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Recently, Ghallab and colleagues have 

identified a novel strategy to reduce hyper-
ammonemia in mice (Ghallab et al., 2015). 
The authors reduced blood ammonia concen-
trations by infusing a cocktail of glutamate 
dehydrogenase and its cofactors alpha-
ketoglutarate and NADPH. This approach 
may be clinically relevant, because therapy 
of hyperammonemia is challenging 
(Levesque et al., 1999; Enns et al., 2007; Poh 
and Chang, 2012). Currently hemodialysis is 
the treatment of choice for reducing strongly 
elevated blood ammonia concentrations 
(Ghallab et al., 2015; Clay and Hainline, 
2007; Rajpoot and Gargus, 2004). Therefore, 
infusion of glutamate dehydrogenase may 
represent a less invasive alternative. 

At first glance, therapy of hyperammo-
nemia with glutamate dehydrogenase seems 
counterintuitive. It is known that glutamate 
dehydrogenase generates ammonia in the 
periportal comportment of the liver lobule, 
which is then further metabolized by urea 
cycle enzymes (Ghallab et al., 2015). There-
fore, one may expect that glutamate dehy-
drogenase leads to an increase of ammonia 
instead of reducing its concentration. The 
hypothesis that glutamate dehydrogenase 
may detoxify ammonia came from a systems 
biology approach (Drasdo et al., 2014a). Re-
cently, techniques of spatio-temporal model-
ing have been established (Drasdo 2014a,b; 
Hoehme et al., 2010). These techniques are 
based on reconstructions of tissue, where the 

position of each cell is known in a three di-
mensional space (Hammad et al., 2014; 
Friebel et al., 2015; Vartak et al., 2015; Bartl 
et al., 2015). Next, metabolic models can be 
integrated into the spatio-temporal model 
(Schliess et al., 2014; Godoy et al., 2013). 
Such models can be used to simulate, for ex-
ample, the concentration of ammonia and 
associated metabolites in the liver vein (rep-
resenting the liver ‘outflow’) for a given 
concentration in the portal vein (representing 
the ‘inflow’ of blood). Moreover, it can be 
simulated to which degree induction of liver 
damage compromises ammonia detoxifica-
tion by the liver (Schliess et al., 2014). Using 
such integrated spatio/temporal-metabolic 
models, Ghallab and colleagues have shown 
that the currently known metabolic pathways 
of ammonia metabolism by urea cycle and 
glutamine synthetase are not sufficient to 
explain the experimentally obtained data. 
Finally, modeling led to the prediction of an 
adaptive mechanism that occurs under condi-
tions of toxic liver damage: glutamate dehy-
drogenase that normally supplies the urea 
cycle with ammonia switches its catalytic 
orientation to consume ammonia (Ghallab et 
al., 2015). 

Currently, hepatotoxicity represents an 
intensively studied topic (Campos et al., 
2014; Vitins et al., 2014; Liu et al., 2014; 
Messner et al., 2013; Shimada et al., 2012; 
Sumi et al., 2011; Abdel-Bakhy et al., 2011) 
and in vitro systems are frequently used in 
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these studies (Grinberg et al., 2014; Valente 
et al., 2015; Ghallab et al., 2014a, b; Reif, 
2014; Ilkavets, 2013). The study of Ghallab 
et al. shows that some adaptive mechanisms 
in response to toxicity may depend on com-
plex features of tissue architecture and may 
be difficult to detect in vivo. For example, 
metabolic enzymes may adapt their flow 
rates or even switch their orientation. To 
nevertheless understand such complex situa-
tions, the novel techniques of mathematical 
modeling as introduced in the study of 
Ghallab et al. (2015) represent a valuable 
tool. 
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