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A B S T R A C T

Diabetic cardiomyopathy is a distinct primary disease process, independent of coronary artery
disease, which leads to heart failure in diabetic patients. Epidemiological and clinical trial
data have confirmed the greater incidence and prevalence of heart failure in diabetes. Novel
echocardiographic and MR (magnetic resonance) techniques have enabled a more accurate means
of phenotyping diabetic cardiomyopathy. Experimental models of diabetes have provided a range of
novel molecular targets for this condition, but none have been substantiated in humans. Similarly,
although ultrastructural pathology of the microvessels and cardiomyocytes is well described
in animal models, studies in humans are small and limited to light microscopy. With regard to
treatment, recent data with thiazoledinediones has generated much controversy in terms of the
cardiac safety of both these and other drugs currently in use and under development. Clinical
trials are urgently required to establish the efficacy of currently available agents for heart failure,
as well as novel therapies in patients specifically with diabetic cardiomyopathy.

INTRODUCTION

The link between HF (heart failure) and diabetes is well
documented, but the existence of diabetic cardiomyo-
pathy as a distinct clinical entity continues to be the sub-

ject of debate. In 1881, Leyden commented that HF was
a “frequent and noteworthy complication of diabetes
mellitus” [1] and Mayer stated that “heart disease in
diabetes can be traced to an abnormality in metabolism”
[2]. In 1972, Rubler et al. [3] coined the term ‘diabetic
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cardiomyopathy’ after performing post mortem studies
in diabetic patients with cardiac failure, having
excluded alcohol, hypertension, and coronary and
structural heart disease as possible aetiologies. Diabetic
cardiomyopathy has since been the subject of much
research and controversy, with evolving debate on the
best management strategy for this entity. By definition,
diabetic cardiomyopathy is a distinct primary disease
process which develops secondary to a metabolic insult,
resulting in structural and functional abnormalities of the
myocardium leading to HF. We have comprehensively
updated our previous review [4], taking into account the
most recent developments in basic and translational re-
search, together with an overview of the latest diagnostic
and therapeutic approaches to diabetic cardiomyopathy.

EPIDEMIOLOGY

The prevalence of HF in the general population ranges
from 1 to 4 %, but in diabetic patients it is 12 % [5], rising
to 22 % in those over the age of 64 years [6]. Up to a third
of all patients admitted to hospital with HF have diabetes
[7]. Furthermore, diabetes has a prevalence of 30 % in
patients with cardiac failure [8] and may be up to four
times as prevalent in patients with newly diagnosed HF
[9]. Diabetes is also a powerful predictor of cardiovascular
morbidity and mortality, and is an independent risk factor
for death in patients with established HF [10]. Diabetic
patients are also more likely than non-diabetic patients
to develop HF following MI (myocardial infarction),
despite comparable infarct sizes [11]. The Framingham
Heart Study reported a 2.4-fold increase in the incidence
of HF in diabetic men and a 5.1-fold increase in diabetic
women, when compared with age-matched controls [12].
This association was independent of age, hypertension,
dyslipidaemia, obesity and coronary heart disease. Other
large population-based studies have yielded similar
results [13]. The CHS (Cardiovascular Health Study)
of patients aged over 65 years showed diabetes to be
associated with an increase in incident HF [14] and the
SHS (Strong Heart Study) demonstrated associations
between diabetes and higher LVM [LV (left ventricular)
mass] and wall thickness, increased arterial stiffness and
systolic dysfunction, compared with matched controls
[15]. More recently, the MESA (Multi-Ethnic Study
of Atherosclerosis) study used cardiac MR (magnetic
resonance) to report inter-racial differences in LVM,
LV volumes and LV function among diabetic patients
[16].

Cross-sectional studies have consistently reported a
high prevalence of HF in diabetic populations [6].
Alarmingly, one study observed 12 % of Type 2 diabetic
patients with HF at entry, with an annual incidence
of 3.3 % [17]. In a similar study over 43 months, the
incidence of HF was vastly higher in diabetic (39 %)

compared with non-diabetic (23 %) patients, with an RR
(relative risk) of 1.3 for developing HF [18]. The UKPDS
(UK Prospective Diabetes Study) found an increased
prevalence of HF in Type 2 diabetic patients, which
correlated with higher HbA1c (glycated haemoglobin)
levels [19]. Indeed, for every 1 % increase in HbA1c, there
is an 8 % increased risk of developing HF [20]. A recently
published study has demonstrated an increased risk of
HF in diabetic patients with retinopathy, supporting the
concept of a microvascular aetiology in diabetic heart
disease [21]. Sub-group analysis of the MESA cohort also
revealed an association between retinal arteriolar narrow-
ing and LV remodelling, lending weight to this argument
[22].

It is not surprising, therefore, that diabetic patients are
over-represented in large HF trial populations; such as
SOLVD (Studies of Left Ventricular Dysfunction) [23]
(diabetic patients represent 26 %), ATLAS (Assessment
of Treatment with Lisinopril and Survival) [24] (diabetic
patients represent 19 %), V-HeFT (Vasodilator-Heart
Failure Trial) [25] (diabetic patients represent 20 %) and
RESOLVD (Randomized Evaluation of Strategies for
Left Ventricular Dysfunction) [26] (diabetic patients rep-
resent 27 %). In addition to overt clinical diabetes, insulin
resistance and the metabolic syndrome are also inde-
pendent predictors of HF [27,28]. Inflammatory markers
such as CRP (C-reactive protein) and IL (interleukin)-
6, as well as microalbuminuria, which are frequently
elevated in individuals with the metabolic syndrome, are
independently associated with incident HF [29]. This
suggests that cardiomyopathy may occur in ‘pre-diabetic’
individuals. In a retrospective study of a cohort of patients
with a primary diagnosis of HF, metabolic syndrome was
present in 68 % of patients, but, interestingly, mortality
was lower in those with (44 %) compared with those
without (58 %) the metabolic syndrome [30].

RISK FACTORS ASSOCIATED WITH THE
DEVELOPMENT OF HF IN DIABETES

Hyperglycaemia
In the UKPDS, although poor glycaemic control was
associated with an increased risk of HF [19], intensive
glycaemic control did not reduce the risk of incident
HF. A more recent study of Type 2 diabetic patients
has, however, demonstrated an improvement in long-
axis function (systolic strain rate) and reductions in LVM,
which were associated with improvements in HbA1c and
fructosamine levels [31]. These changes were independent
of any BP (blood pressure)-lowering effects. In addition,
there was an improvement in diastolic function during the
first 3 months of follow up, which returned to baseline at
12 months. Another study by Marwick and co-workers
[32] has reported a similar association between lower
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HbA1c and improved systolic strain. In a 10 year follow-
up of the UKPDS, despite an early loss of glycaemic dif-
ference between groups receiving intensive and conven-
tional treatment, an emergent risk reduction for MI and
death from any cause was observed following intensive
glucose-lowering [33], although no data was reported for
HF. However, conflicting data has been generated from
two recent large randomized intervention trials. The AD-
VANCE (Action in Diabetes and Vascular Disease) trial
compared intensive with standard glycaemic control and
showed a non-significant reduction in incident HF, but an
increased all-cause mortality at 3.5 years [34]. Increased
mortality in the ACCORD (Action to Control Cardio-
vascular Risk in Diabetes) trial led to the discontinuation
of the intensive glycaemic control arm of the study [35].

Hypertension
Hypertension is independently associated with LVH
(LV hypertrophy), diastolic dysfunction, HF and
cardiovascular risk [4]. In the UKPDS, lower BP, achieved
by either a β-blocker or ACEI [ACE (angiotensin-
converting enzyme) inhibitor], was associated with a
reduced risk of incident HF compared with less intensive
BP control. However, again it is interesting to note that
both during and in the recent 10 year follow-up of the
UKPDS, BP reduction did not demonstrate the ‘legacy
effect’, i.e. there was no risk reduction during or after
the trial for MI or death from any cause [36].

STRUCTURAL FEATURES OF DIABETIC
CARDIOMYOPATHY AND THEIR FUNCTIONAL
RELEVANCE

LVH
LVH is a powerful predictor of cardiovascular risk. The
Framingham Heart Study demonstrated an increased
relative risk of developing cardiovascular disease
for each 50 g/m2 increment in LVMI (LVM index;
RR 1.49 compared with 1.57, males compared with
females) [37]. Furthermore, LVH predicts prognosis in
high-risk patient groups, such as those with coronary
heart disease [38], HF [39], diabetes [40], renal failure
[41], hypertension [42], obesity and previous MI
[43]. Pharmacological regression of LVH is associ-
ated with a reduction in cardiovascular risk [44].
The RENAAL [Reduction of Endpoints in NIDDM
(non-insulin-dependent diabetes mellitus) with the
Angiotensin II Antagonist Losartan] study in patients
with diabetic nephropathy, found that LVH was a
significant risk factor for the primary endpoints of
end-stage renal failure, death or cardiovascular events
[45]. Several studies have since reported an association
between diabetes and LVH [46]. The SHS reported
increased LVM and LV wall thickness in both diabetic
men and women, and these differences remained

statistically significant in multivariate analyses after
adjusting for confounding factors [47]. Similar findings
were reported in the CHS [48] and MESA [49], as detailed
above. Interestingly, a sub-study of the MESA cohort
reported an independent association between retinal
arteriolar narrowing and LV remodelling, which was
stronger in diabetic patients, suggesting microvascular
involvement [22]. The Framingham Heart Study also
reported increased LVM across all categories of glucose
dysmetabolism. A recent study of Japanese Type 2
diabetic patients reported an association between insulin
resistance, arterial stiffness and LVMI [using cardiac MRI
(MR imaging)] [47], and this has been supported by a large
population-based study in Sweden, which demonstrated
associations between metabolic syndrome, insulin
resistance and increased LVM and LV wall thickness
[48].

Diastolic dysfunction
Diastolic function of the left ventricle is determined by
its passive elastic properties, coupled with the process of
active relaxation. Diastolic dysfunction is characterized
by impairment of relaxation and passive filling of the
left ventricle [49], and diastolic HF is said to exist when
diastolic dysfunction is associated with an elevated
end diastolic pressure, clinical features of HF and a
normal EF (ejection fraction). This may be better termed
HFNEF (HF with a normal EF), since there is emerging
evidence of subtle abnormalities in regional and long-axis
systolic function in some of these patients.

Functional abnormalities occur as a result of structural
remodelling (concentric LVH) and result in normal or
near-normal end diastolic volume, elevated LVM to
volume and elevated wall thickness to chamber radius
relationships respectively. Indeed, the development of
diastolic dysfunction has been associated with only mod-
est increases in LVM [47]. In diabetic cardiomyopathy
with reduced LVEF, myocardial collagen deposition and
AGEs (advanced glycosylation end-products) are the
primary pathological processes responsible for reduced
elasticity of the myocardium, whereas increased car-
diomyocyte resting tension may be the predominant
cause in those cases with preserved LVEF [50]. LVH
and geometric remodelling on the other hand, cause
an increase in passive stiffness and impaired relaxation.
Consequently, the LV pressure–volume curve is shifted
upward and leftward, chamber compliance is reduced,
diastolic filling is altered with an elevation of the end dia-
stolic pressure, and HF ensues.

Diastolic dysfunction is a common finding in
otherwise healthy and asymptomatic diabetic patients
and is thought to be the earliest detectable functional
abnormality in diabetic cardiomyopathy [51]. In a study
of normotensive, asymptomatic Type 2 diabetic patients
with good glycaemic control, 47 % were found to have
diastolic dysfunction [52]. Other studies using more
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sensitive diagnostic methods have reported that as many
as 75 % of diabetic patients demonstrate abnormalities
of diastolic function [53].

Systolic dysfunction
Advances in TDI (tissue Doppler imaging) have allowed
for measurement of sensitive indices of regional and
long-axis function of both the left and right ventricles
[54]. Indeed, long-axis function is emerging as a superior
prognostic indicator to EF, especially in patients with
HFNEF [55]. Using these sensitive methods, several
studies have demonstrated subtle abnormalities in
systolic function in patients with a diagnosis of diastolic
dysfunction [56–58]. This has led some to question
whether diastolic dysfunction exists in isolation at all
[59], whereas others have questioned the relevance of
these subtle systolic abnormalities in the context of dia-
stolic dysfunction [60]. The longitudinal fibres respons-
ible for long-axis contraction lie in the sub-endocardium
and are particularly susceptible to the effects of fibrosis,
ischaemia or hypertrophy. In diabetic patients with
HFNEF, long-axis systolic dysfunction is associated
with a compensatory increase in radial thickening and
mass, thus preserving LVEF [61]. The preservation of EF
is directly related to the presence of LVH and the effect
of increased muscle mass. Patients with HFNEF have
significantly higher LVMI, lower LVED (left ventricular
end-diastole) volume index, higher LVMI/LVED volume
index ratio than patients with dilated left ventricles and a
low EF. Although most studies to date have concentrated
on LV function, the importance of RV (right ventricular)
function should not be overlooked; RVEF has previously
been shown to be an independent predictor of poor
outcome [62]. Furthermore, RV diastolic dysfunction
has been reported in asymptomatic patients with Type 1
diabetes [63].

DIAGNOSTIC METHODS

Although no single diagnostic test for diabetic cardio-
myopathy exists, using different imaging modalities it
is possible to detect the phenotypic cardiac features of
this condition. Currently used diagnostic methods in
clinical practice include echocardiography, cardiac MR
and cardiac biomarkers such as NT-BNP [N-terminal
pro-BNP (brain natriuretic peptide)].

Echocardiography
Echocardiography is an excellent non-invasive and prac-
tical imaging tool for defining cardiac structure and
function and allows ‘real-time’ visualization of the cardiac
cycle. Quantitative and qualitative assessment of the heart
can be made with regard to LV geometry, regional wall
motion, and systolic and diastolic function, in addition to
valvular anatomy and function. Two-dimensional echo-

cardiography has traditionally been the method of choice
in detecting and quantifying LVH, and has been valid-
ated in the research and clinical setting. The main
limitation of two-dimensional echocardiography is for
patients with major distortions of LV geometry. As a
result, most existing data from studies of LVH and LVM
have been derived using standard two-dimensional and
M-mode echocardiography. Although considered to be
the ‘gold standard’ for assessing LV diastolic function,
cardiac catheterization is not essential to diagnose dia-
stolic dysfunction [63]. Pulsed-wave Doppler echocar-
diography is therefore the most practical and commonly
used method for current assessment of diastolic function.
A detailed and comprehensive diastolic study is vital in
diabetic patients and should include the measurement of
transmitral and pulmonary venous flow/velocities, as well
as left atrial volume [64]. LVEF is the most commonly
used index of LV systolic function and is derived
echocardiographically. Despite being well established in
clinical practice, it is important to be aware that it can be
influenced by alterations in preload and afterload.

LVEF is not as sensitive for assessing contractile func-
tion in patients with HFNEF and TDI echocardiography
is more capable of detecting subtle regional abnormalities
in LV function. TDI allows non-invasive assessment of
myocardial strain and has been shown to identify global
and regional abnormalities in myocardial properties, with
a high level of temporal resolution. TDI differs from
conventional Doppler in that it utilizes a filter which
eliminates high velocity and low amplitude signals reflec-
ted from blood cells, thereby allowing low velocity, high
amplitude tissue signals to be analysed. Myocardial strain
and strain rate are dimensionless indices of changes in
length that reflect tissue deformation [65]. These paramet-
ers have been extensively validated in a range of different
disease states, including acute ischaemic syndromes [66],
and have been found to be indicative of preclinical
myocardial disease in patients with Type 2 diabetes
[57].

Cardiac MRI
Cardiac MRI, owing to its superior accuracy and
reproducibility, is the ‘gold standard’ for measuring LVM
[67]. Currently however, its use is mainly limited to
research, due to costs, time constraints and the expertise
required for assessment.

Cardiac biomarkers
BNP is a cardiac hormone secreted in response to
ventricular volume and pressure overload. Although it
is both sensitive and specific for congestive HF, it can-
not reliably distinguish between systolic and diastolic HF,
which limits its diagnostic use in diabetic cardiomyopathy
[56,68].
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Figure 1 Summary of interactions between the myocardial and vascular changes present in diabetic hearts and their
contribution to diabetic cardiomyopathy and heart failure
Ang II R1, AT1 ; IGF-1, insulin-like growth factor-1.

MOLECULAR BASIS

Several putative factors have been considered important
in the genesis of the functional and structural alterations
which lead to the development and progression of dia-
betic cardiomyopathy (Figure 1). The molecular basis of
this condition has been established primarily from studies
in experimental models of diabetic cardiomyopathy [69],
with few studies carried out in humans [4].

Hyperglycaemia
Several studies, most notably the Diabetes Control
and Complications Trial/Epidemiology of Diabetes
Interventions and Complications study, have shown that
hyperglycaemia is indeed a mediator of cardiovascular
risk in Type 1 diabetes and that intensive diabetic therapy
reduces cardiac outcomes via an impact on accelerated
atherosclerosis, cardiac autonomic neuropathy and pos-
sibly cardiomyopathy [70]. In a population-based cohort
study of 746 subjects stratified into normal and abnormal
glucose tolerance and overt Type 2 diabetes, there was
an independent increase in risk of developing systolic
(2-fold) and diastolic (2.4-fold) dysfunction in patients
with Type 2 diabetes, with diastolic dysfunction apparent
even in those with impaired glucose tolerance [71].

Hyperglycaemia mediates its damaging effects through a
series of secondary transducers which will be considered.

ROS (reactive oxygen species) and NO
Oxidative stress occurs when the production of ROS
outweighs their degradation by antioxidant defences
and the elevation of ROS leads to cellular damage by
oxidation, disruption of vascular homoeostasis through
interference with NO and, most recently, by modulation
of detrimental intracellular signalling pathways. ROS
have been implicated in all stages of the development
of HF, from cardiac hypertrophy to fibrosis, contractile
dysfunction and failure [71]. Diabetic hearts exhibit a
similar picture to that of failing hearts, with numerous
studies reporting increased production of ROS in a
variety of animal models of diabetes [71]. Increased
ROS causes cardiac dysfunction by direct damage to
proteins and DNA {inducing PARP [poly(ADP-ribose)
polymerase] which will be considered later}, as well as by
promoting apoptosis. Furthermore, overexpression [72]
or pharmacological administration [73] of the antioxidant
metallothionein in rodent models of diabetes has been
shown to ameliorate diabetic cardiomyopathy. Similar
results have been reproduced using other antioxidants in
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both Type 1 and Type 2 rodent models of diabetes [74].
NADPH oxidase enzymes are a source of ROS and are
involved in redox signalling by acting as catalysts for
electron transfer from NADPH to molecular oxygen,
resulting in the generation of free radicals [75]. They
comprise multisubunit complexes, which range from
NOX1 to NOX5 [75]. Through interaction with a variety
of transcription factors, redox signalling influences the
expression of growth-related genes and in-turn effects
contractile function [76]. NADPH oxidase is increased in
both failing [77] and diabetic [78] rodent hearts and this
relationship is believed to be causal. In diabetic animals,
up-regulation of NADPH oxidase correlates with
cardiac hypertrophy and up-regulation of pro-fibrotic
genes such as pro-collagen III; changes which can be
ameliorated using the antioxidant Tempol [79]. ROS also
react directly with NO to form peroxynitrite species,
thereby inactivating the vasodilatory effect of NO,
which is integral to vascular homoeostasis and endothelial
function. In combination with other pathology within the
endothelium [80], these changes provide an explanation
for accelerated endothelial dysfunction seen in predia-
betic mice [81]. Interestingly, antioxidants such as vitamin
C are capable of restoring endothelial function in patients
with HF [82]. Reductions in the release of NO from
endothelial cells, as a consequence of ROS, have also
been shown to affect ventricular relaxation in LVH [83].
Thus experimental data suggest that regimes targeting
reduction of ROS or increasing antioxidant activity
potentially represent novel therapeutic modalities for
diabetic cardiomyopathy. However, clinical studies
to date have been unable to translate these results to
the clinic, with several large randomized trials failing
to report a benefit of antioxidants on cardiovascular
outcome in high-risk individuals [84]. The outcome of
such trials in patients with diabetic cardiomyopathy how-
ever, has not been investigated.

PARP
PARP enzymes are overactivated in diabetes [85] as a
reparative response to ROS-induced oxidative damage
to DNA (see above). PARP inhibits GAPDH (gly-
ceraldehyde-3-phosphate dehydrogenase), which leads
to accumulation of glycolytic intermediates, which in-
turn activate a series of transducers which inflict tissue
damage via AGE formation and PKC (protein kinase
C) activation [85]. PARP also promotes cardiac damage
by activating NF-κB (nuclear factor κB) [87] and
inducing overexpression of the vasoconstrictor ET
(endothelin)-1 and its receptors [88]. Both hyperhexo-
saemia and hyperglycaemia have been shown to induce
oxidative stress and up-regulate extracellular matrix and
cardiomyocyte hypertrophy and these changes were
effectively abolished in PARP-1 knockout (Parp−/−)
mice and in rats treated with the PARP inhibitor
ABA (3-aminobenzamide) [89]. PARP-driven cardiac

hypertrophy and fibrosis appears to be mediated in
hearts and cardiomyocytes via up-regulation of the tran-
scriptional co-activator p300 [89]. Thus the widespread
damage caused by PARP potentially creates a unique
opportunity for blocking multiple sources of cardiac
injury and has been shown to inhibit many pathways
thought to mediate myocardial damage in diabetes
[85,90]. Additionally, PARP inhibition has been shown
to reverse diabetic endothelial dysfunction [91]. Again,
although the experimental data appear compelling, as yet
no PARP inhibitors have been developed for clinical use,
due to off-target, and perhaps on-target, drug toxicity.

PKC
PKC activity is increased in both failing [92] and diabetic
[93] hearts, and levels correlate with both ROS [94] and
PARP [85]. PKC phosphorylates a number of proteins
directly involved in cardiac excitation–contraction coupl-
ing and therefore disturbs Ca2+ handling in cardio-
myocytes [95]. Transgenic mice overexpressing the
PKCβ2 isoform in the myocardium develop cardiac
hypertrophy, fibrosis, impairment of LV function and
progressive cardiomyopathy, but these changes are
reversed using a PKCβ isoform-selective inhibitor [96].
DAG (diacylglycerol) activates PKC and is phos-
phorylated by DGK (DAG kinase), converting it into
phosphatidic acid and thereby inactivating its function
in respect to DAG [97]. It has recently been shown that
overexpression of the DGKζ isoform in both cultured
mouse cardiomyocytes and isolated perfused hearts [98],
as well as diabetic mice [99], prevents pathological
activation of PKC, attenuating cardiac hypertrophy and
fibrosis and improving ventricular function. Conversely,
targeted overproduction of the PKCβ2 isoform in the
myocardium results in LVH, multifocal fibrosis and
cardiomyopathy in mice [96]. CTGF (connective tissue
growth factor), which contributes to cardiac hypertrophy
and fibrosis is overexpressed in concert with PKCβ2 in
rodent models of diabetic cardiomyopathy [93]. Treat-
ment with antioxidants is capable of normalizing this
cardiac hypertrophy and reducing CTGF levels, therefore
implicating oxidative stress as a potential mediator of
PKCβ2-induced myocardial damage [100]. Inhibition
of PKCα is also associated with significant improvements
in cardiac function in rodent models of HF [101], in con-
junction with an improved metabolic gene profile in
the myocardium, as well as improved glucose utilization
and diastolic function as shown by MR spectroscopy
[102].

AGEs
Hyperglycaemia promotes formation of collagen types I
and III in the myocardium, resulting in interstitial
fibrosis, which leads to LV diastolic dysfunction;
however, the mechanisms of hyperglycaemia-induced
collagen production are poorly defined. The increased
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formation of AGEs secondary to hyperglycaemia, may
alter structural proteins and lead to increased myocardial
stiffness. Aminoguanidine (an inhibitor of AGE
formation and protein cross-linking) has been shown to
ameliorate changes in LV structure and function [103].
Hyperglycaemia induces oxidative stress which increases
profibrogenic factors leading to interstitial fibrosis, a key
alteration in diabetic cardiomyopathy. Oxidative stress
increases expression of AGE and RAGE (receptor for
AGEs) leading to an activation of NF-κB which leads to
a switch in the gene expression of cardiac MHC (myosin
heavy chain) from the α-MHC isoform to the β-MHC
isoform altering myocardial contractility [104]. DHEA
(dehydroepiandrosterone) reduces oxidative stress and in
turn has been shown to reduce tissue levels of collagen I,
collagen IV and fibronectin in STZ (streptozotocin)-rats
and restore papillary muscle contractility [105]. Elevated
levels of RAGE, NF-κB and TGF-β1 (transforming
growth factor-β1) mRNA in myocardial tissue of diabetic
rats was reduced significantly after administration of
grape seed proanthocyanidin extract and this was associ-
ated with a decrease in the number of degenerate mito-
chondria and the preservation of ultrastructural
alterations in LV myocardium [106]. In an in vitro
study of cardiac fibroblasts exposed to a high-glucose
concentration, ERK1/2 (extracellular-signal-regulated
kinase 1/2) activation led to enhanced mRNA and
protein expression of collagen types I and III, which
was ameliorated by treatment with a blocker of ERK
phosphorylation [107].

Fatty acids
Independent of the effects of hyperlipidaemia on coron-
ary artery endothelial function, diabetic hearts have
an altered metabolic phenotype, with enhanced FA
(fatty acid) utilization. A recent study in db/db mice, a
monogenic model of Type 2 diabetes with extreme obesity
and hyperglycaemia, has demonstrated increased plasma
membrane content of FA transporters [FAT/CD36 and
FABPpm (membrane associated FA-binding protein)],
leading to increased FA uptake and utilization in db/db
cardiomyocytes [105]. This has been assumed to be driven
by a range of mitochondrial mechanisms, but there was
no change in CPT-1 (carnitine palmitoyltransferase-1)
activity, malonyl CoA and UCP (uncoupling protein)-3
content suggesting that mitochondrial mechanisms do
not contribute to elevated rates of FA oxidation in db/db
hearts [105].

Dysfunctional calcium homoeostasis
Calcium is one of the principal ionic regulators in the
heart and is essential for the process of excitation–con-
traction coupling and therefore integral to normal cardiac
function. Thus, during the cardiac action potential, the
cell membrane of the cardiomyocyte is depolarized and
calcium enters the cell through voltage-dependent L-type

calcium channels in the sarcolemma. Calcium triggers the
release of further calcium ions from the SR (sarcoplasmic
reticulum) store, through the RyRs (ryanodine recept-
ors), which increase intracellular calcium and facilitate
binding of calcium to myofilaments, thereby initiating
cardiac contraction. For relaxation to occur, calcium ions
must be removed from the cytosol, the majority of which
is pumped back into the SR by SERCA (sarcoplas-
mic/endoplasmic reticulum Ca2+-ATPase), while the re-
mainder is ejected out of the cell through the sarcolemmal
NCX (Na2+/Ca2+ exchange), PMCA (plasma-membrane
Ca2+-ATPase) or mitochondrial calcium uniport [106]. In
both Type 1 and Type 2 rodent models of diabetes, altered
expression, activity and function of all transporters
involved in excitation–contraction coupling, SERCA
[107], NCX [108], RyR [109] and PMCA [110], as well as
dysfunctional intracellular calcium signalling [111], have
been reported. These findings echo calcium mishandling
observed in HF [106]. Interestingly, candesartan, an
ARB {AT1 [AngII (angiotensin II) type 1] receptor
blocker}, has been shown to restore the contractile
deficit in diabetic cardiomyopathy by stabilizing FKBP
(FK506-binding protein) 12.6 and restoring calcium
release through the RyR [112]. Depressed SERCA
activity causes inefficient sequestration of calcium
in the SR, resulting in cytosolic calcium overload,
impaired relaxation and hence diastolic dysfunction [113].
Overexpression of SERCA has been shown to improve
calcium handling [111] and protect against experimental
diabetic cardiomyopathy [107]. In a study utilizing
myocardial biopsies in seven diabetic patients with
diastolic dysfunction, myofilament Ca2+ responsiveness
was found to be reduced [114]. In addition to alterations
in calcium homoeostasis, there is also reduced expression
of mRNA and protein density of key cardiac K+

channel (Kv2.1, Kv4.2, and Kv4.3) genes in LV myocytes
in experimental diabetes. This will contribute to
repolarizing K+ currents and explain the susceptibility
to arrhythmia in diabetic cardiomyopathy [115].

RAAS (renin–angiotensin–
aldosterone system)
The involvement of the RAS (renin–angiotensin system)
in HF has now begun to be defined at the molecular
level in relation to HF and diabetic cardiomyopathy.
AngII exerts a direct effect on cardiomyocytes through
AT1 receptors [116]. Both diabetes and hyperglycaemia
induce functional abnormalities in ventricular myocytes,
which can be prevented by AngII blockade [117]. The
mechanistic basis for this dysfunction is not clear;
however, direct signalling via the AT1 receptor results
in increased NADPH oxidase activity and elevation of
ROS which causes oxidative damage to cardiomyocytes
and endothelial cell apoptosis [117]. In diabetes an
up-regulation of RAS occurs despite minimal changes in
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myocardial loading and increased expression of AngII
in diabetic rats has been related to cardiomyocyte
hypertrophy and apoptosis. Six weeks of STZ-diabetes
in Ren-2 (enhanced tissue renin–angiotensin expression)
rats results in impairment of both active and passive
phases of diastole with interstitial fibrosis, cardiac
myocyte hypertrophy and apoptosis in conjunction with
increased TGF-β activity [118]. These findings provide
a molecular platform for the increased benefits of ACE
inhibition in diabetic patients in preventing and reversing
diabetic cardiomyopathy.

AngII receptor blockers attenuate metabolic and
cellular alterations in experimental diabetes [119], reduce
ROS [120], restore SERCA activity and improve intra-
cellular Ca2+ handling in HF [121]. It is therefore not
surprising that angiotensin blockade has been shown to
provide cardiovascular protection in diabetic patients
[122]. Aldosterone antagonists also reduce cardiovas-
cular mortality in diabetic patients with HF who exhibit
elevated serum levels of collagen synthesis markers
[123], suggesting that aldosterone antagonists may pre-
vent excessive extracellular matrix turnover. As both
AngII and aldosterone induce cardiac fibrosis, through
enhanced accumulation of collagen and increased fibro-
blast proliferation [124], it has been suggested that
aldosterone and glucose mediate cardiac fibrosis through
stimulation of myofibroblast growth in patients with
a dysregulated RAAS, a pathway of cardiac pathology
which is intensified by hyperglycaemia [125].

HIF (hypoxia-inducible factor)-1 and VEGF
(vascular endothelial growth factor)
An adequate angiogenic response to hypoxia is essential
in protecting against myocardial injury during ischaemic
events. The hypoxic stimulus is mediated largely by HIF-
1, a transcriptional regulator complex which controls
the expression of multiple angiogenic growth factors, of
which VEGF has received particular attention [126]. The
presence of hypoxia and free radicals stabilize and activate
HIF-1α, which would otherwise be rapidly degraded
[127]. VEGF has been shown to contribute to the
development of collateral vessels [128] and is expressed
in increased quantities in cardiac myocytes and arteriolar
smooth muscle cells following MI in non-diabetic
patients [129]. However, the expression of VEGF protein
and mRNA, as well as its receptors, are significantly
decreased in the myocardium of both diabetic and
insulin-resistant non-diabetic rats [130]. This suggests
that, in diabetic patients, the normal molecular processes
which regulate angiogenesis may be impaired, although
there are no direct studies to date to substantiate this. This
may provide an explanation for the increased incidence
of post-MI cardiac failure and enhanced mortality in
diabetic patients. Interestingly, administration of TZDs
(thiazolidinediones) [131] or inhibition of NADPH

oxidase [132] results in an increase in circulating VEGF
levels in diabetic patients and animals respectively, with
restored post-ischaemic neovascularization in the latter;
implicating ROS activity once more in the pathology
of diabetic cardiomyopathy. Reductions in VEGF and
impaired angiogenic responses have also been linked
with increased levels of ET-1 in ventricles from diabetic
rodents and ET receptor antagonism increases VEGF
signalling, improving cardiac function [133].

The KKS [KLK (kallikrein)–kinin system]
There is now good evidence that the KKS has a profound
influence on cardiac and vascular function. Tissue KLK
is involved in processing vasoactive kinin peptides and
appears to have dynamic roles, with reports of both
protective and damaging effects on the cardiovascular
system [134,135]. These effects are mediated through
two distinct G-protein-coupled receptors; the BK
(bradykinin) B1R (B1-receptor) and B2R (B2-receptor).
Under basal conditions, BK and Lys-BK (kallidin) are the
predominant kinin peptides involved in cardiovascular
homoeostasis and work principally through activation
of the B2R. The B1R has been shown to mediate
cardiac inflammation and may therefore contribute to
cardiovascular pathology [135].

A range of cardiovascular insults, including oxidative
stress, inflammatory cytokines and activation of the RAS
have been shown to regulate these receptors [136]. The
STZ-induced diabetic rat exhibits up-regulation of both
B1R and B2R [137], which may partly be explained by
activation of the RAS in diabetes [134]. Paradoxically,
KLK levels are reduced in diabetic animals [138] and
humans [139], suggesting therefore that kinin receptor
up-regulation may represent an attempted compensatory
mechanism [135].

The relationship between these cardiovascular insults
and levels of KLK/BK receptors is reciprocal. Alterations
to B2R expression by use of transgenes in experimental
models of diabetes has demonstrated protection against
diabetic cardiomyopathy. BK has been shown to improve
insulin stimulation of GLUT4 (glucose transporter 4)
[140] via a BK B2R-induced NO pathway [141]. Follow-
ing somatic hKLK (human KLK) gene delivery to STZ-
induced diabetic rats, there is increased cardiac GLUT4
translocation, decreased cardiac glycogen synthesis and
reduced glycogen accumulation [142], suggesting that
the KKS is capable of restoring glucose utilization.
Furthermore, hKLK transgenic STZ-induced diabetic
rats show a reduced cardiac inflammatory response [143],
increased levels of antioxidative enzymes [144], inhibition
of collagen accumulation and restoration of SERCA2a-
associated calcium disturbances [145]. Functionally, these
changes are associated with subsequent improvement in
LV filling pressure/stiffness [146].

Thus there is clearly extensive cross-talk between
the KKS and the cardiovascular system. Interactive
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pathways between the KKS and the RAS, myocardial
energy metabolism, oxidative stress, inflammation and
calcium handling, are complex and dynamic with respect
to the BK receptor involved. Furthermore delineation
of these mechanisms may allow manipulation of this
system, potentially via blockade of the RAS, utilizing
readily available therapy (ACEIs, ARBs and renin
inhibitors) to selectively oppose the alterations which
contribute to diabetic cardiomyopathy in man.

PATHOLOGY

As a consequence of the molecular changes discussed,
characteristic structural alterations develop in the cardio-
myocytes and intramyocardial blood vessels of diabetic
individuals, contributing to the pathogenesis of dia-
betic cardiomyopathy.

Cardiomyocytes
Since the cardiomyocyte is the primary functional unit
of the myocardium, it has been the focus of studies
investigating diabetic cardiomyopathy. Light and elec-
tron microscopic ultrastructural changes of the cardio-
myocyte have been defined in a range of animal models
of diabetes, including the dog [147], monkey [148], rabbit
[149], mouse [150] and rat [151–154]. However, widely
varying results have been reported with regard to the
severity, onset and type of cardiomyocyte pathology.
Hence the pathology has ranged from no change [147]
to severe myocytolysis and contracture band formation
[151]. With regard to onset of alterations, some studies
have demonstrated significant changes within 1 week
[155], whereas others only detected changes after 6 [153]
and 12 weeks [151] of experimental diabetes. Possible
explanations for these discrepancies, other than the
duration of diabetes, include the severity of hypergly-
caemia and the potential direct effect of the diabetogen
used to induce diabetes. Thompson [153] induced dia-
betes in the Sprague–Dawley rat using a single injection
of 4 % alloxan monohydrate, and by light microscopy
demonstrated a progressive increase in intercellular and
perivascular matrix after 6 weeks of diabetes. However,
this abnormality was not expressed uniformly and
there was regional heterogeneity, with areas showing no
increase in matrix [153]. More detailed ultrastructural
assessment using electron microscopy demonstrated sig-
nificant ultrastructural alterations in only 15 % of the car-
diomyocytes, which were characterized by: (i) loss of my-
ofilaments with disorganization of the remaining bundles,
(ii) areas of separation at the intercalated disk along the
fasciae adherents, and (iii) increased lipid droplets and loss
of some elements of the SR and transverse tubules [153].
A longer duration of diabetes leads to the development of
more pronounced degenerative changes in larger groups
of cardiomyocytes and, at 26 weeks, approx. 60 % of

the cells were affected, displaying large areas of free
cytoplasm, dispersed proteins, contracture bands and a
reduction in the frequency of SR and transverse tubules.
However, interestingly, most of the mitochondria
appeared normal with no evidence of swelling or lysis
and morphology of the cristae remained normal, despite
the presence of severe damage and disorganization of the
cytoplasm with contracture band formation. This is in
contrast with other ultrastructural studies, which have
shown swollen and fragmented mitochondria as the most
prominent finding in diabetic myocardium [149]. Indeed,
mitochondrial swelling has been observed in rats after
7 days of hyperglycaemia [155], as well as in dogs [156].
A number of other studies have reported disruption and
loss of mitochondria in more advanced stages of diabetic
cardiomyopathy [150–152].

Studies in humans are limited. Fischer et al. [157]
undertook detailed ultrastructural studies of tissue plugs
from the anterior apical segment of the heart in 145
patients undergoing CABG (coronary artery bypass
grafting). Subjects were divided into three groups:
‘overtly diabetic’, ‘chemically diabetic’ (representing
those with impaired glucose tolerance) and ‘euglycaemic/
non-diabetic’ patients. The study showed cardiomyocyte
hypertrophy and interstitial fibrosis in all except two
samples. In addition, a spectrum of other myocardial
lesions were observed in all three groups of patients,
ranging from mitochondrial degeneration and fatty infilt-
ration of the myofibrils to contraction band formation,
perivascular and interstitial oedema and myocytolysis.
The study thus failed to detect specific alterations in the
cardiomyocytes of diabetic patients, as all changes were
also present in non-diabetic patients [157]. The one
ultrastructural alteration which distinguished diabetic
from non-diabetic patients was capillary basement
membrane thickening, which will be discussed below.
However, it is important to note that the criteria used
to group the patients was not precise and overlap
between the groups could have resulted from ambiguous
terminology, dividing patients into ‘overtly diabetic’ and
‘chemically diabetic’.

With regard to the size of cardiomyocytes, contrasting
studies in diabetic patients and animal models demon-
strate both cardiomyocyte hypertrophy and atrophy.
Cardiomyocyte apoptosis has been demonstrated in
the diabetic myocardium of animal models [158], as
well as in humans [159]. In STZ-induced diabetic rats
[160], TUNEL (terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labelling) detected 3-OH
strand breaks resulting from DNA breakdown. The nuc-
lear marker DAPI (4′,6-diamidino-2-phenylindole) was
used to counterstain DNA and cells defined as apoptotic
if the nuclei showed a sharply demarcated morphology
and were labelled by the TUNEL assay, were increased
3.3-fold in diabetic rats, although the overall incidence
of this abnormality was very low [160]. However, it
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Table 1 Summary of the major structural changes in experimental and human diabetic cardiomyopathy
↑ indicates increase; ↓ indicates decrease; = indicates no difference. BB, BioBreeding; ZDF, Zucker diabetic fatty.

Diabetes type Model Cardiac mass
Cardiomyocyte
diameter

Cardiomyocyte
loss Mitochondria SR Apoptosis

Intramyocardial
lipid Fibrosis

Type 1 diabetes STZ rat =[151] or
↓[166,201]

↓[166,201] ↑[151] ↑[151,155,201] ↑[151,155] ↑[158] ↑[151,155] =[201] or
↑[166]

Alloxan rat =[153] ↑[153] =[153] ↑[153] ↑[153]
BB Wistar rat ↓[152] ↑[152] ↑[152] ↑[152] ↑[152] ↑[152]

Type 2 diabetes KK mice ↑[163] ↑[163] ↑[163] ↑[163]
ZDF rat =but after

insulin↑[202]
↑[202] ↑[203] ↑[202]

ob/ob Mice ↑[150,204] ↑[204] or
↓[150]

↑[150] ↑[150] =[204] or
↑[150]

=[204]

Type 1 and 2
diabetes

Humans ↑[205,206] ↑[207,208] or
↓[209]

=?[157] =?[157] =?[157] ↑[159] =?[157] =[157] or
↑[208]

is important to note that this method is not specific
for detecting those cells which do eventually undergo
apoptosis and a more accurate means to detect actual
cardiomyocyte apoptosis is by electron microscopy, but is
rarely employed. A study of human diabetic myocardium
has shown an 85-fold increase in cardiomyocyte apop-
tosis [159]. Such apoptotic myocyte loss may be one of
the mechanisms contributing to the poor prognosis in dia-
betic patients after MI [161]. Several reports have shown
that inhibition of myocardial cell death by antioxidants or
inhibitors of apoptosis-specific signalling pathways, leads
to significant prevention of diabetic cardiomyopathy
[162]. Table 1 summarizes all of the structural changes
which have been reported in diabetic cardiomyopathy.

Myocardial microvessels
Although most structural studies of the myocardial
vasculature have concentrated on coronary arteries and
intramural arterioles, few studies have assessed myocar-
dial capillary structure in either clinical or experimental
diabetes. Some reports show significant ultrastructural
changes in cardiomyocytes, in the absence of any vascu-
lar change [152,163], whereas others report vascular
changes as the only specific myocardial alteration in
the diabetic heart [157]. The aforementioned study by
Thompson [153] was unable to detect any structural
abnormalities in the myocardial capillaries during the
first 6 weeks of diabetes. At 26 weeks, however, a 3-fold
increase in thickening of the endothelial cytoplasm, with
endothelial cell hypertrophy and cytoplasmic bridging
led to complete obstruction of the lumen. The capillary
basement membrane showed moderate, irregular thicken-
ing with occasional areas of duplication, with all changes
distributed focally throughout the papillary muscle [153].
Thickening of the capillary basement membrane has
been reported in mice [150], rats [164] and humans
[157,165]. Thompson [166] further quantified the effect
of diabetes on different components of the myocardial
microvasculature in rats, by demonstrating a decrease

in mean capillary diameter by 11 % after 12 weeks and
22 % after 26 weeks of diabetes. Moreover, stereological
analysis showed a significant progressive decrease in
capillary density, which after 26 weeks of diabetes reached
77 % of the value seen in non-diabetic age-matched
control rats [166]. Ultrastructural signs of angiogenesis
have also been reported and are characterized by
alterations in endothelial and pericyte shape [164]. A
study of human diabetic myocardium [157] found two
characteristic abnormalities in myocardial capillaries:
endothelial swelling and/or degeneration and thickening
of the capillary basement membrane (Figure 2). This is
the pathological hallmark of diabetic microangiopathy
and occurred in an uneven, patchy, segmental manner
[157]. Diabetic myocardial capillary microangiopathy has
also been shown by others [167,168]. Table 2 summarizes
the microvascular alterations seen in models of diabetic
cardiomyopathy.

TREATMENT

Sulfonylureas
Of the relatively little published data on the use of
sulfonylureas in diabetic HF, two studies have reported
conflicting findings in terms of outcome [169,170].
A recent meta-analysis has indicated that these drugs
are not associated with an increase in cardiovascular
events [171,172]. Clearly, further studies are needed to
determine the benefits and possible harm of these drugs
in diabetic patients with HF.

Metformin
Metformin was previously contraindicated in patients
with HF in the U.S. due to the theoretical risk of lactic
acidosis; its use is still strongly cautioned. Evidence
to support the use of metformin in HF comes from
three cohort studies in which metformin therapy was
compared with other OHAs (oral hypoglycaemic agents)
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Table 2 Summary of the major microvascular changes in
experimental and human diabetic cardiomyopathy
BB, BioBreeding; ZDF, Zucker diabetic fatty.

Diabetes type Model Microvascular changes

Type 1 diabetes STZ rat Decreased capillary diameter and
density [166]

Narrow capillary lumen with
endothelial swelling [164]

Basement membrane thickening [201]
Alloxan rat Decreased capillary lumen [153]

Endothelial swelling [153]
Basement membrane thickening [153]

BB Wistar rat No changes [152]
Type 2 diabetes KK mice No changes [163]

ZDF Perivascular fibrosis [202]
ob/ob Mice Basement membrane thickening [150]

Type 1 and 2 diabetes Humans Basement membrane thickening
[157,165]

and insulin respectively [171]. Metformin treatment was
associated with a reduction in all-cause mortality and
all-cause hospital admissions. In addition to its modest
insulin-sensitizing properties, metformin has been shown
in an animal model to inhibit cardiac hypertrophy [173].

TZDs
The TZDs [PPARγ (peroxisome-proliferator-activ-
ated receptor γ ) receptor agonists] are primarily insulin-
sensitizing agents, but in addition to their antihyper-
glycaemic action, these drugs also exert beneficial
effects on the myocardium, vascular endothelium, lipid
profile and BP with additive anti-inflammatory and
profibrinolytic effects [174]. They have been shown in
both animal and human studies to improve myocardial
metabolism and glucose handling [175]. In a 6 month
double-blind, randomized, multicentre study comparing
pioglitazone with glyburide in patients with Type 2
diabetes, systolic dysfunction and NYHA (New York
Heart Association) functional class II/III HF, although

Figure 2 Electronmicrograph of a myocardial capillary from a diabetic patient, demonstrating luminal occlusion with
basement membrane thickening
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pioglitazone was associated with a higher incidence
of hospitalization for HF there was no increase in
cardiovascular mortality or worsening cardiac function
(by echocardiography) [176].

Thus the increased risk of HF is due to fluid retention
via increased renal retention of sodium and subsequent
plasma volume expansion and there is no evidence to
suggest that TZDs may be harmful to the myocardium.
In contrast, animal and experimental studies have
demonstrated favourable effects on the myocardium such
as reduced cardiac hypertrophy and improved systolic
and diastolic function [177]. Results from clinical trials
assessing TZD use and cardiac function however, is
limited by both number and validity. Hence, the use of
TZDs in HF is restricted to those in NYHA functional
class I–II [178]. Two recent meta-analyses of seven and
19 randomized controlled trials of TZDs (pioglitazone
or rosiglitazone), reported an increase in the risk of HF
in diabetic and pre-diabetic subjects [RR of 1.72 and
HR (hazard ratio) 1.41 respectively] [179,180], but there
was no increase in the risk of cardiovascular mortality
in these studies. Rosiglitazone has been associated with
an increased risk of MI [177]. In the PROactive study,
although pioglitazone was associated with a significant
increase in serious HF (10.8 % compared with 7.5 % over
3 years, P < 0.0001), there was no increase in mortality or
cardiovascular events compared with placebo [181]. Thus
the overall cardiovascular benefits derived from pioglit-
azone are thought to outweigh such risks [182]. In the
RECORD (Rosaglitazone Evaluated for Cardiovascular
Outcomes and Regulation of glycemia in Diabetes) study,
rosiglitazone-treated patients had a slightly increased risk
of incident HF (1.7 compared with 0.8 %, P = 0.006) after
a mean treatment period of 3.8 years [183].

Insulin
Insulin use in diabetic patients has also been associated
with an increased risk of HF and death [171]. Cohort
studies in diabetic populations with HF have yielded
conflicting results. In the CHARM (Candesartan in
Heart Failure: Assessment of Reduction in Mortality and
Morbidity) study, the risk of death was greater in diabetic
patients treated with insulin compared with those not
treated with insulin [184]. These findings contrast with
those of UKPDS which did not report an increase in
mortality with insulin use [171].

GLP-1 (glucagon-like peptide-1) analogues
GLP-1 is an ‘incretin’ hormone which stimulates post-
prandial insulin secretion and improves insulin sensitiv-
ity. GLP-1 analogues exert their cardiovascular benefit in-
directly by inducing weight loss and improving glycaemic
profile and endothelial function [185]. There is some
promising data from a trial of GLP-1 analogues in patients
following successful coronary intervention for acute MI
whereby the treated group demonstrated a significantly

greater improvement in LVEF (29 +− 2 % compared with
39 +− 2 %, P < 0.01) with concomitant improvements in
global and regional wall motion [186]. The same group
conducted a trial of GLP-1 analogues in patients with
advanced HF and reported significant improvements in
LVEF, V̇o2max (maximal oxygen consumption), 6 min
walk distance and standardized QOL (quality-of-life)
score [187]. Clearly, long-term data are required for this
class of drugs to determine their efficacy and safety in HF.

DPP-4 (dipeptidyl peptidase-4) inhibitors
The DPP-4 inhibitors or gliptins are a group of drugs
which increase incretin levels by inhibiting the enzyme
DPP-4. Of note, DPP-4 is expressed on the endothelium
of myocardial venules and paradoxically has been shown
to be reduced in experimental diabetes [164]. These agents
are relatively new and, as for the GLP-1 analogues, one
may predict a long-term benefit on cardiovascular and
all-cause mortality. Long-term morbidity and mortality
trials are currently underway, but it will be several years
before the data is reported.

Metabolic modulators
These agents, previously used as anti-anginals, address the
imbalance in myocyte energy efficiency by facilitating
the switch from NEFA (non-esterified FA; ‘free FA’)
to glucose metabolism. Trimetazidine, one such agent
currently available in Europe, inhibits an enzyme
involved in the β-oxidation of NEFAs and has been
shown to improve LVEF, NYHA functional class and
QOL in patients with HF [188]. Similarly, perhexiline has
demonstrated substantial improvements in LVEF, V̇o2max

and QOL, but is associated with a risk of hepatotoxicity
and peripheral neuropathy [189]. Ranolazine, is another
drug with potential as a metabolic modulator [190]. It
reduces intracellular Na+ and diastolic Ca2+ overload,
thus improving diastolic function, but it has been
associated with prolongation of the QT interval.

The RAAS
The role of the RAAS in the pathogenesis of diabetic
cardiomyopathy has been described above and forms
the rationale for treatment with ACEIs and ARBs
in diabetic cardiomyopathy. Both ACE inhibition and
treatment with ARBs reduce total and cardiovascular
mortality in diabetic patients [191,192]. In addition,
there was a reduction in cardiovascular events in large
studies such as RENAAL [45], HOPE (Heart Outcomes
Prevention Evaluation) [193] and IDNT (Irbesartan
Diabetic Nephropathy Trial) [194], the effect being
more pronounced in diabetic compared with non-
diabetic patients. Furthermore, in the CHARM study
[184], candesartan was associated with a 40 % reduction
in the diagnosis of new onset diabetes and similarly, in
the SOLVD study, treatment with enalapril reduced the
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incidence of diabetes compared with placebo [23]. A
meta-analysis of the major HF trials found an RR of 0.84
for death in diabetic patients treated with ACEIs [195].
The CHARM and Val-HeFT [196] studies also demon-
strated mortality and morbidity benefits with ARBs
which were similar in diabetic and non-diabetic patients.

β-Blockers
β-Blockers are now well-established in the treatment of
HF. Concerns in diabetic patients with regard to the in-
creased risk of hypoglycaemia, dyslipidaemia and insulin
resistance has meant that diabetic patients with HF are
less likely to be discharged from hospital on a β-blocker
than their non-diabetic counterparts [197]. However, the
GEMINI (Clinical Utility of Amlodipine/Atorvastatin
to Improve Concomitant Cardiovascular Risk Factors of
Hypertension and Dyslipidemia) study compared the use
of carvedilol with metoprolol in patients already receiving
ACEIs or ARBs [198] and demonstrated that carvedilol
improved insulin resistance and had no effect on HbA1c,
whereas metoprolol worsened HbA1c and did not im-
prove insulin resistance. Although to date there has not
been a study of β-blockers in diabetic patients with HF,
up to a quarter of patients in the major β-blocker trials in
HF were diabetic [199,200]. Subgroup analysis of these
trials demonstrated significant mortality and morbidity
benefits in diabetic patients. In a meta-analysis of these
trials, the overall RR of mortality in diabetic patients was
0.84 compared with 0.72 in non-diabetic patients.

CONCLUSIONS

Considerable progress has been made to unravel the
mechanistic basis for the increased frequency of HF
in diabetic individuals. Functional consequences such
as diastolic and then systolic dysfunction and failure
correlate with glycaemic control. These functional alter-
ations are preceded by a variety of structural, molecular
and cellular changes, many of which are present in
asymptomatic diabetic individuals and experimental
models of diabetes. Moreover, alterations to myocardial
and vascular integrity appear to initiate during a
pre-diabetic stage. Although the aetiology of diabetic
cardiomyopathy is complex and multifactorial, we have
begun mapping a molecular, structural and functional
basis for this condition and the debate regarding its
existence as a distinct clinical entity is at an end. At present
however, translational studies are lacking and it remains
under-diagnosed and inadequately treated. Although hy-
perglycaemia appears to drive the pathogenesis of diabetic
cardiomyopathy, intensive glycaemic control in diabetic
patients has not translated into meaningful morbidity
and mortality benefits, indeed recent results suggest the
possibility of worsening outcomes. Novel diagnostic
techniques to identify patients earlier, together with the
development of more targeted therapeutic strategies ex-

ploiting recent experimental data, may lead to improved
outcome in patients with diabetic cardiomyopathy.
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I. G. (2003) Diabetes-induced overexpression of
endothelin-1 and endothelin receptors in the rat renal
cortex is mediated via poly(ADP-ribose) polymerase
activation. FASEB J. 17, 1514–1516

89 Chiu, J., Farhangkhoee, H., Xu, B. Y., Chen, S., George,
B. and Chakrabarti, S. (2008) PARP mediates structural
alterations in diabetic cardiomyopathy. J. Mol. Cell.
Cardiol. 45, 385–393

90 Yang, Z., Zingarelli, B. and Szabo, C. (2000) Effect of
genetic disruption of poly (ADP-ribose) synthetase on
delayed production of inflammatory mediators and
delayed necrosis during myocardial ischemia-reperfusion
injury. Shock 13, 60–66

91 Soriano, F. G., Pacher, P., Mabley, J., Liaudet, L. and
Szabo, C. (2001) Rapid reversal of the diabetic endothelial
dysfunction by pharmacological inhibition of
poly(ADP-ribose) polymerase. Circ. Res. 89,
684–691

92 Bowling, N., Walsh, R. A., Song, G., Estridge, T.,
Sandusky, G. E., Fouts, R. L., Mintze, K., Pickard, T.,
Roden, R., Bristow, M. R. et al. (1999) Increased protein
kinase C activity and expression of Ca2+-sensitive
isoforms in the failing human heart. Circulation 99,
384–391

93 Way, K. J., Isshiki, K., Suzuma, K., Yokota, T.,
Zvagelsky, D., Schoen, F. J., Sandusky, G. E., Pechous,
P. A., Vlahos, C. J., Wakasaki, H. and King, G. L. (2002)
Expression of connective tissue growth factor is
increased in injured myocardium associated with protein
kinase C β2 activation and diabetes. Diabetes 51,
2709–2718

94 Koya, D. and King, G. L. (1998) Protein kinase C
activation and the development of diabetic complications.
Diabetes 47, 859–866

95 Braz, J. C., Gregory, K., Pathak, A., Zhao, W., Sahin, B.,
Klevitsky, R., Kimball, T. F., Lorenz, J. N., Nairn, A. C.,
Liggett, S. B. et al. (2004) PKCα regulates cardiac
contractility and propensity toward heart failure.
Nat. Med. 10, 248–254

96 Wakasaki, H., Koya, D., Schoen, F. J., Jirousek, M. R.,
Ways, D. K., Hoit, B. D., Walsh, R. A. and King, G. L.
(1997) Targeted overexpression of protein kinase C β2
isoform in myocardium causes cardiomyopathy.
Proc. Natl. Acad. Sci. U.S.A. 94, 9320–9325

97 Topham, M. K. and Prescott, S. M. (2002) Diacylglycerol
kinases: regulation and signaling roles. Thrombosis
Haemostasis 88, 912–918

98 Harada, M., Takeishi, Y., Arimoto, T., Niizeki, T.,
Kitahara, T., Goto, K., Walsh, R. A. and Kubota, I.
(2007) Diacylglycerol kinase ζ attenuates pressure
overload-induced cardiac hypertrophy. Circ. J. 71,
276–282

99 Bilim, O., Takeishi, Y., Kitahara, T., Arimoto, T., Niizeki,
T., Sasaki, T., Goto, K. and Kubota, I. (2008)
Diacylglycerol kinase ζ inhibits myocardial atrophy and
restores cardiac dysfunction in streptozotocin-induced
diabetes mellitus. Cardiovasc. Diabetol. 7, 2

100 Xia, Z., Kuo, K.-H., Nagareddy, P. R., Wang, F., Guo, Z.,
Guo, T., Jiang, J. and McNeill, J. H. (2007)
N-acetylcysteine attenuates PKCβ2 overexpression and
myocardial hypertrophy in streptozotocin-induced
diabetic rats. Cardiovasc. Res. 73, 770–782

101 Hambleton, M., Hahn, H., Pleger, S. T., Kuhn, M. C.,
Klevitsky, R., Carr, A. N., Kimball, T. F., Hewett, T. E.,
Dorn, 2nd, G. W., Koch, W. J. and Molkentin, J. D.
(2006) Pharmacological- and gene therapy-based
inhibition of protein kinase Cα/β enhances cardiac
contractility and attenuates heart failure. Circulation 114,
574–582

102 Arikawa, E., Ma, R. C. W., Isshiki, K., Luptak, I., He, Z.,
Yasuda, Y., Maeno, Y., Patti, M. E., Weir, G. C., Harris,
R. A. et al. (2007) Effects of insulin replacements,
inhibitors of angiotensin, and PKCβ’s actions to
normalize cardiac gene expression and fuel metabolism in
diabetic rats. Diabetes 56, 1410–1420

103 Montagnani, M. (2008) Diabetic cardiomyopathy: how
much does it depend on AGE? Br. J. Pharmacol. 154,
725–726

104 Aragno, M., Mastrocola, R., Medana, C., Catalano, M. G.,
Vercellinatto, I., Danni, O. and Boccuzzi, G. (2006)
Oxidative stress-dependent impairment of
cardiac-specific transcription factors in experimental
diabetes. Endocrinology 147, 5967–5974

105 Carley, A. N. and Severson, D. L. (2008) What are the
biochemical mechanisms responsible for enhanced fatty
acid utilization by perfused hearts from type 2 diabetic
db/db mice? Cardiovasc. Drugs Ther. 22, 83–89

106 Bers, D. M. (2002) Cardiac excitation–contraction
coupling. Nature 415, 198–205

107 Trost, S. U., Belke, D. D., Bluhm, W. F., Meyer, M.,
Swanson, E. and Dillmann, W. H. (2002) Overexpression
of the sarcoplasmic reticulum Ca2+-ATPase improves
myocardial contractility in diabetic cardiomyopathy.
Diabetes 51, 1166–1171

C© The Authors Journal compilation C© 2009 Biochemical Society
© 2009 The Author(s)

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.



Diabetic cardiomyopathy 757

108 Hattori, Y., Matsuda, N., Kimura, J., Ishitani, T., Tamada,
A., Gando, S., Kemmotsu, O. and Kanno, M. (2000)
Diminished function and expression of the cardiac
Na+-Ca2+ exchanger in diabetic rats: implication in Ca2+
overload. J. Physiol. 527, 85–94

109 Pereira, L., Matthes, J., Schuster, I., Valdivia, H. H.,
Herzig, S., Richard, S. and Gómez, A. M. (2006)
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