network [39].

The Darknet network is composed of 32 layers. Figure 5 shows the schema we
have used. On the other hand, Table 3 shows the different filters located in the eight
convolutional layers.

Table 3. Detail of the convolutional layers in the Darknet CNN.

Conv. Layer Filter Size Num. Filters Stride Dilation Factor Padding
Conv. Layer 1 3 × 3 16 1, 1 1, 1 same
Conv. Layer 2 3 × 3 32 1, 1 1, 1 same
Conv. Layer 3 3 × 3 64 1, 1 1, 1 same
Conv. Layer 4 3 × 3 128 1, 1 1, 1 same
Conv. Layer 5 3 × 3 256 1, 1 1, 1 same
Conv. Layer 6 3 × 3 512 1, 1 1, 1 same
Conv. Layer 7 3 × 3 1024 1, 1 1, 1 same
Conv. Layer 8 1 × 1 1000 1, 1 1, 1 same

Sensors 2021, 21, 8202 7 of 14

Sensors 2021, 21, x FOR PEER REVIEW 7 of 15

4. Proposed Network Architecture
We propose a new optimized CNN architecture, evolving the Darknet reference

model presented in [38]. This Darknet architecture’s main feature is the speed on the de-
tection stage while having a relatively contained number of trainable neurons and a sim-
ple network architecture. Despite the limitations exposed in Section 2, this model suits our
application. Using this model allows us to minimize the training process, using a transfer
learning approach with a pre-trained model of the network [39].

The Darknet network is composed of 32 layers. Figure 5 shows the schema we have
used. On the other hand, Table 3 shows the different filters located in the eight convolu-
tional layers.

Figure 5. Schema of the Darknet network model.

Table 3. Detail of the convolutional layers in the Darknet CNN.

Conv. Layer Filter Size Num. Filters Stride Dilation Factor Padding
Conv. Layer 1 3 × 3 16 1, 1 1, 1 same
Conv. Layer 2 3 × 3 32 1, 1 1, 1 same
Conv. Layer 3 3 × 3 64 1, 1 1, 1 same
Conv. Layer 4 3 × 3 128 1, 1 1, 1 same
Conv. Layer 5 3 × 3 256 1, 1 1, 1 same
Conv. Layer 6 3 × 3 512 1, 1 1, 1 same
Conv. Layer 7 3 × 3 1024 1, 1 1, 1 same
Conv. Layer 8 1 × 1 1000 1, 1 1, 1 same

The proposed CNN in this work wants to simplify the Darknet model and minimize
the training step, using a transfer learning approach, maintaining the Darknet convolu-
tional layers’ trained weights. The carried-out changes are the following:
• Simplification of intermediate convolutional layers (shown in Figure 5). The embed-

ded platforms framework limitations justify this simplification of layers. Thanks to
this adaption, it makes the network smaller and more portable to many different sys-
tems.

• Modify the output layer of the network. We used a fully connected layer of 5 outputs
(number of gestures to detect and one extra layer, needed to make the model more
usable by the RCNN detectors) (shown in Figure 6).

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Output
Layer

Input
Layer

Conv2D Batch
Normalization RELU Max

Pooling Conv2D SoftMax Class
Output

Figure 5. Schema of the Darknet network model.

The proposed CNN in this work wants to simplify the Darknet model and minimize
the training step, using a transfer learning approach, maintaining the Darknet convolutional
layers’ trained weights. The carried-out changes are the following:

• Simplification of intermediate convolutional layers (shown in Figure 5). The embedded
platforms framework limitations justify this simplification of layers. Thanks to this
adaption, it makes the network smaller and more portable to many different systems.

• Modify the output layer of the network. We used a fully connected layer of 5 outputs
(number of gestures to detect and one extra layer, needed to make the model more
usable by the RCNN detectors) (shown in Figure 6).

Sensors 2021, 21, x FOR PEER REVIEW 8 of 15

Figure 6. Proposed changes in the Darknet architecture (left) to create the new CNN (right).

Due to these modifications, the proposed network has only 25 layers instead of the
32 layers in the original network.

Table 4 shows the comparison between the proposed solution and state of the art in
the small CNNs area, explicitly created to be used in embedded devices.

Table 4. Characteristics of CNN networks used in RCNN detectors.

Network Year Layers Trainable Parameters
(Millions)

SqueezeNet 2016 68 1.24
GoogleNet 2015 144 7.0

Mobilenetv2 2018 155 3.5
Darknet 2016 32 8.5

Proposed CNN 2019 24 6.3

The proposed network in this work has a similar number of parameters if compared
with other small CNNs, but it has a significant lower number of layers. Parallelizing the
calculations needed for each layer, the proposed network is much more efficient in com-
putation time, as we stated in Section 6. SqueezeNet has almost three times more sequen-
tial layers than our proposed network (68 layers versus 24), and MobileNetv2 has even
more, a total amount of 155 sequential layers, 6.45 times more than our proposed ap-
proach. Despite these two well known architectures are optimized in the number of train-
able parameters, they present a more sequential structure, offering less possibilities for
parallelization and hence, requiring more computation time than our optimized network.

Figure 6. Proposed changes in the Darknet architecture (left) to create the new CNN (right).

Sensors 2021, 21, 8202 8 of 14

Due to these modifications, the proposed network has only 25 layers instead of the
32 layers in the original network.

Table 4 shows the comparison between the proposed solution and state of the art in
the small CNNs area, explicitly created to be used in embedded devices.

Table 4. Characteristics of CNN networks used in RCNN detectors.

Network Year Layers Trainable Parameters (Millions)

SqueezeNet 2016 68 1.24
GoogleNet 2015 144 7.0

Mobilenetv2 2018 155 3.5
Darknet 2016 32 8.5

Proposed CNN 2019 24 6.3

The proposed network in this work has a similar number of parameters if compared
with other small CNNs, but it has a significant lower number of layers. Parallelizing
the calculations needed for each layer, the proposed network is much more efficient in
computation time, as we stated in Section 6. SqueezeNet has almost three times more
sequential layers than our proposed network (68 layers versus 24), and MobileNetv2 has
even more, a total amount of 155 sequential layers, 6.45 times more than our proposed
approach. Despite these two well known architectures are optimized in the number of
trainable parameters, they present a more sequential structure, offering less possibilities for
parallelization and hence, requiring more computation time than our optimized network.

5. Training of the Faster RCNN Object Detector

The training parameters have been set up following the criteria revised in related
works using similar architectures. They have been later validated taking into account
the results obtained by the different network models that have been used for testing.
Next section exposes in detail internal network parameter settings used in the algorithm
training procedure.

Setting Up of Modified Darknet Network Parameters

The algorithm used to train the modified Darknet CNN to be used in the Faster RCNN
detector has been the stochastic gradient descent with momentum (sgdm) optimizer. The
original version of this algorithm was firstly presented in [40].

This iterative mathematical procedure updates network parameters, weights and
biases, minimizing the loss function moving towards the negative gradient of this function
value as presented in Equation (1):

θi+1 = θi − α∇E(θi) (1)

where i is the iteration number, α > 0 is the learning rate, θ is the parameter vector and E(θ)
is the loss function.

The first original version of this algorithm presented the problem of oscillations in the
followed path to reach the optimum.

Adding a momentum term to the original sgd algorithm can minimize this prob-
lem [41], leaving the mathematical expression for this optimizer as follows:

θi+1 = θi − α∇E(θi) + γ(θi − θi−1) (2)

where γ is the momentum value that determines the contribution of the previous gradient
step in the current iteration.

To carry out our research, we selected the following values for each parameter:
α = 0.001, γ = 0.9. A learning rate with a small value allows the correct convergence
of the training stage in a more robust way.

Sensors 2021, 21, 8202 9 of 14

The loss function used is cross entropy or multinomial logistic loss, shown in Equation (3).

H(Pn, Qn) = −∑i Pn(i)logQn(i) (3)

where Pn is the multiclass predicted vector for the sample n and Qn is the desired output. i
is the number of different classes in the problem under study.

In this case, the sgdm algorithm is applied using a small-batch strategy in the training
stage, to evaluate the gradient value. Because of memory limitations, the batch size has
been established to 8, and the number of epochs to 40 in Faster-RCNN approach.

Finally, the number of regions proposed in the RCNN detectors´ algorithms has
been set up to 1000, half its original value of 2000. This smaller value does not harm the
effectiveness of the detection, and presents a great advantage in memory and computation
time optimization.

Figure 7 shows the final network architecture obtained for the Faster RCNN classifier.
The convolutional layer at the top of the image corresponds to the 6th convolutional layer
of the original network, the latest layers have been created by applying the Faster RCNN ar-
chitecture, using as its core the proposed network in this study. The final network provides
two outputs the coordinate boxes where the gestures are located and the gesture class.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 15

Figure 7. Final layers of the gesture detector using the proposed CNN in this work in a Faster RCNN
architecture.

6. Discussion of Results
Different gesture recognition approaches have been trained using a Nvidia GeForce

1080 Ti graphics card to take advantage of the parallel computation, in a PC with Ubuntu
Linux 20.04 LTS and MATLAB R2020b. Specific tools provided by MATLAB for the de-
velopment of Deep Learning applications and for parallel computation have been applied
for network design and testing.

6.1. Proposed CNN Architecture Performance Assessment
The constructed dataset has been divided in two smaller parts: training and testing.

The 800 gestures available have been randomly shuffled, using 120 of them (15% of the
dataset) for testing, and the remaining 680 for training.

Finally, transfer learning techniques have been applied for pretrained models and
proposed network in this work. Comparison with the original Darknet model has not been
taken into account for comparison metrics because the model created for this work is pre-
cisely an optimization of this network, and subsequently it is assumed a better perfor-
mance of the newly created architecture.

Conv 2D

Conv 3x3

RELU

Conv 1x1 B Conv 1x1C

Soft
MAX

Class

Box
Deltas

Region
Proposal

roi Pooling

RELU

Conv2D

Avg
Pooling

RELU

Fully
Connected

Fully
Connected

SoftMAXBoxDELTAS

Class.
Ouput

Figure 7. Final layers of the gesture detector using the proposed CNN in this work in a Faster
RCNN architecture.

Sensors 2021, 21, 8202 10 of 14

6. Discussion of Results

Different gesture recognition approaches have been trained using a Nvidia GeForce
1080 Ti graphics card to take advantage of the parallel computation, in a PC with Ubuntu
Linux 20.04 LTS and MATLAB R2020b. Specific tools provided by MATLAB for the
development of Deep Learning applications and for parallel computation have been applied
for network design and testing.

6.1. Proposed CNN Architecture Performance Assessment

The constructed dataset has been divided in two smaller parts: training and testing.
The 800 gestures available have been randomly shuffled, using 120 of them (15% of the
dataset) for testing, and the remaining 680 for training.

Finally, transfer learning techniques have been applied for pretrained models and
proposed network in this work. Comparison with the original Darknet model has not
been taken into account for comparison metrics because the model created for this work
is precisely an optimization of this network, and subsequently it is assumed a better
performance of the newly created architecture.

Results tables below present the results for the different gesture detection approaches
and different networks used. The numerical results presented are:

• Percentage of correctly classified instances: The gesture is correctly detected and
located in the image. Failure in detecting a gesture, or detection of a different one is
considered the same error. This metric is evaluated using the Correct Classification
Percentage (CCP) formula:

CCP =
TP + TN

TP + FP + TN + FN
(4)

where TP stands for True Positive, a gesture correctly detected. TN means True Negative,
no gesture is detected if there is an absence of gestures. FP is a False Positive, a
gesture is detected incorrectly, and finally, FN, False Negative, is a gesture performed
not detected.

• Accuracy calculated in gestures detected correctly: Mean reliance obtained in correctly
detected gestures.

• Time for detection of gestures, per frame. Time calculated as the mean detection time
for the 120 testing gestures.

Attending to the results presented in Tables 5–7, the proposed CNN architecture
surpasses results of state of the art networks in gesture detection and execution time in
RCNN and Fast RCNN architectures.

Table 5. RCNN detector obtained results.

CNN CCP Metric Accuracy Mean Detection Time (s)

Squeezenet 98.33% 99.9% 3.68 s
Googlenet 100% 99.58% 4.57 s

Mobilenetv2 100% 99.99% 8.97 s
Proposed CNN 100% 99.83% 3.54 s

Table 6. Fast RCNN detector obtained results.

CNN CCP Metric Accuracy Mean Detection Time (s)

Squeezenet 100% 96.11% 1 s
Googlenet 96.66% 93.65% 1.21 s

Mobilenetv2 98.33% 95. 38% 1.24 s
Proposed CNN 100% 98.64% 0.984 s

Sensors 2021, 21, 8202 11 of 14

Table 7. Faster RCNN detector obtained results.

CNN CCP Metric Accuracy Mean Detection Time (s)

Squeezenet 100% 99.83% 0.16 s
Googlenet 100% 99.85% 0.37 s

Mobilenetv2 98.33% 99.86% 0.26 s
Proposed CNN 98.33% 94.19% 0.145 s

The Faster RCNN detector, is also better than any other tested network in execu-
tion time, and its classification results indicate the same performance that the reference
networks have.

In the case of use of a Faster RCNN detector with the proposed CNN, obtained
detection time is 0.14 s, which provides a capacity to analyze 7 images per second. This
execution time combined with a 98.33% in detection accuracy makes this detector a very
valuable option for real-time gesture recognition.

6.2. Proposed CNN Architecture Performance Evaluation

Partial results presented in Section 6.1 have validated the proposed detector based
on the Darknet model, obtaining detection results equivalent to the ones obtained by the
selected reference networks, being smaller and faster at the same time.

With the presented architecture validated, this section shows validation results more
precisely, applying a 10-fold cross validation strategy with the objective of obtaining
more precise measurements of correct classification instances, accuracy in detection and
detection time.

The dataset, as explained in Section 3, is composed by 400 images with a total num-
ber of 800 gestures. 10-fold cross validation approach fits then with training groups of
720 gestures and a validation subset of 80 gestures, for each of the 10 iterations.

Table 8 presents the results obtained for each fold and the average final results of the
network performance, using the Faster RCNN detector.

Table 8. Results of the proposed network architecture using a 10 fold cross validation approach.

Fold CCP Metric Mean Accuracy Mean Detection Time (s)

1 97.56% 99.75% 0.124 s
2 98.45% 97.34% 0.147 s
3 95.3% 95% 0.152 s
4 100% 99.3% 0.161 s
5 96.34% 92.47% 0.153 s
6 98.5% 96.15% 0.139 s
7 94.3% 94.56% 0.17 s
8 97% 99.4% 0.142 s
9 92.8% 97.83% 0.122 s

10 99% 95.8% 0.151 s
Mean 96.92% 96.76% 0.1461 s

As it can be inferred from these presented results, the proposed architecture offers a
good balance in the CCP metric, accuracy in detection and speed, and can be considered
an alternative for HMI systems in real time.

7. Conclusions and Future Work

CNNs have demonstrated to be a very powerful option to solve complex image
processing problems that present high variability. Partial occlusions, perspective problems,
variability in sizes of the same object due to distance, changes in color and lighting, etc.,
are examples of these type of situations.

Sensors 2021, 21, 8202 12 of 14

These networks have had an outstanding performance in many proposed challenges
and competitions, such as ILSVRC [39], the challenges presented in the Kaggle platform [42]
or The Low-Power Image Recognition Challenge [43].

On the other hand, the principal drawback of this technology is that high computation
capacities are needed for the majority of the problems that use CNN. This leaves systems
like embedded systems of industrial equipment out of the potential areas that can take
advantage of modern neural computation.

This work has proved that it is possible to use RCNN based algorithms to detect
gesture commands in real time, processing each gesture as a different object to detect by
the network. Moreover, it has been proven that, depending on the problem to solve, if it is
not very intricate and does not require the detection of a high number of output classes, the
use of a smaller CNN offers many advantages over the state-of-the-art published networks,
in terms of training time, computation speed, and accuracy. In addition to all this, the use
of small CNN networks allows using embedded systems for computation in these type of
algorithms. This is an important point when developing this kind of systems.

The results have also been promising. The system detects 96.92% of the gestures
correctly, and it is robust to variations that can make other alternative algorithms fail. As an
example, the proposed approach is robust to lighting variations and different color skins,
provided the training dataset is well created and generalized. This variability makes very
difficult to solve skin segmentation approaches for gesture detection. In addition to this,
and using a small CNN with a Faster-RCNN architecture, the mean computation time for a
1 Mpix image is 0.14 s using GPU computation, a time that can be taken as real time for
systems that use gestures as a form of interaction.

Another point of interest to be taken into consideration and related to the explained
results in the above paragraph is that, given the low computational resources that our
system needs for real-time gesture detection, it could also be adapted very effectively to
other areas beyond the industrial applications, such as domestic devices or smart TVs,
for example.

Author Contributions: A.T.I. designed the dataset, the architecture of the CNN for the object detec-
tors based on RCNN, and the experimentation, and also wrote the paper. I.F.A. has carried out the
experiments and the comparison of results to assess the validity of the proposed approach. J.I.V.G.
and S.S. have supervised the work and reviewed the manuscript for publication. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has not received external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The dataset is private has has been recorded for this work. Due to
privacy issues (different persons appearing in the images), it cannot be made open access. Please,
contact corresponding author to create an equivalent dataset if needed.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Darrel, T.; Pentland, A. Space-time gestures. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

New York, NY, USA, 15–17 June 1993; pp. 335–340. [CrossRef]
2. Starner, T.; Weaver, J.; Pentland, A. Real-Time American Sign Language Recognition Using Desk and Wearable Computer-Based

Video. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1371–1375. [CrossRef]
3. Fang, B.; Sun, F.; Liu, H.; Guo, D. Novel data glove using inertial and magnetic sensors for motion capture and robotic arm-hand

teleoperation. Ind. Robot Int. J. 2017, 44, 155–165. [CrossRef]
4. Glauser, O.; Wu, S.; Panozzo, D.; Hilliges, O.; Sorkine-Hornung, O. Interactive hand pose estimation using a stretch-sensing soft

glove. ACM Trans. Graph. 2019, 38, 1–15. [CrossRef]
5. Suarez, J.; Murphy, R.R. Hand gesture recognition with depth images: A review. In Proceedings of the IEEE International

Symposium on Robot and Human Interactive Communication (RO-MAN), Paris, France, 9–13 September 2012; pp. 411–417.
[CrossRef]

http://doi.org/10.1109/CVPR.1993.341109
http://doi.org/10.1109/34.735811
http://doi.org/10.1108/IR-07-2016-0179
http://doi.org/10.1145/3306346.3322957
http://doi.org/10.1109/roman.2012.6343787

Sensors 2021, 21, 8202 13 of 14

6. Yang, M.-H.; Ahuja, N.; Tabb, M. Extraction of 2D motion trajectories and its application to hand gesture recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2002, 24, 1061–1074. [CrossRef]

7. Ge, L.; Liang, H.; Yuan, J.; Thalmann, D. Real-Time 3D Hand Pose Estimation with 3D Convolutional Neural Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2018, 41, 956–970. [CrossRef] [PubMed]

8. Ge, L.; Liang, H.; Yuan, J.; Thalmann, D. Robust 3D Hand Pose Estimation in Single Depth Images: From Single-View CNN to
Multi-View CNNs. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 3593–3601.

9. Google Media Pipeline. Available online: https://github.com/google/mediapipe/ (accessed on 23 March 2020).
10. Tang, D.; Chang, H.J.; Tejani, A.; Kim, T.-K. Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture. In

Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 3786–3793. [CrossRef]

11. Li, P.; Ling, H.; Li, X.; Liao, C. 3D Hand Pose Estimation Using Randomized Decision Forest with Segmentation Index Points.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 819–827. [CrossRef]

12. Lin, Y.; Chai, X.; Chen, X. Kinematic Constrained Cascaded Autoencoder for Real-Time Hand Pose Estimation. In Proceedings of
the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018;
pp. 45–51.

13. Sun, X.; Wei, Y.; Liang, S.; Tang, X.; Sun, J. Cascaded hand pose regression. In Proceedings of the 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 824–832.

14. Nickel, K.; Seemann, E.; Stiefelhagen, R. 3D-tracking of head and hands for pointing gesture recognition in a human-robot
interaction scenario. In Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition,
Seoul, Korea, 19 May 2004. [CrossRef]

15. Triesch, J.; Von Der Malsburg, C. A gesture interface for human-robot-interaction. In Proceedings of the Third IEEE International
Conference on Automatic Face and Gesture Recognition, Nara, Japan, 6 August 2002; pp. 546–551. [CrossRef]

16. Bergh, M.V.D.; Van Gool, L. Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In Proceedings of the
2011 IEEE Workshop on Applications of Computer Vision (WACV), Kona, HI, USA, 5–7 January 2011; pp. 66–72. [CrossRef]

17. Cheok, M.J.; Omar, Z.; Jaward, M.H. A review of hand gesture and sign language recognition techniques. Int. J. Mach. Learn.
Cybern. 2017, 10, 131–153. [CrossRef]

18. Sushmita, M.; Tinku, A. Gesture Recognition: A Survey. IEEE Trans. Syst. Man Cyb. Part C Appl. Rev. 2007, 37, 3.
19. Ying, W.; Thomas, S.; Huang, S. Vision-Based Gesture Recognition: A Review; Springer: Berlin/Heidelberg, Germany, 1999.
20. Krizhevsky, B.A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks; Association for

Computing Machinery: New York, NY, USA, 2012; Volume 25, pp. 1097–1105.
21. Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft

COCO: Common Objects in Context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015.

22. Szgedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. arXiv 2014, arXiv:1409.4842v1.

23. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for large-scale Image Recognition. arXiv 2015, arXiv:1409.1556v6.
24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
25. Zhao, Z.-Q.; Zheng, P.; Xu, S.-T.; Wu, X. Object Detection with Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst.

2019, 30, 3212–3232. [CrossRef] [PubMed]
26. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 28 June 2014;
pp. 580–587.

27. Lawrence, Z.C.; Dollar, P. Edge Boxes: Locating Object Proposals from Edges; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 394–405.

28. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13
December 2015.

29. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Adv.
Neural Inform. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

30. Ma, Y.; Wang, C. SdcNet: A Computation-Efficient CNN for Object Recognition. In Proceedings of the 2018 IEEE 23rd International
Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November 2018; pp. 1–5. [CrossRef]

31. Cong, J.; Xiao, B. Minimizing Computation in Convolutional Neural Networks; Springer: Cham, Switzerland, 2014; pp. 281–290.
[CrossRef]

32. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360v4.

http://doi.org/10.1109/TPAMI.2002.1023803
http://doi.org/10.1109/TPAMI.2018.2827052
http://www.ncbi.nlm.nih.gov/pubmed/29993927
https://github.com/google/mediapipe/
http://doi.org/10.1109/cvpr.2014.490
http://doi.org/10.1109/iccv.2015.100
http://doi.org/10.1109/afgr.2004.1301593
http://doi.org/10.1109/afgr.1998.671005
http://doi.org/10.1109/wacv.2011.5711485
http://doi.org/10.1007/s13042-017-0705-5
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/TNNLS.2018.2876865
http://www.ncbi.nlm.nih.gov/pubmed/30703038
http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://doi.org/10.1109/icdsp.2018.8631567
http://doi.org/10.1007/978-3-319-11179-7_36

Sensors 2021, 21, 8202 14 of 14

33. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

34. Marin, G.; Dominio, F.; Zanuttigh, P. Hand gesture recognition with leap motion and kinect devices. In Proceedings of the 2014
IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 1565–1569.

35. Molina, J.; Pajuelo, J.A.; Escudero-Viñolo, M.; Bescós, J.; Martínez, J.M. A natural and synthetic corpus for benchmarking of hand
gesture recognition systems. Mach. Vis. Appl. 2014, 25, 943–954. [CrossRef]

36. Maqueda, A.I.; del Blanco, C.R.; Jaureguizar, F.; García, N. Human-computer interaction based on visual hand-gesture recognition
using volumetric spatiograms of local binary patterns. Comput. Vis. Image. Und. 2015, 141, 126–137. [CrossRef]

37. Maurtua, I.; Fernández, I.; Tellaeche, A.; Kildal, J.; Susperregi, L.; Ibarguren, A.; Sierra, B. Natural multimodal communication for
human–robot collaboration. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417716043. [CrossRef]

38. Redmon, J. Darknet: Open Source Networks in C. Available online: http://pjreddie.com/darknet/ (accessed on 23 February 2016).
39. ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Available online: http://www.image-net.org/challenges/LSVRC/

(accessed on 17 May 2019).
40. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stats. 1951, 22, 400–407. [CrossRef]
41. Murphy, K.P. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012.
42. Kaggle Platform. Available online: https://www.kaggle.com/ (accessed on 13 May 2021).
43. Alyamkin, S.; Ardi, M.; Brighton, A.; Berg, A.C.; Chen, Y.; Cheng, H.P.; Chen, B.; Fan, Z.; Feng, C.; Fu, B.; et al. 2018 Low-Power

Image Recognition Challenge. arXiv 2018, arXiv:1810.01732v1.

http://doi.org/10.1007/s00138-013-0576-z
http://doi.org/10.1016/j.cviu.2015.07.009
http://doi.org/10.1177/1729881417716043
http://pjreddie.com/darknet/
http://www.image-net.org/challenges/LSVRC/
http://doi.org/10.1214/aoms/1177729586
https://www.kaggle.com/

	Introduction
	Problem Statement
	Specific Dataset for Hand-Gesture Detection
	Proposed Network Architecture
	Training of the Faster RCNN Object Detector
	Discussion of Results
	Proposed CNN Architecture Performance Assessment
	Proposed CNN Architecture Performance Evaluation

	Conclusions and Future Work
	References

