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Abstract
Temperature is a predominant environmental factor affecting grass germination and distri-

bution. Various thermal-germination models for prediction of grass seed germination have

been reported, in which the relationship between temperature and germination were defined

with kernel functions, such as quadratic or quintic function. However, their prediction accu-

racies warrant further improvements. The purpose of this study is to evaluate the relative

prediction accuracies of genetic algorithm (GA) models, which are automatically parameter-

ized with observed germination data. The seeds of five P. pratensis (Kentucky bluegrass,
KB) cultivars were germinated under 36 day/night temperature regimes ranging from 5/5 to

40/40°C with 5°C increments. Results showed that optimal germination percentages of all

five tested KB cultivars were observed under a fluctuating temperature regime of 20/25°C.

Meanwhile, the constant temperature regimes (e.g., 5/5, 10/10, 15/15°C, etc.) suppressed

the germination of all five cultivars. Furthermore, the back propagation artificial neural net-

work (BP-ANN) algorithm was integrated to optimize temperature-germination response

models from these observed germination data. It was found that integrations of GA-BP-

ANN (back propagation aided genetic algorithm artificial neural network) significantly

reduced the Root Mean Square Error (RMSE) values from 0.21~0.23 to 0.02~0.09. In an

effort to provide a more reliable prediction of optimum sowing time for the tested KB cultivars

in various regions in the country, the optimized GA-BP-ANN models were applied to map

spatial and temporal germination percentages of blue grass cultivars in China. Our results

demonstrate that the GA-BP-ANN model is a convenient and reliable option for constructing

thermal-germination response models since it automates model parameterization and has

excellent prediction accuracy.
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Introduction
Seed germination rate is often used to evaluate the suitability of an environment for the cultiva-
tion of different plant species [1–3]. Constructing a mathematical model that accurately pre-
dicts the effect of temperature on germination percentage helps to reduce failure of grass
establishment caused by inappropriate sowing dates or mismatching of grass species with cli-
mate zones; therefore it is particularly useful in selecting appropriate grass species and sowing
times. Several mathematic models have been developed to simulate the germination response
to temperature based on the experimental data [4–9]. These previous models were mainly used
to predict: I. the time, under a constant temperature condition (cumulative temperature),
required for the expected germination of a specific variety [4–6], and II. the germination per-
centage under a temperature fluctuation regime [10–12]. It is well-documented that the natural
fluctuations in temperature between day and night could be required for initiating and/or facil-
itating seed germination [8], these diurnal fluctuations of temperature are frequently adopted
to generate data for building prediction models [13]. To date, the core functions of the pub-
lished temperature-germination response models [11,12] consist on the estimation of popula-
tions’ thermal response parameters [14–18] or on optimization of polynomial equations using
iterative curve fitting [6,10]. These functions constructed by various scientists are usually dif-
ferent from each other because their parameters are selected for fitting the germination data of
a particular batch of seeds. In addition, the different researchers’ preferences on selections of
core functions and parameters for fitting the germination models might generate different out-
puts. Since the seed germination is influenced by various factors, scientists should develop
multi-objective evolutionary algorithms for the germination response model. Recent years,
the genetic algorithm (GA) is widely used as a non-dominated sorting based multi-objective
evolutionary approach that doesn’t need specifying a set of sharing parameters [19–21]. In an
effort to simplify and standardize the selection of core function for a temperature-germination
model, we propose a GA-based data mining approach that automatically generates a core func-
tion of seed germination and temperature correlation. Meanwhile, the back propagation (BP)
algorithm is also recruited to optimize the GA based temperature-germination model [10].

Poa pratensis L. (Kentucky bluegrass, KB) has long been used in lawns because of its excel-
lent agronomic characteristics [22–25]. Compared to other winter-season turfgrass species,
this species has fairly low irrigation requirements due to its good tolerance to drought stress
[26–28]. It is also adapted to a moderate range of salinity and alkali stresses [29–32]. Though
the KB could survive a wide range of temperature conditions, its germination is very sensitive
to extreme temperatures [33–36]. Hence, the KB would be an ideal species for optimizing tem-
perature-germination response models. In addition, the optimized models would directly help
decision-maker in selecting optimal sowing regions and times for this broadly cultivated grass.
To further facilitate KB cultivation in China, the GIS temperature data covering the whole
nation were used to generate accurate and quantitative suitability maps for cultivation of KB
cultivars, which have already been imported and are quickly gaining acceptance to many areas
in the country [37,38]. Briefly, the means of minimum and maximum temperature data on the
national geo-grid of China for a 25-years period, obtained from NASA, were used for calculat-
ing suitability values of the tested cultivar in the optimized GA-BP-ANN temperature-germi-
nation prediction functions.

The objectives of this paper are to: (i) provide an automatic approach (GA-BP-ANN) on
revealing the seed temperature-germination relationships, (ii) use the GA-BP-ANN based tem-
perature-germination models to predict the suitability of five KB cultivars (‘Midnight II’,
‘Diva’, ‘Rugby II’, ‘Leopard’ and ‘Sapphire’) throughout the national temperature grids in
China. In short, it is tried to construct a new approach for grass suitability evaluation, and

Optimal Sowing Region and Timing for Kentucky Bluegrass

PLOS ONE | DOI:10.1371/journal.pone.0131489 July 8, 2015 2 / 15



provide decision-maker with some useful information for selecting reasonable sowing regions
and times for KB.

Results

Germination response to diurnal fluctuations of temperature
The germination responses of the five tested KB cultivars were similar to each other (Tables 1–
5), and the mean germination percentages under all the tested temperature regimes showed no
significant difference for all the five tested cultivars (P> 0.05). They could all germinate at
cool-period temperatures ranging from 10 to 30°C combined with warm-period temperatures
ranging from 15 to 35°C. Considering optimum germination is usually defined as a germination
percentage of not lower than the maximum germination minus one-half of its confidence inter-
val (P = 0.05), optimum germination was found to be reached when the tested seeds were
grown under a temperature regime with a cool-temperature between 10~25°C combined with
a warm-temperature between 25~35°C. The germination percentages of all five cultivars were
lower than 50% under constant temperatures within the thermal range from 10 to 30°C, while
no germination was registered at constant 35°C. The maximum germination was observed
when the warm-temperature was 5~10°C above the cool-temperature of the fluctuating ther-
mal regime (Tables 1–5). In other words, the fluctuating temperature regimes in the range
from 15 to 35°C promote KB germination.

Table 1. Cumulative seed germination of ‘Midnight II’ at different days in 36 temperature regimes (50 seeds in total).

Cool period temperature (°C) 16h Warm period temperature (°C) 8h

5 10 15 20 25 30 35 40

% Germination after 15–20 days

5 0.0±0.0 0.0±0.0 0.0±0.0 6.0±4.0 50.7±5.0 43.3±9.0 0.0±0.0 0.7±1.2

10 6.0±0.0 16.7±2.3 28.0±2.0 66.7±4.3 74.0±3.5 0.0±0.0 0.0±0.0

15 25.3±7.0 46.0±6.9 78.0±6.0 72.0±7.2 34.0±6.0 0.0±0.0

20 23.3±9.5 80.7±1.2 81.3±8.1 64.0±2.0 0.0±0.0

25 18.7±1.3 78.7±10.3 68.7±5.8 0.0±0.0

30 38.7±9.0 24.7±4.6 0.0±0.0

35 0.0±0.0 0.0±0.0

40 0.0±0.0

doi:10.1371/journal.pone.0131489.t001

Table 2. Cumulative seed germination of ‘Diva’ at different days in 36 temperature regimes (50 seeds in total).

Cool period temperature (°C) 16h Warm period temperature (°C) 8h

5 10 15 20 25 30 35 40

% Germination after 15–20 days

5 0.0±0.0 0.0±0.0 0.0±0.0 6.7±1.2 44.7±2.3 44.0±8.7 0.0±0.0 0.0±0.0

10 6.0±0.0 13.3±4.2 35.3±3.1 77.3±3.1 73.3±17.0 0.0±0.0 0.0±0.0

15 14.0±2.0 52.7±4.2 79.3±6.4 82.0±5.3 40.0±3.5 0.0±0.0

20 20.0±2.0 82.0±5.3 81.3±8.1 69.3±8.1 0.0±0.0

25 26.0±4.0 78.0±8.0 53.3±4.2 0.0±0.0

30 35.3±7.0 38.7±3.1 0.0±0.0

35 0.0±0.0 0.0±0.0

40 0.0±0.0

doi:10.1371/journal.pone.0131489.t002
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The means of the maximum and optima germination percentages of all the five KB cultivars
are presented in Table 6. Maximum germination for ‘Leopard’ was the highest (87.3%), but not
significantly different (P> 0.05) from that of the other four cultivars (81.3%, 82%, 85.3% and
85.3% for ‘Midnight II’, ‘Diva’, ‘Rugby II’ and ‘Sapphire’ respectively). Depending on grass cul-
tivar, 11.1~22.2% (4~8 regimes) of the tested temperature regimes supported optimum germi-
nation. Only four tested regimes supported optimum germination for all the tested cultivars;
they are 20/25, 15/30, 20/30, and 25/30°C (Tables 1–6).

Performance of different temperature-germination response models
The performances of GA-BP-ANN temperature-germination response models generated in
this study were compared with the previously published regression approaches including gen-
eral quadratic and BP-ANN based quintic equations [10, 12].

The RMSE values, which is proposed as statistical indicators for the evaluation and
comparison of multi-dimensional models [39,40], also present similar performances among
different KB cultivars (Table 7). For every KB cultivar, the RMSE values: GA-BP-ANN< BP-
quintic< General quintic< BP-quadratic< General quadratic models. It suggested that
GA-BP-ANNmodels present the best fitness for simulating the temperature-germination
response of the tested five KB cultivars. In addition, the back propagation (BP) algorithm is an
effective optimization tool for the tested non-linear regression models.

Table 3. Cumulative seed germination of ‘Rugby II’ at different days in 36 temperature regimes (50 seeds in total).

Cool period temperature (°C) 16h Warm period temperature (°C) 8h

5 10 15 20 25 30 35 40

% Germination after 15–20 days

5 0.0±0.0 0.0±0.0 0.0±0.0 10.7±3.1 44.0±7.2 52.7±8.1 0.0±0.0 0.0±0.0

10 6.0±2.0 8.7±3.1 38.0±8.0 63.3±3.1 69.3±2.3 0.0±0.0 0.0±0.0

15 19.3±3.1 58.7±2.3 70.7±5.0 80.7±9.2 44.0±2.0 0.0±0.0

20 27.3±1.2 64.7±25.0 87.3±3.1 76.0±8.0 0.0±0.0

25 22.0±2.0 79.3±5.0 46.0±2.0 0.0±0.0

30 33.3±4.2 52.0±7.2 0.0±0.0

35 0.0±0.0 0.0±0.0

40 0.0±0.0

doi:10.1371/journal.pone.0131489.t003

Table 4. Cumulative seed germination of ‘Leopard’ at different days in 36 temperature regimes (50 seeds in total).

Cool period temperature (°C) 16h Warm period temperature (°C) 8h

5 10 15 20 25 30 35 40

% Germination after 15–20 days

5 0.0±0.0 0.0±0.0 0.0±0.0 4.0±2.0 45.3±4.2 47.3±3.1 0.0±0.0 0.0±0.0

10 6.0±0.0 10.0±0.0 38.0±6.0 65.3±5.0 61.3±5.0 0.0±0.0 0.0±0.0

15 24.7±6.1 58.0±10.0 77.3±7.0 80.0±3.5 46.7±11.7 0.0±0.0

20 26.0±2.0 80.7±2.3 85.3±3.1 61.3±7.0 0.0±0.0

25 16.0±2.0 79.3±5.0 51.3±6.4 0.0±0.0

30 33.3±8.3 43.3±7.0 0.0±0.0

35 0.0±0.0 0.0±0.0

40 0.0±0.0

doi:10.1371/journal.pone.0131489.t004
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Spatial mapping of optimal sowing times
The cultivation suitability of a grass cultivar is defined by its acceptable germination percentage
in the planned cultivation area for a particular period of time. Daily means of minimum and
maximum earth surface temperature for a 25-years period in each cell of the Chinese map grid
were fed into the new GA-BP-ANN temperature-germination functions, so as to predict a ger-
mination percentage for the tested cultivars in different months (Figures A~D in S1 File). The
predicted germination percentages were subsequently converted to the suitability for the tested
cultivars within each grid cell of the map via FreeMicaps (Figs 1–5). Among all the tested KB
cultivars, suitability of ‘Rugby II’ was found to be the narrowest in both geological and time
scales (Fig 3). In contrast, ‘Leopard’ was shown to have the widest suitability in both geological
and time scales (Fig 4). To consider the germination capability, the sowing time of all five tested
cultivars should not be arranged before March (Figs 1–5). However, the sowing time should
not be later than October since the seedlings will face the cold stress in the later months.

Our results also showed that the fluctuation in temperature between day and night was an
essential factor in facilitating seed germination of KB. The best evidence supporting this is that
KB are documented to have very low germination in Hainan (the southernmost region in the
map) and Taiwan (the southeast island in the map) provinces where the day/night tempera-
tures are amenable around 20°C without substantial fluctuation from December to March [41];
all the five KB cultivars were also predicted to have very low germination in these two prov-
inces during that period (Figs 1–5, Figures A~D in S1 File).

Table 5. Cumulative seed germination of ‘Sapphire’ at different days in 36 temperature regimes (50 seeds in total).

Cool period temperature (°C) 16h Warm period temperature (°C) 8h

5 10 15 20 25 30 35 40

% Germination after 15–20 days

5 0.0±0.0 0.0±0.0 0.0±0.0 18.0±3.5 50.7±1.2 49.3±4.6 0.0±0.0 0.0±0.0

10 5.3±3.1 11.3±6.1 33.3±4.2 68.7±6.1 67.3±7.0 0.0±0.0 0.0±0.0

15 15.3±3.1 50.7±5.0 84.7±6.4 80.7±5.0 50.7±11.7 0.0±0.0

20 26.0±2.0 78.7±10.3 85.3±6.1 60.0±5.3 0.0±0.0

25 19.3±3.1 78.0±8.0 55.3±7.0 0.0±0.0

30 24.7±11.0 27.3±15.3 0.0±0.0

35 0.7±1.2 0.0±0.0

40 0.0±0.0

doi:10.1371/journal.pone.0131489.t005

Table 6. Comparison of the temperature–germination profiles for the five bluegrass cultivars.

Germination parameter Sources

Midnight II Diva Rugby II Leopard Sapphire

%

Profile mean 28.5 29.2 28.9 29.3 28.6

Regimes with some germination 63.9 61.1 63.9 61.1 61.1

Maximum germination 81.3 82.0 85.3 87.3 85.3

Mean of some germination 44.6 47.8 45.3 47.9 46.8

Mean of optima 76.2 77.8 81.5 78.0 80.5

doi:10.1371/journal.pone.0131489.t006
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Discussions
The mathematic models to correlate environmental factors and germination responses of
grasses have significantly contributed to the selection of suitable grasses for various regions
with different environmental conditions [42–44]. These prediction models could provide effi-
cient approaches to evaluate desirable characteristics and even to identify new traits of a candi-
date grass species that help it to prevail in new environment conditions [45]. These models
could also help elucidating the relationship between genotype and germination-related pheno-
types to support rapid expansion in the cultivation of various grass cultivars [45]. Furthermore,
these environmental factor-germination response models could also provide us data to foretell
how the changes in agricultural systems could influence the grass germination [10,46]. Grass
scientists have already developed various models for simulating the seed germination responses
to temperature conditions [10,42–44]. This research tries to construct simulating models based
on the unsupervised GA-BP-ANN, which automatically generates regressions directly from the
inputted experimental data. When combined with a visual suitability map, these new regres-
sion models could provide decision makers a confident approach to select grass species and to
plan seeding times [11,12].

Table 7. The RMSE (Root Mean Square Error) values of different models for predicting temperature-
germination response functions of the five P. Pratenis cultivars tested.

Cultivar Model RMSE

Midnight II

General quadratic 0.21

BP-ANN quadratic 0.21

Quintic 0.11

BP-ANN quintic 0.08

GA-BP-ANN 0.02

Diva

General quadratic 0.21

BP-ANN quadratic 0.21

Quintic 0.09

BP-ANN quintic 0.07

GA-BP-ANN 0.02

Rugby II

General quadratic 0.21

BP-ANN quadratic 0.20

Quintic 0.11

BP-ANN quintic 0.10

GA-BP-ANN 0.09

Leopard

General quadratic 0.23

BP-ANN quadratic 0.21

Quintic 0.08

BP-ANN quintic 0.07

GA-BP-ANN 0.06

Sapphire

General quadratic 0.21

BP-ANN quadratic 0.20

Quintic 0.07

BP-ANN quintic 0.07

GA-BP-ANN 0.02

ANN: Artificial Neural Network.

doi:10.1371/journal.pone.0131489.t007
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The back propagation (BP) network is the most widely used for nonlinear relationship sim-
ulation [47]. The BP based simulation belongs to supervised learning; its training process has
two phases: forward propagation and backward propagation [48]. In the forward propagation,
the weighted and threshold values of each layer are calculated by iteration and passed into the
three-layer BP network. The backward propagation (BP) uses the weighted and threshold val-
ues for revision [49]. In this study, the BP algorithm was used to smoothing the surface of non-
linear temperature-germination responses and it was proven to effectively optimize both core
functions of quintic equation and GA.

The quadratic response surface used to be a dominant method for analyzing grass seed ger-
mination performance under a series of temperature regimes, especially to test the impact of
diurnal temperature treatments on the seed germination [11,12]. However, the two-dimen-
sional response surface could not show the global fitting error between the quadratic function
and the experimental data [10,12]; the drawback of high prediction errors (RMSE ranges from
0.21 to 0.23) could not be ignored. Consistent with our previous study [10], the quadratic/quin-
tic equation showed significantly lower fitting errors and higher confidences than their corre-
sponding general quadratic/quintic ones (Table 7). That might be because the temperature-
germination correlation was nonlinear [10]. Significantly, the GA-BP-ANNmodels for all
tested five cultivars demonstrate lowest prediction errors (RMSE ranges from 0.02 to 0.09).
Moreover, the GA-BP-ANNmodels provide with us a more reasonable prediction on region/
season suitability, especially in the warm regions with less temperature fluctuation between day
and night (eg. Hainan and Taiwan). The tested germination percentages in warm regimes
(Table 1–5) are very low when the temperature decreases are less than 5°C from T1 to T2.

Fig 1. Maps of monthly germination suitability of ‘Midnight II’ in different regions of China; (A-L)
January–December.

doi:10.1371/journal.pone.0131489.g001
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We introduced a temperature-germination response model, the GA-BP-ANN, in this study
for predicting optimal sowing region and timing of five KB cultivars. It shows better perfor-
mances than several published models, including general quadratic regression and BP-ANN
based quadratic/quintic equations in two main aspects. Firstly, the construction of tempera-
ture-germination response is simplified since there is no requirement on selections of core
functions (such as quintic equation in previous study [10]) and parameters for fitting the pro-
posed GA-BP-ANN models. Secondly, the GA-BP-ANNmodels showed a better fit (lower
RMSE values) than BP-ANNmodels previously developed. However, the present version of
GA-BP-ANNmodel for germination response still has potential for further improvement in
several aspects. For example, data of field experiences for seed temperature-germination
response should be collected for further validating these GA-BP-ANNmodels of KB cultivars.
As suggested by Hardegree and Van Vactor, both field-variable and chamber-variable tempera-
ture-germination response data should be included in the regression equations [50–53]. More-
over, the advantage of GA-BP-ANN should be utilized in building plant response prediction
module to other environmental factors which also influence the seed germination. Bradford
[54] quantified the seed germination behaviors upon a wide array of environmental conditions,
such as temperature, water potential, so as to build general germination-response models of
grass seed. In addition, plant responses to environmental factors at different growth stages,
especially the seedling stage, should be tested in laboratory conditions in future research, and
the results could be applied to building GA-BP-ANNmodels to predict the growth perfor-
mance of crop in field. GA-BP-ANN model predictions of crop responses to different

Fig 2. Maps of monthly germination suitability of ‘Diva’ in different regions of China; (A-L) January–
December.

doi:10.1371/journal.pone.0131489.g002
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environmental factors at various developing stage would provide more, reliable information
for us to select optimal planting regions and sowing times for various grasses and crops.

Conclusions
In this study, we tested the influence of diurnal fluctuations of temperatures on seed germina-
tion of five KB cultivars (‘Midnight II’, ‘Diva’, ‘Rugby II’, ‘Leopard’, ‘Sapphire’). Optimum ger-
mination for the five tested cultivars was observed at four fluctuating temperature regimes: 20/
25, 15/30, 20/30, and 25/30°C. Germination percentages of all five cultivars were found to be
lower than 50% at constant temperature regimes ranging from 20 to 30°C.

Both automatic GA-BP-ANN and other regressions were utilized to simulate the grass tem-
perature-germination response function in the current study. Since the GA-BP-ANNmethod
is independent of empirical assumptions, artificial bias is not to be a concern of its prediction.
When used by different researchers, the GA-BP-ANNmethod should always produce unbiased
results although the researchers might have different preferences in their selection of the core
equation. Therefore, this GA-BP-ANN approach will provide us a user-friendly way to tackle
the temperature-germination problem and achieve very high prediction accuracies.

Based on the experimentally derived GA-BP-ANNmodels and available climate data, a
seed-suitability national map of China for the five KB cultivars was generated. The suitability
of ‘Rugby II’ was found to fit the narrowest spatial and temporal ranges, while ‘Leopard’ fit the
widest ranges (Fig 1). In addition, the seed sowing time of tested KB should be arranged from
March to October.

Fig 3. Maps of monthly germination suitability of ‘Rugby II’ in different regions of China; (A-L)
January–December.

doi:10.1371/journal.pone.0131489.g003
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Material and Methods

Seeds and conditioning
The widely used KB cultivars in China (‘Midnight II’, ‘Diva’, ‘Rugby II’, ‘Leopard’, and ‘Sap-
phire’) were tested in this study. The grass seeds were purchased from Shanghai Chunyin Turf
Inc., (Shanghai, China) and stored at room temperature until use. Seed viability was evaluated
on moistened filter paper at 25/25°C on receipt of the seeds and after the germination experi-
ments [12]. Finally, the loss of viability during storage was found less than 1% [10,12].

Seeds were surface sterilized by soaking in 0.01% HgCl2 for one minute and rinsed four
times with sterilized distilled water. Then the seeds were placed on moistened filter papers in
petri dishes and grown in different incubators consisting of 36 different regimes of diurnal tem-
perature fluctuations: briefly 16 hours of day time at temperature T1 and 8 hours of night time
at temperature T2. Both T1 and T2 ranged from 5 to 40°C with 5°C increments [12]. Germina-
tion counts were conducted daily until no further germination occurred after about 15~20 days
(S2 File). In each experiment, three replicas of 50 seeds were tested.

Genetic algorithm
Genetic algorithms (GA) is an iterative stochastic optimization approach inspired by nature’s
evolutionary genetics: the most fit individual has the highest chance of survival [55,56]. The
GA method was widely used in solving many nonlinear optimization problems, including
those found in computational biology [57–59]. In this study, the GAmethod is used to generate
the fittest mapping function between the independent variable (the temperature matrix T) and

Fig 4. Maps of monthly germination suitability of ‘Leopard’ in different regions of China; (A-L)
January–December.

doi:10.1371/journal.pone.0131489.g004
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dependent variable (germination percentage matrix G), where T = (t1i, t2i), G = (gi), i = 1, 2,
3. . .M (M is the number of tested temperature regimes with replication), and gi ranges in the
interval [0, 1].

As mentioned above, the GA approach simulates the survival of the fittest individuals in the
population, controlled by the definition of a fitness score [39]. An initial individual is a map
function generated randomly to describe the relationship between the selected temperature
matrix T' and its corresponding germination percentage matrix G', where T' = (t1j, t2j), G' =
(gj), and j< i. Different functions represent different solutions for the temperature-germina-
tion problem. In general, the genetic algorithm contains the following steps in a sequential
order: initial population selection, fitness function evaluation, individuals selection, population
reproduction, individuals’ crossover and mutation operation modules [55]. In the meantime,
the back propagation artificial neural network was also integrated for solution optimization
[10]. To construct the GA-BP-ANNmodel, the observed 108 pairs temperature-germination
data in 36 regimes of each cultivar, were divided into a training set (90 observations, 83%) and
a test set (18 observations, 17%). The training set was chosen to cover all temperature regimes
from 5/5 to 40/40°C. Model validation was performed on 5/5, 40/40, 25/25°C, etc, (test sets)
which represented severe and moderate temperature conditions for seed germination, respec-
tively [39]. The Root Mean Square Errors (RMSE) was used to evaluate the fitness and predic-
tive capability [60].

As a reference to the performance of GA-BP-ANNmodels, the previous published
based regression methods, like general quadratic/quintic and BP optimized quadratic/

Fig 5. Maps of monthly germination suitability of ‘Sapphire’ in different regions of China; (A-L)
January–December.

doi:10.1371/journal.pone.0131489.g005
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quintic models (Figure E~I in S1 File, S3 File) were also utilized to simulate temperature-
germination responses [61]. The generalized quadratic equation was [12]: Y1 = A0+ A1

�T1+
A2

�T2+ A3
�T1

2+ A4
�T2

2+ A5
�T1

�T2, where Y1: percent predicted germination, A0: intercept,
A1 through A5: coefficients, T1, and T2: diurnal fluctuations of temperature. The general
quintic equation was previously described [10]. Briefly, it could be presented as

Y1 ¼
X5

m¼1

(Xm
n¼0

½T1
n � T2

m�n� � fðAÞ
)

þ A0
0, where Y1: percent predicted germination, A0':

intercept, and f(A): coefficient function.

Spatial mapping
The grass suitability was represented by the germination percentage. The grass suitability
maps were created using the FreeMicaps software (http://bbs.121323.com/guojf/
FreeMicaps20111001.rar). Similar to the Surfer software [62], FreeMicaps also uses point (sta-
tion) data on the grid that is compatible with GIS. The temperature values of adjacent regions
around the station were generated using Cressman interpolation method [63,64]. Means of
minimum and maximum of daily earth surface temperature in the grids made of 313 weather
stations (Figures A~D in S1 File) and for a period of 25-years (from 1983 to 2007) were calcu-
lated from the data sets obtained at the American National Aeronautics and Space Administra-
tion (NASA) website (http://power.larc.nasa.gov/cgi-bin/cgiwrap/solar/sse.cgi?grid@larc.nasa.
gov#s11). The mean, minimum, and maximum daily temperatures over the grids were used as
the T2 and T1 variables respectively in the GA-BP-ANN functions for calculating germination
percentages (grass suitability).

Supporting Information
S1 File. Mean of day/night temperatures from January to March (Figure A), from April to
June (Figure B), from July to September (Figure C) and from October to December
(Figure D) in China; Regression performance of GA-BP ANN in simulating the tempera-
ture-germination response of ‘Midnight II’ (Figure E), ‘Diva’ (Figure F), ‘Rugby II’
(Figure G), ‘Leopard’ (Figure H) and ‘Sapphire’ (Figure I).
(DOCX)

S2 File. Raw data of seed germination.
(XLS)

S3 File. Regression equations.
(DOCX)
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