
Frontiers in Oncology | www.frontiersin.org

Edited by:
Hongchuan Jin,

Zhejiang University, China

Reviewed by:
Manuel Cobo Dols,

Junta de Andalucı́a, Spain
Alessandro Russo,
A.O. Papardo, Italy

*Correspondence:
Kozo Kuribayashi

kuririn@hyo-med.ac.jp

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Thoracic Oncology,
a section of the journal
Frontiers in Oncology

Received: 22 April 2020
Accepted: 13 November 2020
Published: 14 December 2020

Citation:
Yoshikawa Y, Kuribayashi K, Minami T,

Ohmuraya M and Kijima T (2020)
Epigenetic Alterations and Biomarkers

for Immune Checkpoint Inhibitors–
Current Standards and Future

Perspectives in Malignant Pleural
Mesothelioma Treatment.
Front. Oncol. 10:554570.

doi: 10.3389/fonc.2020.554570

REVIEW
published: 14 December 2020

doi: 10.3389/fonc.2020.554570
Epigenetic Alterations and
Biomarkers for Immune Checkpoint
Inhibitors–Current Standards and
Future Perspectives in Malignant
Pleural Mesothelioma Treatment
Yoshie Yoshikawa1†, Kozo Kuribayashi2*†, Toshiyuki Minami2, Masaki Ohmuraya1

and Takashi Kijima2

1 Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan, 2 Department of Respiratory Medicine and
Hematology, Hyogo College of Medicine, Nishinomiya, Japan

Malignant pleural mesothelioma (MPM) is strongly associated with occupational or
environmental asbestos exposure and arises from neoplastic transformation of
mesothelial cells in the pleural cavity. The only standard initial treatment for unresectable
MPM is combination chemotherapy with cisplatin (CDDP) and pemetrexed (PEM). Further,
CDDP/PEM is the only approved regimen with evidence of prolonged overall survival (OS),
although the median OS for patients treated with this regimen is only 12 months after
diagnosis. Thus, the development of new therapeutic strategies has been investigated for
approximately 20 years. In contrast to recent advances in personalized lung cancer
therapies, diagnostic and prognostic biomarker research has just started in
mesothelioma. Epigenetic alterations include DNA methylation, histone modifications, and
other chromatin-remodeling events. These processes are involved in numerous cellular
processes including differentiation, development, and tumorigenesis. Epigenetic
modifications play an important role in gene expression and regulation related to
malignant MPM phenotypes and histological subtypes. An immune checkpoint PD-1
inhibitor, nivolumab, was approved as second-line therapy for patients who had failed
initial chemotherapy, based on the results of the MERIT study. Various clinical
immunotherapy trials are ongoing in patients with advanced MPM. In this review, we
describe recent knowledge on epigenetic alterations, which might identify candidate
therapeutic targets and immunotherapeutic regimens under development for MPM.

Keywords: chromatin modification, histone methylation, asbestos, mutations, immunotherapy
INTRODUCTION

Malignant pleural mesothelioma (MPM) remains one of themost incurable malignancies, with a very
poorprognosis anda7.9-monthmedian survival time (MST) fromdiagnosis todeath (1). Evenafter the
widespread prevention of asbestos use, mortality rates have not decreased substantially in most
countries. Further, the use of asbestos is not banned worldwide, and is still collected and used inmany
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countries (e.g., China, Russia, and India) (2). Thus, the incidence of
mesothelioma is not expected to peak before 2020 because asbestos
was widely used in most developed countries until 1970 and the
long latency (about 30 to 50 years) of asbestos exposure (3).

When asbestos fibers reach the lung periphery and the pleura,
theycause local chronic inflammationandcarcinogenesis.Common
markers of carcinogenic processes include overexpression of growth
factors such as VEGF, inactivating mutations of tumor suppressor
genes (BAP1, CDKN2A, NF2, and TP53), extensive chromosomal
deletions, and epigenetic alterations, which are essential for genetic
abnormalities in malignant mesothelioma (4) (Table 1). These
factors result in enhanced cell proliferation, apoptosis resistance,
and local tumor immune evasion, and are the targets of several new
therapeutic approaches (16).

Immune mechanisms may be important therapeutic targets
in MPM, as demonstrated by tumor-infiltrating lymphocytes
(17, 18), spontaneous regression of mesothelioma (19, 20), and
tumor responses to immunotherapy (21). Indeed, immunotherapy
with immune checkpoint inhibitors (ICIs) has dramatically
improved the prognosis of various solid tumor types, including
melanoma and non-small cell lung cancer (22). Several clinical
trials show that ICIs may also have promising antitumor effects in
MPM (23).

Conversely, no validated biomarker is currently available for
these agents, and even the representative biomarker PD-L1 has
limited significance. In fact, recent clinical trials have shown that
the role of ICIs inMPMis still debated, especiallywhenconsidering
single agent use (24).
MUTATIONS

Recently, various gene mutations were identified in MPM via
technological advances in genetic analysis. However, unlike other
cancer types, active genetic mutation types such as epidermal
growth factor receptor (EGFR)mutations in lung adenocarcinoma
are notwell understood inMPM.However, inactivatingmutations
of multiple tumor suppressor genes have been identified (5).
Frontiers in Oncology | www.frontiersin.org 2
The most frequent tumor suppressor gene mutation in MPM
is an inactivating mutation of CDKN2A (cyclin-dependent
kinase inhibitor 2A gene), which occurs in approximately 70%
or more MPM cases (25). CDKN2A has 3 exons and codes for 2
proteins: pl6/INK4a and p14/ARF.

pl6/INK4a is a cyclin-dependent kinase (CDK) inhibitor that
inhibits pRB phosphorylation by CDK 4/6-cyclin D and arrests
the cell cycle at G1. p14/ARF inhibits p53 degradation by MDM2
activity and stabilizes p53 function. When inactivating CDKN2A
mutations render the pl6 and pl4 proteins nonfunctional, pRB
and p53 lose their ability to regulate the cell cycle, leading to
constitutive cell growth. Thus, CDKN2A is strongly associated
with MPM development (6).

Neurofibromin2 (NF2) is a tumor suppressor gene located on
the long arm of chromosome 22. Inactivating mutations in NF2
are reported in approximately 40-50% of MPMs (26). NF2
encodes the Merlin protein, and deletion of the Merlin protein
results in constant yes-associated protein (YAP) activation by
Hippo pathway inactivation (26, 27). YAP controls cell
proliferation, survival, differentiation, organ size maintenance,
tissue homeostasis, and plays a central role in the Hippo pathway
(28). Merlin negatively regulates mTOR, and deletion of Merlin
leads to mTOR signaling activation (29).

BRCA1-associated protein 1 (BAP1) is a tumor suppressor
gene located on the short arm of chromosome 3, and the overall
frequency of BAP1 alterations, including single-nucleotide
variants, small indels, several exons to whole gene deletions,
and structural variants, is reported to be approximately 57% in
MPMs (7, 30). BAP1 encodes deubiquitinating enzymes and is
involved in the regulation of expression and transcription of
many genes. Further, BAP1 is involved in DNA repair, especially
double-strand breaks (31). Germline mutations in BAP1 are
reported in familial intraocular/cutaneous malignant
melanoma. Similar mutations occur in familial MPM (32),
drawing attention to the relationship between BAP1 and MPM.

Complicated chromosomal rearrangements such as
chromothripsis and chromoplexy are two of the most
characteristic genome alterations. Multiple noncontiguous
minute deletions in 3p21 carrying BAP1, SETD2, and PBRM1
TABLE 1 | Summary of the biomarkers for diagnosis or as therapeutic targets for malignant mesothelioma.

Alteration Process Phenotypes and associated molecules Characteristics References

Genomic Sequence-level
mutation

Common mutated genes BAP1, NF2, TP53, SETD2, SETDB1 Low mutation rate (<2 somatic mutations per
megabase of exons)

5–7

Copy number
alteration

Frequent losses in 9p21.3 (CDKN2A), 3p21.1 (BAP1, SETD2,
PBRM1), 22q12.2 (NF2), 13q12.11 (LATS2), 6q25.1 (LATS1),

16p13.3 (RBFOX1)

Complicated chromosomal rearrangements, such as
chromothripsis or chromoplexy, causing fusion

transcripts and neoantigen expression

5, 7–9

Epigenetic DNA methylation Overexpression of DNA methyltransferases DNMT1, DNMT3A,
and DNMT3B

Level of DNA methylation associated with histological
types and prognosis

7, 10, 11

Histone
modifications

Functional loss of deubiquitinating enzyme, BAP1, and histone
methyltransferases, SETD2 and

SETDB1. Overexpression of EZH2 and
SUZ12

Dysregulated polycomb gene expression contributing
the pathogenesis

5, 10, 12

Chromatin
remodeling

Frequent mutations of SWI/SNF complex genes including
PBRM1

Development of anti-cancer drugs using synthetic
lethality

8, 13

Non-coding RNAs Global suppression of miRNA expression. lncRNAs associated
with prognosis

miRNAs as circulating biomarkers 7, 14, 15
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(8) and fusion transcripts caused by gene fusions including 3p21
region and NF2 have been reported (5). These chromosomal
rearrangements produce neoantigen expression (9).

In a study, 2.4% of mesothelioma patients were diagnosed
with microsatellite instability based on whole exome sequencing
data, which revealed somatic mutations in the repair genes
MSH2, MSH6, MLH1, PMS2, EXO1, POLD1, and POLE (33).
Another study reported DNA mismatch repair (MMR) protein
expression in all 159 MPM samples analyzed using IHC (34).
Therefore, further studies on MMR molecules are warranted.
DNA METHYLATION

Epigenetic modifications cause phenotypic changes that do not
involve alterations in the DNA sequence. These changes
significantly affect gene regulation and expression as they occur
in various cellular processes including differentiation,
development, and tumorigenesis. Epigenetic mechanisms
include DNA methylation, histone modifications, and other
chromatin-remodeling events. Non-coding RNAs also work as
regulators in epigenetics.

DNA methylation is the main epigenetic modulation.
Methylation occurs naturally on cytosine bases at CpG
sequences. Clusters of CpG dinucleotides (CpG islands) (35)
are located in promoters of approximately 60% of genes, and
additional CpG dinucleotides are dispersed throughout the
genome. The former mostly are unmethylated, and the latter
are typically hypermethylated in normal cells (36, 37). DNA
methyltransferases, including DNMT1, 3A, and 3B, mediate
transfer of a methyl group from S-adenosyl-methionine to the
5’ position of cytosine at CpG dinucleotides. Methylation in CpG
islands inhibits binding of methylation-sensitive transcription
factors and silences genes. Indeed, transcriptionally silencing
tumor suppressor genes causes tumorigenesis. Genome-wide
DNA hypomethylation increases chromosomal fragility (36, 37).

Studies analyzing DNA methylation indicate that silencing
tumor suppressor genes through site-specific DNA
hypermethylation and genome-wide hypomethylation are
observed in MPM. Goto et al. examined the methylation status
of 6,157 CpG islands using methylated CpG island amplification-
microarray in 20 MPM cases and compared them to 20
pulmonary adenocarcinomas (38). Approximately 387 genes
(6.3%) were hypermethylated in MPM in comparison with 544
genes (8.8%) in lung adenocarcinomas. These results show that
epithelial-type MPM with less methylation tends to have longer
survival rates. Hypermethylation of three genes (TMEM30B,
KAZALD1 , and MAPK13 ) d i s t ingu i sh MPM from
adenocarcinoma. Christensen et al. identified significant
differences among the epigenetic profiles of MPM compared to
normal pleura (39). Methylation of 1505 CpG loci associated
with 803 cancer-related genes was studied in 158 MPM cases and
18 normal pleura samples using methylation arrays. This report
showed that methylation status is significantly related with
asbestos body burden and patient survival.
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To develop the non-invasive methods for diagnosis,
circulating biomarkers can be detected in liquid samples such
as plasma, serum, or urine using a method that has attracted
considerable attention. Guarrera et al. analyzed DNA
methylation levels in the whole blood in 163 MPM cases and
137 non-tumor controls using a methylation array (40).
Differential methylation levels between MPMs and controls
were observed mainly in the immune system–related genes.
The gene showing the most hypomethylated single-CpG
was FOXK1.

TCGA data suggest that DNMT1, DNMT3A, and DNMT3B
overexpression is correlated with shorter MPM patient survival
(10). Blum et al. applied “a deconvolution approach” to extract
the molecular profile characterizing epithelioid and sarcomatoid
MPM (11). They integrated epigenetic data and showed a
correlation of gene expression levels with their DNA
methylation levels. Furthermore, the methylation level of CpG
sites is associated with histology: the differentially methylated
CpG sites associated with epithelioid or sarcomatoid MPM are
non-CpG islands and CpG islands, respectively.

Clinical efforts made previously to restrain DNMT gene
activity in MPM have been unsuccessful. Yogelzang et al. (41)
reported a 17% overall response rate in 41 MPM patients who
received 120-h continuous infusion of dihydro-5-azacytidine, a
DNA methyltransferase inhibitor. It is interesting to note that
one of the complete responders was free from disease for six
years after treatment.
HISTONE MODIFICATIONS

Gene expression is controlled by loosening and compacting
DNA wrapped around core histones (H2A, H2B, H3, and H4)
through histone modification, three major types of which are
known. Acetylation/deacetylation, methylation/demethylation,
and ubiquitination/deubiquitination are major modifications in
normal and cancer cells. Covalent modification is carried out at
lysine-rich tails of core histones that extend out from the
nucleosome. Histone acetylation increases the negative charge
of the histone and resultantly repulses DNA, thus activating gene
expression (42). Histone lysine methylation can activate or
repress gene expression at some sites. Histone H3K9 (histone
H3 at lysine 9) and H3K27 methylation are associated with
transcriptional repression, while H3K4, H3K36, or H3K79
methylations are linked with gene activation (43). Histone
H2A monoubiquitination is frequently correlated with gene
silencing, while H2B monoubiquitination is mostly associated
with transcriptional activation (44).

Lysine acetylation is catalyzed by histone acetyltransferase
(HAT), which transfers the acetyl group from acetyl-CoA to the
epsilon-amino group of a core histone protein lysine residue
(45). Histone deacetylases (HDACs) are either Zn2+-dependent
histone deacetylases or NAD+-dependent sirtuin deacetylases,
which remove acetyl groups (46). Histone lysine methylation is
mediated by numerous enzymes called histone lysine
methyltransferase (KMTs) that mediate mono-, di-, and
December 2020 | Volume 10 | Article 554570
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trimethylation of specific residues of lysine. On the contrary,
histone demethylation is mediated by histone demethylases
(KDMs) (43). Ubiquitin (Ub) conjugation reactions are
catalyzed by the sequential action of Ub-activating (E1), Ub-
conjugat ing (E2) , and Ub- l iga t ing (E3) enzymes .
Deubiquitinating enzymes (DUBs) catalyze Ub removal from
targeted substrates (44). E3 ubiquitin ligases, a large protein
family, and DUBs have been well known as important regulators
of numerous cellular processes (47).

BAP1 encodes DUB, and it is one of the most frequently
altered genes in MPM (5, 48, 49). BAP1 assembles DUB
complexes with the transcription regulators Additional Sex
Combs-like (ASXL1, ASXL2, and ASXL3) similar to the
Drosophila ortholog Calypso binding to the Polycomb group
protein, ASX (50). These proteins form the Polycomb repressive
deubiquitinase (PR-DUB) complex that cleaves Ub from histone
H2A in nucleosomes. PR-DUB activity is essential for the
regulation of H2A ubiquitination and Polycomb group-
dependent gene silencing.

Polycomb repressive complex 2, formed by EZH2, SUZ12,
and EED protein subunits, induces gene silencing through the
addition of methyl groups to histone H3 at lysine 27, leading to
trimethylated histone H3 lysine 27 (H3K27me3) (51, 52). EZH2
and SUZ12 overexpression were identified in asbestos-associated
MPM cell lines (10), and EZH2 was overexpressed in
approximately 85% of MPMs compared to normal pleura (52).
Gene expression of EZH2 and SUZ12 is associated with MPM
patient survival (10). LaFave et al. reported that BAP1 loss in
mice results in increased H3K27me3 and EZH2 expression (12).
Additionally, mesothelioma cells that lack BAP1 are sensitive to
the inhibitor EZH2. This finding could provide a novel
therapeutic approach against malignancies with BAP1 mutation.

The gene SETD2 encodes a member of the SET domain family,
which are histonemethyltransferases specific forH3K36.This gene
is frequently mutated inMPM (5, 8). In addition to SETD2, Bueno
et al. observed somatic mutations of the histone methyltransferase
family genes SETDB1, SETD5, ASH1L, PRDM2, and KMT2D, the
histone demethylase gene KDM2B , and the histone
acetyltransferase gene CREBBP in MPMs (5).

HDAC inhibitors have emerged as anti-cancer drugs to treat
hematological and solid malignancies. They could lead to cancer
cell cycle arrest, differentiation, cell death, reduce angiogenesis,
and modulate immune responses (46). However, these drugs
have never provided sufficient therapeutic effects in MPM with
the use of a single agent. Krug et al. randomized 661 patients to
receive either vorinostat (n=329) or placebo (n=332). In this trial,
vorinostat given as a second- or third-line therapy did not
improve OS [30.7 weeks (95% CI: 26.7–36.1) compared to 27.1
weeks (95% CI: 23.1–31.9) for patients receiving placebo]. Thus,
vorinostat would not be suitable as a therapy for patients with
advanced MPM (53).

CHROMATIN REMODELING

Chromatin remodeling complexes are evolutionarily conserved
multi-unit protein complexes that involve four subfamilies of
Frontiers in Oncology | www.frontiersin.org 4
ATP-dependent nucleosome-remodeling complexes: switch/
sucrose non-fermentable (SWI/SNF), imitation switch,
chromodomain helicase DNA-binding, and chromatin-
remodeling ATPase INO80 (54). These complexes regulate
chromatin structure to enable specific interactions with
particular transcriptional activators, repressors, and histone
modifiers . The SWI/SNF complex is the most well
characterized tumor suppressor (55). Mammalian SWI/SNF
complexes are composed of 12–15 subunits, and mutations in
subunit genes including ARID1A, SMARCA4, ARID1B, ARID2,
and PBRM1 occur across a wide spectrum of human cancers
(56). In MPM, we found frequent multiple minute simultaneous
biallelic deletions on chromosome 3p21. The top four frequently
altered genes are associated with epigenetic modifications: BAP1,
SETD2, PBRM1, and SMARCC1 (8). The last two genes belong to
SWI/SNF complexes. We also detected sequence-level somatic
mutations in ARID2 and SMARCA4 (13). The functional loss of
these genes may lead to chromosomal instability because of their
role in transcriptional regulation, DNA repair, and regulation of
chromatin architecture and topology (57).

Synthetic lethality refers to cellular or organismal death that
occurs when two genes are simultaneously perturbed (58). This
phenomenon might be useful against tumor suppressor gene
products in cancer-drug discovery. ARID1A, a SWI/SNF
complex subunit, is frequently mutated in cancer. There are
two mammalian homologs with an ARID domain, ARID1B and
ARID2. Loss of ARID1B in ARID1A-deficient backgrounds
destabilizes SWI/SNF complexes and impairs cancer and
primary cell proliferation (59). This could be a conserved
function underlying the synthetic lethality between ARID1A
and ARID1B. Further, this finding increases information about
synthetic lethality among chromatin remodeling subunits (60).
To develop a new generation of anti-cancer drugs for MPM,
synthetic lethality could be an attractive research field.
NON-CODING RNAS IMMUNOTHERAPY
WITH ICIS IN MPM

Non-coding RNAs are a cluster of RNAs that are not translated
into a protein and play an important role in post-transcriptional
gene silencing. Based on their size, RNAs are characterized into
short chain non-coding RNAs, including siRNA, miRNA, and
piRNA, and long non-coding RNAs (lncRNAs) (61). There is a
global suppression of miRNA expression in MPM: for example,
let-7 family, miR-31, miR-34 family, including miR-34b and
miR-34c, and miR-15 family, including miR-15a and miR-16. Lo
Russo et al. reviewed the biological roles of miRNAs inMPM and
listed miRNAs with diagnostic and/or prognostic value (14).
Numerous cell functions such as apoptosis, cell proliferation,
migration, invasion, and cell death are modulated by miRNA. As
regulators of biological reactions, the response of MPM toward
platinum-based chemotherapy is strongly affected by miRNAs
and lncRNAs (62). It is reported that increased programmed
death-ligand 1 (PD-L1) expression is associated with
downregulated miRNAs, including miR-15b, miR-16, miR-
December 2020 | Volume 10 | Article 554570
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193a-3p, miR-195, and miR-200c (63). As therapeutic targets,
the phase I clinical trial (NCT02369198) using TargomiRs,
delivering an miR-16-based miRNA mimic in the minicell-
based formulation, was performed, and acceptable safety was
observed. This trial showed a partial response in 1 of 22 patients
(64). It is increasing the probability of non-coding RNAs in
serum or plasma as circulating MPM biomarkers (15).
Downregulated expression of miR-126 in serum from MPM
patients was confirmed by several groups, but the discrimination
power between MPM patients and healthy controls is not so high
(15). A combination of circulating biomarkers is expected to
overcome the poor sensitivity and specificity of single markers.

The biomarkers or therapeutic targets described above are
summarized in Table 1. Recent insights about epigenetic
mechanisms and dysregulated gene expression in MPM provide
new opportunities with therapeutically challenging MPM.
SYSTEMIC MPM TREATMENT

To date, only cisplatin-pemetrexed combination therapy has
been approved as frontline chemotherapy for unresectable
MPM. This treatment was established as the standard of care
in 2003, with no newmodality (65). Platinum doublets, including
pemetrexed, have been the international standard of care for
MPM for approximately 20 years as first-line chemotherapy (66).
However, the median OS for pemetrexed-cisplatin combination
therapy does not exceed 13–16 months, according to data from
randomized phase 3 trials (67). Thus, improved medical
treatment is essential for improved outcomes.
IMMUNOTHERAPY WITH ICIS IN MPM

Since the introduction of ICIs, immunotherapy has made
dramatic advances in various cancers. There are now three
clinically available ICIs that block each of the following
immunosuppressive molecules: cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), programmed death-1 (PD-1),
and PD-1 ligand-1 (PD-L1) (68). However, the PD-L1 positivity
ratio and tumor proportion score (TPS) are 20%–40% in MPM.
PD-L1 binds and inhibits PD-1 on T cells. Further, PD-L1 is a
spontaneously occurring factor that diminishes the anti-tumor
immune response, and its expression is associated with poor
prognosis in mesothelioma (69). The median OS of patients who
are PD-L1-positive is 5.0 months compared to 14.5 months in
patients who are PD-L1-negative. Thus, PD-L1 positivity is an
independent risk factor for survival, with a median OS to risk
ratio of 1.71 (95% CI: 1.03–2.78, p = 0.04) (70). Therefore, several
therapies targeting the immune tumor microenvironment to
restore antitumor immune responses have been studied in the
MPM setting.

MPM has a low PD-L1 positivity rate and TPS, hence clinical
trials have evaluated the antitumor activity of ICI. Though most
evaluations were performed for patients with relapsed MPM
after standard chemotherapy, ICIs exerted some promising
Frontiers in Oncology | www.frontiersin.org 5
results as salvage therapy (71). Three representative trials are
shown below.

• KEYNOTE-028: PembrolizumabM
• This is a phase Ib study of Pembrolizumab alone in patients

with PD-L1 TPS ≥1%. The efficacy was achieved with an
objective response rate (ORR) of 20%, disease control rate
(DCR) of 76%, median PFS of 5.8 months, and MST of 18.0
months (72).

• The NivoMes trial and MERIT: Nivolumab
• The efficacy of Nivolumab alone after second-line therapy

was evaluated in a single-arm phase II study both overseas
and in Japan. In the NivoMes study, conducted at a single
institution in the Netherlands, ORR was 24% and DCR was
47%, median PFS was 2.6 months, 6-month survival was 74%,
and MST was 11.8 months (73). On the other hand, in the
MERIT trial, conducted as a multicenter trial in Japan, the
ORR was 29%, the DCR was 68%, the median PFS was 6.1
months, the 6-month survival rate was 85%, and the MST was
17.3 months, showing favorable results (74).

Based on the results of MERIT, nivolumab was approved for
regulatory use in patients with recurrent MPM following
chemotherapy in Japan, ahead of all other countries. In addition,
the antitumor effects of anti-CTLA-4 antibodies, such as
ipilimumab and tremelimumab, have been evaluated in
combination with nivolumab, an anti-PD-1 antibody, or
durvalumab, an anti-PD-L1 antibody. Further, the possibility of
ICI combination therapy has been researched. Specifically, results
from three clinical trials are currently under review: NIBIT-MESO:
(tremelimumab and durvalumab), MAPS-2: (ipilimumab and
nivolumab combination or nivolumab monotherapy), and
INITIATE: (ipilimumab and nivolumab). These studies have
confirmed that combination therapy with anti-CTLA-4 and anti-
PD-1/PD-L1antibodies results inanORRof26~29%andaDCRof
50 ~ 68% in patients with recurrent MPM (75–77).
CONCLUSION

Thus, when MPM treatment has stagnated for more than 15
years, immunotherapy with ICI is generally well tolerated and is
expected to markedly improve the outcome of patients with
MPM. In contrast, ICI does not necessarily provide the expected
antitumor effect in all cases; the recent negative results of the
PROMISE-meso trial suggest that the role of these agents should
be reconsidered in pretreated MPM in unselected patients. These
data should be included as they reinforce the need for biomarkers
to select patients who can benefit from the treatment, especially
considering the limited role of PD-L1 expression observed in this
trial. The solution to these challenges lies with the investigation
of reliable predictive biomarkers, which will allow the selection of
appropriate candidates for improving the benefits of ICI therapy.
The role of chemo-immunotherapy combinations (78) and dual
blockage immune checkpoint inhibition (77) seems more
promising, but the best combination of ICIs has not yet been
determined. Because MPM is also characterized as an extremely
December 2020 | Volume 10 | Article 554570
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inflammatory tumor, further studies focusing on MPM cells and
epigenetic alterations may lead to the identification of
reliable biomarkers.
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