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Tumors and the tumor microenvironment produce multiple growth factors that influence
cancer cell behavior via various signal transduction pathways. Growth factors, like
transforming growth factor β (TGFβ) and epidermal growth factor (EGF), have been
shown to induce proliferation, migration, and invasion in different cell models. Both
factors are frequently overexpressed in cancer and will often act in combination.
Although both factors are being used as rational targets in clinical oncology,
the similarities and differences of their contributions to cancer cell migration and
invasion are not fully understood. Here we compared the impact of treating A549
lung adenocarcinoma cells with TGFβ, EGF, and both in combination by applying
videomicroscopy, functional assays, immunoblotting, real-time PCR, and proteomics.
Treatment with both factors stimulated A549 migration to a similar extent, but with
different kinetics. The combination had an additive effect. EGF-induced migration
depended on activation of the mitogen-activated protein kinase (MAPK) pathway.
However, this pathway was dispensable for TGFβ-induced migration, despite a
strong activation of this pathway by TGFβ. Proteome analysis (data are available
via ProteomeXchange with identifier PXD023024) revealed an overlap in expression
patterns of migration-related proteins and associated gene ontology (GO) terms by
TGFβ and EGF. Further, only TGFβ induced the expression of epithelial to mesenchymal
transition (EMT)-related proteins like matrix metalloproteinase 2 (MMP2). EGF, in
contrast, made no major contribution to EMT marker expression on either the protein or
the transcript level. In line with these expression patterns, TGFβ treatment significantly
increased the invasive capacity of A549 cells, while EGF treatment did not. Moreover,
the addition of EGF failed to enhance TGFβ-induced invasion. Overall, these data
suggest that TGFβ and EGF can partly compensate for each other for stimulation of
cell migration, but abrogation of TGFβ signaling may be more suitable to suppress
cell invasion.
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INTRODUCTION

Cell migration is an indispensable function for many cells
in multicellular organisms during embryonic development.
Controlled cell migration is also critical for processes like wound
healing and inflammation throughout adult life. Deregulated cell
migration, however, especially in conjunction with the ability to
degrade extracellular matrix and invade surrounding tissues, is a
hallmark of malignancy and forms the basis for cancer metastasis
(Friedl and Wolf, 2003; Chiang and Massague, 2008).

Multiple extracellular stimuli that induce cell migration
in diverse cellular contexts have been described (Friedl and
Wolf, 2003). Nevertheless, a lot still needs to be discovered
about pathway-specific mechanisms and their contribution to
increased cell migration. Especially in cancer cells, which
often receive a number of potentially pro-migratory signals
simultaneously, a better understanding of pathway-dependencies
of migration and invasion could potentially lead to more
effective antimetastatic therapies. Since the great majority of
cancer deaths result from metastasis, this could have important
clinical implications (Gandalovicova et al., 2017). We have
chosen the KRAS mutated A549 lung adenocarcinoma cell
line for investigating how two growth factors, transforming
growth factor β (TGFβ) and epidermal growth factor (EGF),
which each play fundamental roles in tumor development
but activate clearly distinct signaling pathways (Yarden and
Sliwkowski, 2001; Schmierer and Hill, 2007), stimulate migration
and invasion individually and when acting together. Both
growth factors and their receptors are expressed by many
cancer cells as well as cells of the tumor microenvironment,
including cancer-associated fibroblasts, endothelial cells, and
immune cells (Zhang et al., 2014; Zhang S. et al., 2017;
Verrecchia and Redini, 2018; Zeng et al., 2019; Garvey et al.,
2020). Thus, lung cancer cells and cancer cells arising in
other organs have a high likelihood of simultaneously receiving
both TGFβ and EGF signals in an autocrine and paracrine
manner. The EGF signaling axis is critically involved in tumor
cell growth in lung cancer and several other cancer types,
e.g., prostate cancer (Liu et al., 2017; Cheaito et al., 2020).
The EGF-receptor (EGFR) has become an important target in
clinical oncology, and EGFR-targeting kinase inhibitors and
monoclonal antibodies are routinely used in the treatment
of lung cancer, head and neck cancer, and colorectal cancer
(Guardiola et al., 2019). Pharmacological agents blocking TGFβ

signaling are being investigated in clinical trials in pancreatic
cancer, lung cancer, and hepatocellular carcinoma (de Gramont
et al., 2017). Both growth factors have previously been linked
to epithelial to mesenchymal transition (EMT), a process by
which epithelial cells lose their cell–cell contacts and acquire
a fibroblast-like highly motile and invasive phenotype (Kalluri
and Weinberg, 2009). EMT has been described as an important
contributing process to cancer metastasis (Heerboth et al., 2015).
Moreover, EMT was shown to correlate with disease progression
and worse prognosis in various cancer types including lung
adenocarcinoma (Schliekelman et al., 2015; Cheaito et al., 2019).
The interaction of growth factors in EMT and their individual
contributions to the process are still not well understood.

Filling this knowledge gap could provide additional clues for
targeting metastasis.

The results of our study show that TGFβ and EGF have
a similar migration-stimulating potential in A549 cells, despite
inducing clearly distinct alterations in signal pathway activation,
cellular morphology, and protein expression. The combined
stimulation with both factors resulted in an additive effect
with respect to migrated distance, while selective inhibition
experiments showed that both factors can stimulate migration
independent of one another. Notably, only TGFβ, but not
EGF increased invasion and exhibited protein and transcript
expression changes associated with EMT. These results show
that stimulation of migration by EGF can occur in an EMT-
independent context and suggest that, at least in some cancer
cells, the blockade of several independent signals may be required
to inhibit migration.

MATERIALS AND METHODS

Cell Culture
A549 lung adenocarcinoma cells were obtained from the
American Type Culture Collection (ATCC) and used only for a
limited number of passages to ensure cell line identity. Cells were
cultivated in RPMI medium containing 10% heat-inactivated
fetal bovine serum (FBS) in a humidified atmosphere (37◦C, 5%
CO2). Unless stated otherwise, cells were seeded in medium with
10% FBS and all treatments with cytokines and inhibitors were
started 24 h later in medium without FBS.

Cytokines and Drugs
Epidermal growth factor and TGFβ were purchased from Sigma
and Peprotech and used at concentrations of 50 and 5 ng/mL,
respectively, following previous literature reports (Kasai et al.,
2005; Buonato et al., 2015). For treatments combining growth
factors with specific signaling pathway inhibitors, the following
compounds were added 1 h before cytokines at the indicated final
concentrations: the TGFβ receptor type I inhibitor SB-431542
(Tocris, 20 µM), the EGFR inhibitor erlotinib (Selleckchem,
10 µM), the PI3K inhibitor LY-294002 (Selleckchem, 20 µM), the
AKT inhibitor MK-2206 (Selleckchem, 5 µM), the MEK inhibitor
U0126 (Selleckchem 10 µM), the FAK inhibitor BI-853520
(Boehringer Ingelheim, 5 µM), and the ROCK inhibitor Y-27632
(Selleckchem, 10 µM). Concentrations were chosen according to
literature reports and produced only mild cytotoxicity over the
treatment period. PBS and DMSO were used as vehicle controls
for growth factors and inhibitors, respectively.

Videomicroscopy
Videos were generated using a Nikon Visitron Live Cell System
(Visitron Systems GmbH) with images taken every 5 min for 72 h.
Migration and cell cycle of single cells were manually tracked
using ImageJ to obtain coordinates for each individual cell and
time point. For further analysis of migratory behavior including
speed, mean squared displacement (MSD), directionality ratio
(DR), and origin plots, the DiPer migration tool for Microsoft
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Excel was used. The algorithms used by this program have been
described in detail by Gorelik and Gautreau (2014).

Morphology Analysis
Cells (1 × 105) were seeded into six-well plates and treated
the next day as indicated. Microscopic images were taken
48 h later using a Nikon Eclipse Ti300 microscope and Digital
Sight camera. Alternatively, respective images obtained from
videomicroscopy were used. Cell outlines were manually traced
in ImageJ for calculation of shape descriptors. Aspect ratio
(major axis/minor axis), circularity [4π(area/perimeter)2], area
and maximum diameter of single cells, and the distance to the
nearest neighbor were then determined using ImageJ.

Immunofluorescence
Cells (1.5 × 104) were seeded into eight-well chamber slides
and treated on the next day as indicated with TGFβ, EGF, or
a combination of both. Forty-eight hours later, cells were fixed
with 4% PFA for 15 min, blocked for 1 h (5% BSA, 0.3% Triton
X in PBS), and then incubated with a monoclonal anti-tubulin
antibody (Sigma, T5168, 1:2000 in 1% BSA, 0.3% Triton X in
PBS) for 1 h at RT. This was followed by anti-mouse-FITC (1:100,
Sigma, F5262) and phalloidin-TRITC (1:1000, Sigma, P1951)
treatment for 1 h at RT. Cells were embedded in Vectashield
mounting medium containing DAPI (Vector laboratories), and
slides were imaged with a Zeiss LSM 700 confocal microscope
using a 63x oil immersion lens.

Sprouting Assay
Cells (5 × 103) were seeded into 96-well U-bottom suspension
plates in medium containing 20% methyl cellulose solution (1.2%
in serum-free medium) and allowed to form spheroids for 48 h.
Meanwhile, a 96-well plate was coated with 50 µL 1% agarose.
Spheroids were then mixed with collagen resulting in 100 µL
medium containing 10% methylcellulose and 1 mg/mL collagen,
which was placed on top of the agarose. After solidification of
the mixture, another 100 µL medium containing the treatment
(2.5x) was added on top, resulting in a total volume of 250 µL
per well. Pictures were taken after 0, 24, 48, 120, and 144 h on a
Nikon Eclipse Ti300 microscope, and the mean sprout length of
10 representative sprouts, each from at least nine spheroids, was
measured using ImageJ.

Proliferation Assay
Cells (3 × 103) were seeded into 96-well plates. On the next
day, EGF, TGFβ, or both were added as indicated. Plates were
frozen at -80◦C after 72 h. For quantification, an SYBR green-
based assay was used as previously published (Schelch et al.,
2018a). Briefly, plates were thawed, lysis buffer (10 mM Tris/HCl
pH = 8, 2.5 mM EDTA, 0.1% Triton X-100) containing SYBR
green (10,000x, Thermo Fisher Scientific, 1:8000) was added, and
after incubation for 2 h at RT, fluorescence was read on an Infinite
M200 Pro Photometer (Tecan).

PCR Analysis
RNA was isolated using the InnuPrep RNA Kit (Analytik Jena)
24 h after treatment with TGFβ, EGF, or a combination of

both and reverse transcribed with M-MLV reverse transcriptase
(Thermo Fisher Scientific). SYBR green-based qPCR was
performed on a CFX96 Thermocycler (BioRad) using iTaq
universal SYBR green super mix (BioRad). Primer pairs are
listed in Supplementary Table S1. Changes in gene expression
are shown as log2 of 2−11Ct compared to the respective
untreated control and normalized to GAPDH which was used as
reference gene.

Immunoblots
Cells (1 × 105) were seeded into six-well plates and incubated
with EGF, TGFβ, or both. Cells were harvested in lysis
buffer (150 mM NaCl, 50 mM HEPES, 10% glycerol, 1 mM
EDTA, 0.5 mM Na3VO4, 10 mM NaF, 1% Triton X-100,
and 1.5 mM MgCl2); proteins were separated by SDS-PAGE
and electroblotted onto PVDF membranes. Immunoblots were
performed as described (Schelch et al., 2014). In brief, membranes
were blocked for 1 h at ambient temperature with 5% skimmed
milk or BSA following the recommendations of the respective
primary antibody manufacturers and subsequently incubated
overnight at 4◦C with primary antibodies. On the next day,
membranes were washed with TBST and incubated with HRP-
coupled secondary antibodies for 1 h at room temperature.
Blot development was done with Biorad Clarity Western ECL
Substrate, and luminescent signals were recorded on X-ray
film. The following primary antibodies were used 1:1000:
pAkt (Cell Signaling, #4060), Akt (Cell Signaling, #4691), pErk
(Cell Signaling, #9101), Erk1/2 (Cell Signaling, #4695), pSmad2
(Cell Signaling, #31085), Smad2 (Cell Signaling, #5339), and
β-Actin (Sigma, A5541). Band intensity quantification was
done with ImageJ.

Proteome Analyses
Cells (1 × 106) were seeded into 10 cm petri dishes. Treatment
with TGFβ, EGF, or both started 24 h later and lasted for
48 h. Cell morphology was microscopically checked before
harvesting the cells. Cell supernatants were collected and
proteins precipitated overnight with ethanol at −20◦C. The
cells remaining in the dishes were further processed in order
to obtain cytoplasmic and nuclear proteins, as previously
described (Slany et al., 2014). In short, cells were lyzed in
isotonic lysis buffer supplemented with protease inhibitors and
mechanical shear stress was applied by pressing the cells through
a 23 g syringe. Cytoplasmic and nuclear proteins were extracted
separately and precipitated overnight with ethanol at −20◦C.
After centrifugation, all protein samples were dissolved in
sample buffer (7.5 M urea, 1.5 M thiourea, 4% CHAPS, 0.05%
SDS, and 100 mM dithiothreitol). Protein concentrations were
determined via Bradford assays (Bio-Rad Laboratories), and in-
solution digestion of proteins was performed with trypsin (Roche
Diagnostics) (Muqaku et al., 2017).

Digested peptides were analyzed as previously described
(Muqaku et al., 2017). In short, 1 µL of peptide solution was
loaded and peptides were separated by liquid chromatography
on an UltiMate 3000 RSLC nano System (Dionex). Data
acquisition was conducted on a QExactive mass spectrometer
(Thermo Fischer Scientific) using a top-8 data-dependent
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method described previously (Slany et al., 2016). Protein
identification was achieved using the MaxQuant 1.5.2.8 software
(Cox and Mann, 2008) employing the Andromeda search
engine (Cox et al., 2011) and searching against the UniProt
database for human proteins (version 102014 with 20,195
entries). Including data obtained from three biological replicates
(independent cell experiments) as well as technical replicates
(independent injections into LC-MS system), an MS1-based
label-free quantification (LFQ) approach and statistical analysis
were applied to quantify the identified proteins based on LFQ
values using Perseus (Cox and Mann, 2012). After the removal
of potential contaminants, reversed sequences, and proteins only
identified by site, the logarithmic LFQ values on the base 2 were
calculated and averaged for technical replicates. Invalid values
were filtered using the criteria of valid values in at least 90%
of samples per treatment group in at least one group. Missing
values were replaced from a normal distribution, and t-tests were
performed (FDR < 0.05, S0 = 0.5). Identified proteins are listed in
Supplementary Table S2. Venn diagram analysis was performed
with Venny 2.1 (Oliveros, J.C. 2007-2015 Venny. An interactive
tool for comparing lists with Venn’s diagrams1.). Unsupervised
clustering was performed with Morpheus2. Pathway analysis
was performed with the DAVID 6.8 functional annotation tool
(Huang da et al., 2009a,b). Heatmaps were generated with
Prism 8.0 (GraphPad), and spider plots were created with MS
Excel. Lists of proteins included in specific biological process
categories related to cell motility were downloaded from the
MSig Database3.

Statistical Analysis
Data on cell behavior are from at least three independent
experiments each and were analyzed for statistical differences by
one-way ANOVA with Sidak’s or Dunnett’s multiple comparisons
test with Prism 8.0 (GraphPad). A P-value < 0.05 was
considered significant.

RESULTS

TGFβ and EGF Stimulate Cell Migration
Alone and in Combination
To compare the impact of two important growth factors on
cancer cell migration, we treated A549 cells that were kept
in serum-free growth medium with either TGFβ, EGF, or a
combination of both. All three treatments led to a significant
increase in migrated distance over a course of 3 days compared to
vehicle-treated control A549 cells, as shown by videomicroscopy
analysis. All cells of the treated cell populations showed increases
in migration versus the control (Figure 1A). The extent of this
increase was similar in both TGFβ- and in EGF-treated cultures,
while the combination treatment showed a further increase of
migration distance (Figure 1A). Differences were even more

1https://bioinfogp.cnb.csic.es/tools/venny/index.html
2https://software.broadinstitute.org/morpheus
3https://www.gsea-msigdb.org/gsea/msigdb

pronounced in the MSD, describing the mean squared area that a
cell covers over time (Figure 1B).

Although the increases in migrated distance were comparable
between TGFβ and EGF (Figure 1A), we observed notable
differences when we analyzed other aspects of migratory
behavior. We found that EGF-treated cells reached their
maximum speed at about 6 h which slightly dropped again at
around 20 h after treatment (Figure 1C). TGFβ, in contrast,
increased cell speed at a slower rate and plateaued at around
36 h. Treatment with both growth factors together resulted
in additive effects with a much higher speed than either of
the single treatments from around 12–36 h (Figure 1C). This
suggests that the induction of migration by EGF happens via
a different, faster pathway than induction by TGFβ. We also
assessed the straightness of cell migration by calculating the DR
over time (Figure 1D). While a value of 1 represents a totally
straight path, lower values describe progressively less straight
migration. TGFβ resulted in a distinctly lower DR than EGF
treatment. The combination treatment showed the highest DR
values (Figure 1D). The migrated distance, as well as both the
MSD and DR, are well reflected by origin plots which show 10–
15 representative tracks of single cells relative to one origin (0/0)
(Figure 1E).

Increased Migration in Response to
TGFβ and EGF Is Linked to Clearly
Distinct Alterations in Cell Morphology
Although both growth factors stimulated cell migration to a
similar extent, they produced remarkable differences with respect
to cell morphology changes (Supplementary Video S1). TGFβ

changed the shape of A549 cells from a cubic into a more
elongated, angular form with many protrusions. EGF treatment,
in contrast, resulted in round, sphere-shaped cells reminiscent
of dividing cells. When TGFβ and EGF were combined, both
cell shapes could be observed, as shown by representative
phase contrast and high-resolution confocal microscopic images
(Figure 2A and Supplementary Figures S1A–D). With respect to
migration, the fastest moving cells in the combination group were
those with the EGF-induced shape. We used circularity and area
of single cells as additional shape descriptors to better visualize
the morphological alterations following growth factor treatments
(Figure 2B). TGFβ-treated cells were bigger and more elongated
than the vehicle-treated cells, whereas EGF treatment resulted
in smaller and less elongated cells. The combination of TGFβ

and EGF showed a mix of both populations. Similar results were
obtained when aspect ratio and maximum diameter were assessed
for all treatments (Figure 2C). Cell scattering was then assessed
by nearest neighbor distance. In contrast to cell shape changes,
cell scattering was induced by TGFβ and EGF to the same extent
(Figure 2D).

Prolonged Phosphorylation of Erk Is
Induced by TGFβ but Not EGF
To analyze the involvement of the respective canonical signal
transduction pathways in TGFβ- and EGF-induced effects,
we performed immunoblots after short-term (30 min) and
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FIGURE 1 | TGFβ and EGF stimulate cell migration alone and in combination. Cells were treated with TGFβ (5 ng/mL), EGF (50 ng/mL) or a combination of both
(T + E), and live cell videomicroscopy was performed over 72 h with pictures taken every 5 min. This experiment was performed at least five times with two to four
technical replicates. (A) Dots represent cumulative migrated distance of individual cells (36 < n < 51) over 72 h, assessed by manual single cell tracking using Image
J. ***P < 0.001 treatment versus control, ###P < 0.001 T + E versus EGF, and T + E versus TGFβ, One-way ANOVA with Sidak’s multiple comparisons test.
(B) Mean squared displacement (MSD), (C) average speed, (D) directionality ratio, and (E) origin plots of representative tracked cells were calculated by DiPer. Lines
represent means and SD in (B,D), means only in (C), and individual cells in (E).

prolonged (48 h) treatment. TGFβ led to a strong induction
of Smad2 phosphorylation, as expected, but no increase in
either pErk or pAkt levels after short-term treatment was seen
(Figure 3A). Since A549 cells have a mutation in KRAS, the
control had a relatively high basal pErk level. However, when
treated with EGF and the combination, a further increase in
pErk but not pAkt was seen in the short-term experiment. Basal
and EGF treatment-induced Erk phosphorylation depended on
MEK activity, since they were blocked by MEK inhibition
(Supplementary Figure S2). These phosphorylation patterns
were distinctly altered after 48 h of treatment (Figure 3B). While
pSmad2 remained elevated in treatment groups that had received

TGFβ alone or in combination with EGF, these two groups also
had increased levels of pErk but not pAkt. In contrast, neither
pErk levels nor pAkt levels were upregulated in the EGF-treated
group compared to the control (Figure 3B).

EGF but Not TGFβ Depends on MAPK
Signaling for Stimulation of Migration
and Morphological Alterations
To determine which specific signaling cascades are required for
the observed growth factor-induced changes in cell morphology
and scattering, we pre-treated cells with small-molecule
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FIGURE 2 | Increased migration in response to TGFβ and EGF is linked to distinct alterations in cell morphology. (A) Representative phase contrast (upper panels)
and confocal (lower panels, blue: DAPI, red: actin, green: tubulin) microscopic images of A549 cells 48 h after the indicated treatments [TGFβ (5 ng/mL), EGF
(50 ng/mL), or a combination of both (T + E)]. Shape descriptors of single cells (77 < n < 115) including (B) area versus circularity, (C) aspect ratio and max.
diameter, and (D) distance to nearest neighbor were determined using Image J. Dots represent individual cells. ***P < 0.001, *P < 0.05 treatment versus control,
###P < 0.001 EGF versus TGFβ, One-way ANOVA with Sidak’s multiple comparisons test.
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FIGURE 3 | Prolonged phosphorylation of Erk is induced by TGFβ but not EGF. Representative immunoblots of A549 cells (A) 30 min or (B) 48 h after treatment with
TGFβ, EGF, or a combination of both. One example and means of densitometry data normalized to control from three experiments are shown. Beta actin was used
as a control for equal sample loading. Scans of uncropped immunoblots of all three replicates are shown as Supplementary Data.

inhibitors of downstream signaling proteins before growth
factor treatment. In addition to the changes in cell morphology
(Figure 4A), we determined cell scattering using the nearest
neighbor distance (Figure 4B). As expected, inhibition of the
TGFβ receptor and the EGFR prevented the effects of TGFβ

and EGF, respectively. The combination group displayed effects
specific for the respective not-inhibited growth factor. From
the panel of downstream inhibitors, inhibition of MEK, but
not the PI3K/Akt pathway could prevent the changes induced
by EGF. This suggests that a functioning mitogen-activated
protein kinase (MAPK) pathway is crucial for EGF-induced
morphology changes and increased motility. On the other hand,
MEK activity was not required for TGFβ-induced morphology
changes and scattering, despite the strong upregulation of
pErk levels by TGFβ after 48 h. Further, the inhibition of
FAK had no effect on morphology or migration changes in
either treatment. Inhibition of ROCK, in contrast, impaired
both the EGF- and TGFβ-induced effects, suggesting that this
protein is an important downstream effector of migration for
both growth factors.

TGFβ and EGF Regulate Partially
Overlapping Sets of Migration- and
Metastasis-Related Proteins
To further compare the underlying mechanisms of TGFβ-
and EGF-induced cell migration in A549 cells, we used

a proteomics approach. The cytoplasmic fractions, nuclear
fractions, and culture supernatants were analyzed 48 h after
treatment with TGFβ, EGF, or the combination. Positive hits
in each fraction were identified using cut-off parameters of
q-value < 0.25 (Supplementary Table S3). In the cytoplasm, 230
proteins were upregulated and 378 downregulated by TGFβ, 212
upregulated and 152 downregulated by EGF, and 435 upregulated
and 532 downregulated by the combination (Figure 5A and
Supplementary Table S4). The respective numbers of up-
and downregulated proteins in the nuclear fractions and in
the supernatants are shown in Supplementary Figure S3 and
Supplementary Tables S5, S6. Overall, TGFβ changed a higher
number of proteins than EGF in all three cellular compartments.
Proteins up- or downregulated by one growth factor were more
likely to be altered in the same direction by the other growth
factor. For example, of the 439 proteins upregulated by EGF
in the nuclear fraction, 278 (63%) were also upregulated by
TGFβ, whereas only 33 (7.5%) were downregulated by TGFβ.
The combination treatment showed a much bigger overlap in
altered proteins with TGFβ than with EGF treatment. This was
also reflected in an unsupervised clustering analysis performed
with the logarithmic LFQ intensities, where TGFβ and the
combination clustered together in all cell compartments, whereas
EGF was closer to the control (Supplementary Figure S4).

Various cell migration-related proteins in the nuclear fractions
(Figure 5B) and the cytoplasmic and supernatant fractions
(Supplementary Figure S5) were altered in a treatment-specific
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FIGURE 4 | EGF but not TGFβ depends on MAPK signaling for stimulation of migration and morphological alterations. (A) Cells were pre-treated with the indicated
inhibitors or vehicle 1 h before treatment with TGFβ, EGF, or both (T + E) and images were recorded after 48 h. Growth factor-specific alterations in cell morphologies
(as described in Figure 2A) are indicated by the respective colors. (B) Cells were treated as above with SB-431542 (SB), erlotinib (Erlo), LY-294002 (LY), MK-2206
(MK), U0126 (U0), BI-853520 (BI), Y-27632 (Y), or vehicle (V) plus the respective growth factors, and distance to nearest neighbors was assessed using Image J.
Data are shown as scatter plots and mean (yellow line) of >100 individual cells. The mean diameter of a non-treated cell (37 µm) is shown as a red horizontal line
and was chosen as cut-off for the mean to describe cell scattering (Bakiri et al., 2015; Selvaraj et al., 2015; Hyakusoku et al., 2016).

way. For example, treatment with TGFβ and the combination
stimulated expression of Matrix Metalloproteinase 2 (MMP2),
N-cadherin, and the transcription factor Jun, while EGF did
not. On the other hand, EGF increased Jun-D and the EGFR
ligand Amphiregulin. A number of proteins linked to cell motility
like CDK1, LIF, and Dynactin subunit 1 were upregulated by
each of the three treatments, while some, like FOSL1, were only
altered by the combination. Notably, we observed the expected
downregulation of EGFR in the cytoplasm of samples that had
received EGF and an increase in nuclear Smad2 in samples

treated with TGFβ (Figure 5C). Interestingly, an increase of
lactate dehydrogenase (LDHA) was observed in the supernatant
of all growth factor-treated samples, which is indicative of
increased cell death.

A gene ontology (GO) term analysis performed on commonly
upregulated proteins in the cytoplasm across all three treatments
showed that “cell motility” and “cytoskeletal organization”
were the second and fourth most significantly associated
pathways (Figure 5D). Cytoplasmic proteins upregulated only
by EGF but not by TGFβ were strongly associated with
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FIGURE 5 | TGFβ and EGF regulate partially overlapping sets of migration- and metastasis-related proteins. Proteomics analysis was performed in triplicates with
two technical replicates. (A) Venn diagram showing the numbers of upregulated/downregulated proteins (cut-off: q < 0.25) in the cytoplasmic fraction of A549 cells
48 h after treatment with TGFβ, EGF, or a combination of both compared to the vehicle-treated control. (B) Heatmap showing expression levels of selected
migration-related proteins in the nuclear fraction [LFQ values, * indicates q < 0.25 compared to control (Co)]. (C) Heatmap showing the expression of EGFR in the
cytoplasm (CYT), Smad2 in the nucleus (NE), and LDH in the supernatant (SUP). (D) Upregulated proteins in the cytoplasmic fraction shared by TGFβ, EGF, and the
combination were subjected to GO term analysis and the top five biological process categories ranked by P-value are shown. (E) Up- and downregulated proteins in
the cytoplasm, nucleus, and supernatant were pooled for each treatment. Overlaps with proteins in different migration-related GO-term categories were calculated
and are shown as spider plot. (F) Venn diagram showing the overlap of pooled up- and downregulated proteins in all three cell fractions after TGFβ or EGF treatment
and proteins represented in the GO term “cell motility.”

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 March 2021 | Volume 9 | Article 634371

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-634371 March 8, 2021 Time: 17:4 # 10

Schelch et al. Cell Migration in A549 Cells

translation, whereas those regulated by TGFβ but not EGF
or exclusively by the combination treatment were linked
to cell–cell and cell–matrix adhesion (Supplementary Figure
S5). To focus specifically on migration-related proteins, we
investigated the overlap of all TGFβ-regulated, all EGF-regulated,
and all combination-regulated proteins from Supplementary
Table S3 with proteins represented in various migration-
related GO terms. The results indicate a marked difference
with respect to the GO term EMT, which showed a higher
overlap with TGFβ-regulated proteins compared to EGF-
regulated proteins, whereas other categories showed little
difference (Figure 5E). Of the TGFβ-regulated proteins, 230
were represented in the cell motility category. Of those, 89
were shared with the 112 EGF-regulated proteins represented
in this category (Figure 5F). Thus, the motility proteins
shared by TGFβ and EGF represent the majority (79%)
of the EGF-regulated motility proteins but only 39% of
the TGFβ-regulated motility proteins. We then submitted
TGFβ-regulated and EGF-regulated motility proteins for GO
term analysis. As expected, the top five GO terms associated
with TGFβ- and EGF-regulated motility proteins showed a
high degree of overlap (Supplementary Figure S7). However,
“positive regulation of cell migration” was the top GO term
associated with TGFβ-regulated motility proteins and the top
GO term for EGF-regulated motility proteins was “leukocyte
migration.”

Overall, the proteomics data suggested that (i) TGFβ and EGF
regulate distinct but partially overlapping sets of cell adhesion
and motility proteins, (ii) all treatments increase cell death to
some extent, and (iii) TGFβ has a higher capacity to induce
extracellular matrix degradation.

All Treatments Decrease Cell Number
and the Combination Increases Doubling
Time
Epidermal growth factor and its receptor are well known for
their ability to stimulate cell growth and survival of normal and
malignant cells (Sibilia et al., 2007; Cheaito et al., 2020). TGFβ,
in contrast, induces cell death in many normal epithelial cell
types but can stimulate growth and survival of mesenchymal
cells (Zhang Y. et al., 2017). Since the increase in LDHA
from the above proteomics data indicated an increased cell
death by all treatments, we analyzed growth factor-induced
impacts on cell growth, cell cycle progression, and survival.
SYBR green-based proliferation assays after treatment with
either growth factor or the combination showed a decrease
in cell number after 72 h of treatment, which was most
pronounced with TGFβ (Figure 6A). Cell fate maps generated
from live cell videomicroscopy data (Figure 6B) showed 9.8,
17.5, 11.1, and 36.3% of cell death, respectively, for the control
and cultures treated with TGFβ, EGF, and the combination.
Regarding cell cycle, no changes in M phase length were observed
in any treatment (Supplementary Figure S8). While neither
growth factor alone altered the time between cell divisions, a
significant increase was observed in the combination-treated
group (Figures 6B,C).

EGF Does Not Contribute to EMT or
Invasion Either Alone or in Combination
With TGFβ
A549 cells are a well-known model for TGFβ-induced EMT (Kim
et al., 2007). The stimulation of migration, the morphological
alterations, and the protein expression changes observed in
our experiments are all consistent with induction of EMT
by TGFβ. EGF has also been described to induce EMT in
different model systems like colon cancer (Sakuma et al., 2012)
and mesothelioma cell lines (Schelch et al., 2018b), and was
reported to cooperate with TGFβ for EMT induction (Docherty
et al., 2006; Uttamsingh et al., 2008). Since the proteomics
data had revealed a strong connection to EMT for treatments
containing TGFβ, but not for EGF treatment, we analyzed
mRNA expression changes of classic EMT marker genes in all
groups. Indeed, E-cadherin transcript expression was repressed
and an increase of N-cadherin, Vimentin, Zeb1, Snail, and
Laminin C2 mRNA was seen in cultures treated with TGFβ

(Figure 7A). In contrast, EGF had no significant effect on any
of these EMT markers on its own. Moreover, there was no
significant difference between the combination and TGFβ alone.
We then expanded the gene panel to include ITGA6, PD-L1,
and MMP1, which were previously shown to be upregulated by
EGF in EMT models of mesothelioma (Schelch et al., 2018b).
However, none of these genes were significantly affected by EGF
treatment in A549 cells (Figure 7B). Interestingly, these genes
were significantly upregulated with TGFβ. To test whether these
EMT-like expression patterns translated into invasive potential,
sprouting assays were conducted. Consistent with the expression
of MMP2 and other EMT markers, only TGFβ was able to
significantly induce invasive sprouting (Figure 7C). In contrast
to its strong effect on cell migration, EGF had no significant effect
on spouting either alone or in the combination treatment.

DISCUSSION

The signaling pathways of EGF and TGFβ both represent
relevant targets in several cancers. EGFR is hyperactivated by
mutations in about 10% of NSCLC patients (Lynch et al.,
2004) and by gene amplification in an even larger fraction of
glioblastoma patients (Libermann et al., 1985). Kinase inhibitors
of EGFR are used in EGFR mutated lung cancer patients
(Lynch et al., 2004), and EGFR targeting monoclonal antibodies
are used in colorectal cancer patients in combination with
chemotherapy (Eisterer and Prager, 2019). Kinase inhibitors
targeting the TGFβ receptor ALK5 have shown promising
results in pancreatic cancer and hepatocellular carcinoma in
clinical trials (de Gramont et al., 2017). Thus, dissecting the
contribution of EGF and TGFβ signals to malignant cell
behavior is of substantial interest for therapeutic applications.
Under the serum-free conditions used in our experiments,
both factors had a strong stimulating effect on migration but
repressed cell growth. This would be in line with the “go
or grow hypothesis” suggesting that cells will favor either
proliferation or migration but not both at the same time
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FIGURE 6 | All treatments decrease cell number and the combination increases doubling time. (A) Quantification of SYBR green-based cell proliferation assays 72 h
after growth factor treatment with TGFβ (5 ng/mL), EGF (50 ng/mL), or a combination of both (T + E) as indicated. Bars represent means and SEM of three
experiments. (B) Cell fate maps created from videomicroscopy. Each row represents one single cell; the time of interphase is shown in gray, while M-phases are
black. The end of a bar before 72 h indicates cell death. (C) Doubling time of single cells with treatment as indicated, extracted from cell fate maps. Dots represent
individual cell doublings. ***P < 0.001, **P < 0.01, treatment versus control, one-way ANOVA with Dunnett’s multiple comparisons test.

(Giese et al., 1996). Although EGF was shown to stimulate cell
survival in multiple models (Henson and Gibson, 2006), the
lack of serum-contained survival factors in our experiments

might result in oncogene-induced cell death, a phenomenon
described for activation of both EGFR (Ali et al., 2018) and Ras
(Chi et al., 1999).
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FIGURE 7 | EGF does not contribute to EMT or invasion either alone or in combination with TGFβ. Log2 fold change of gene expression after 24 h of treatment as
indicated versus controls of (A) the typical EMT marker genes E-cadherin (CDH1), N-cadherin (CDH2), vimentin (VIM), Zeb1, Snail (SNAI1), and laminin γ2 (LAMC2)
and (B) genes previously linked to EGF-induced EMT [integrin α6 (ITGA6), PD-L1, and MMP1] was determined by qRT-PCR (mean and SEM of three biological
repeats performed in duplicates). GAPDH was used as housekeeping gene for normalization. (C) Representative images and quantification of invasive sprouts
formed by A549 cell spheroids (n = 9) embedded in a 3D collagen matrix after treatment with TGFβ, EGF, or both (T + E) as indicated. Data are shown as mean and
SEM of nine spheroids derived from three biological repeats. ***P < 0.001, **P < 0.01, *P < 0.05 treatment versus control, one-way ANOVA with Dunnett’s multiple
comparisons test.

An interesting finding is the strong stimulation of migration
by EGF, despite the presence of oncogenic Ras (KRASG12S)
in A549 cells (Pender et al., 2015). Although oncogenic
Ras leads to hyperactivation of the MAPK cascade (Takacs
et al., 2020), EGF treatment was nevertheless able to further
increase Erk phosphorylation suggesting that mutated Ras
leads to constitutive but submaximal activation of Erk
via the MAPK cascade. Similar to the results presented
here, dependency of EGF-stimulated migration on the
MAPK pathway was previously reported in mesothelioma
cell lines, albeit in the absence of oncogenic Ras (Schelch
et al., 2018b). For TGFβ, inhibition of MEK was unable

to block the increase in migration and scattering. This
is in contrast to previous reports showing crosstalk with
Ras and Ras-dependent pathways to be essential to switch
the TGβ response from pro-apoptotic to pro-migratory
(Grusch et al., 2010).

Our data suggest that EGF-induced and TGFβ-induced
pro-migratory effects in A549 cells are more independent
of each other than previously reported. For instance, in the
lung cancer cell lines H322 and the pancreatic cancer cell
lines HPAF-II, EGF and TGFβ cooperated in the induction
of EMT (Buonato et al., 2015). Although multiple reports
show induction of EMT by EGF or other growth factors like
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FGF2 or HGF binding to and activating receptor tyrosine kinases
(Sakuma et al., 2012; Farrell et al., 2014; Schelch et al., 2018b),
EGF-induced migration in A549 cells was not connected to an
increase in EMT. This was suggested by both proteomics and
mRNA data and further confirmed by the inability to stimulate
invasive behavior. EGF was previously shown to regulate the
EMT markers E-cadherin and Vimentin in mesothelioma cells
(Schelch et al., 2018b) and colorectal cancer cells (Sakuma et al.,
2012) but failed to do so in A549 cells. TGFβ, in contrast, showed
a strong repression of E-cadherin and stimulation of Vimentin
in A549 cells. Moreover, several factors, including the calcium-
binding protein Calreticulin (Wu et al., 2017), the transcriptional
coregulator Ski (Yang et al., 2015), and the microRNA miR-205
(Zeng et al., 2016), have previously been shown to either promote
or repress TGFβ-induced EMT in A549 cells by interfering with
various components of the TGFβ signaling axis.

Despite the differences with respect to EMT induction, cell
shape changes, and migration kinetics, there was a considerable
overlap in protein expression changes between EGF and TGFβ.
This is best exemplified by the far higher numbers of proteins
changed in the same than in the opposite direction by both
treatments. It is likely that at least some of these proteins
are required for cell motility irrespective of the stimulus.
Additionally, the ability of the ROCK inhibitor to block
the scattering induced by both EGF and TGFβ suggests the
dependency of both growth factors on an overlapping set of
motility proteins. ROCK1 and ROCK2 are central regulators
of actin-myosin contractility and actin cytoskeleton dynamics
and are being discussed as potential therapy targets in cancer
and other diseases (Shahbazi et al., 2020). The lack of an effect
of EGF on matrix degrading enzymes like MMP2 and the
specific morphology of EGF stimulated cells could indicate that
EGF may favor a more amoeboid over a mesenchymal type
of cell migration compared to TGFβ. In the proteomics data,
however, the GO term amoeboid migration was not differently
represented between EGF-treated and TGFβ-treated A549 cells.
Moreover, in the breast cancer cell line MDA-MB-231, EGF was
shown to promote mesenchymal rather than amoeboid migration
(Geum et al., 2016).

With respect to clinical implications, our data suggest that
stimulation of EGFR by EGF or other ligands of this receptor
may have additional pro-tumorigenic effects such as increased
cell migration, even in the presence of Ras mutations. Coming
from a single cell model, these data have to be interpreted with
caution. In the clinic, treatment of Ras mutated tumors with
EGFR-targeting agents is generally not thought to be effective
(Ghimessy et al., 2020). In line with our findings, however, recent
data from in vivo models likewise suggest that EGFR contributes
to lung tumorigenesis in the presence of mutated Ras (Moll
et al., 2018). On the other hand, blocking EGFR may only have
limited effects on invasion and may not mitigate TGFβ-induced
EMT. Indeed, occurrence of EMT has been observed in NSCLC
patients as a means of acquired resistance under therapy with
EGFR inhibitors (Zhu et al., 2019). Based on the data from A549
cells, blocking TGFβ signals could be more effective in combating
invasion and EMT at least in a subset of lung cancer patients,
but would still allow for EGF induced migration. In terms of

inhibiting cell migration and in consequence spread of tumor
cells, a combination approach of EGFR and TGFβ-receptor
inhibitors could be more effective. Preclinical studies using
agent combinations targeting both EGFR and TGFβ-receptors
have shown enhanced antitumor effects (Bedi et al., 2012;
Serizawa et al., 2013), and our data support further research
in this direction.
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Supplementary Figure 1 | Representative confocal images (individual channels
and merged) of A549 cells 48 h after treatment with EGF, TGFβ, or a combination
of both (T + E) as indicated. Cells were fixed and immunocytochemically stained
with phalloidin (actin, red), DAPI (nucleus, blue), and an antibody against
tubulin (green).

Supplementary Figure 2 | Immunoblots of A549 cells treated with EGF for
30 min in the presence or absence of the MEK inhibitor U0126. A representative
example and pErk/Erk ratios from three biological repeats are shown. Beta actin
was used as a control for equal sample loading.

Supplementary Figure 3 | Venn diagrams showing the number of upregulated
and downregulated proteins (q < 0.25) in the nuclear fraction (A) and the
supernatant (B) of A549 cells 48 h after treatment with TGFβ, EGF, or a
combination of both (T + E) compared to vehicle-treated controls.
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Supplementary Figure 4 | Heatmap and unsupervised clustering of the mean
LFQ values of all detected proteins in the cytoplasma (CYT), the nucleus (NE), and
the supernatant (SUP) of A549 cells 48 h after the respective treatments.

Supplementary Figure 5 | Heatmap showing expression levels of selected
migration-related proteins (A) in the cytoplasmic fraction and (B) in the
supernatant [LFQ values, * indicates q < 0.25 compared to control (Co)].

Supplementary Figure 6 | Proteins in the cytoplasmic fraction of A549 cells
upregulated (q < 0.25) by TGFβ but not EGF (upper panel), EGF but not TGFβ

(middle panel), or the combination treatment but not either growth factor alone
(lower panel), were subjected to GO term analysis. The top five biological process
categories ranked by p-value are shown.

Supplementary Figure 7 | The up- and downregulated cell motility proteins from
all three cell fractions of A549 cells treated with TGFβ (upper panel) and EGF
(lower panel) were pooled and subjected to GO term analysis. The top five
biological process categories ranked by p-value are shown.

Supplementary Figure 8 | M-phase length of single cells with treatment as
indicated, extracted from cell fate maps.

Supplementary Table 1 | Primers used for PCR.

Supplementary Table 2 | Identified proteins by proteome analyses.

Supplementary Table 3 | Proteins upregulated and downregulated (q < 0.25) in
the cytoplasmic, supernatant, and nuclear fractions of A549 cells treated with
EGF, TGFβ, or the combination versus untreated controls.

Supplementary Table 4 | Number of proteins (i) up- and downregulated
(q < 0.25) in the cytoplasmic (cyt) fractions of A549 cells treated with TGFβ, EGF,
or both (E + T) and (ii) number of overlapping proteins in these fractions.

Supplementary Table 5 | Number of proteins (i) up- and downregulated
(q < 0.25) in the nuclear (nuc) fractions of A549 cells treated with TGFβ, EGF, or
both (E + T) and (ii) number of overlapping proteins in these
fractions.

Supplementary Table 6 | Number of proteins (i) up- and downregulated
(q < 0.25) in the supernatant (sup) fractions of A549 cells treated with TGFβ, EGF,
or both (E + T) and (ii) number of overlapping proteins in these fractions.

Supplementary Video 1 | Videomicroscopy of A549 cells treated with EGF,
TGFβ, EGF + TGFβ, and vehicle only (Co) over the course of 72 h.

Supplementary Data | Scans of uncropped immunoblots.
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