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Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) plays a critical role in the patho-
genesis of cancer including glioblastoma, the most common and aggressive form of brain 
cancer. Targeting the PI3K pathway to treat glioblastoma has been tested in the clinic 
with modest effect. In light of the recent finding that PI3K catalytic subunits (PIK3CA/
p110α, PIK3CB/p110β, PIK3CD/p110δ, and PIK3CG/p110γ) are not functionally 
redundant, it is imperative to determine whether these subunits play divergent roles in 
glioblastoma and whether selectively targeting PI3K catalytic subunits represents a novel 
and effective strategy to tackle PI3K signaling. This article summarizes recent advances 
in understanding the role of PI3K catalytic subunits in glioblastoma and discusses the 
possibility of selective blockade of one PI3K catalytic subunit as a treatment option for 
glioblastoma.
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inTRODUCTiOn

Glioblastoma
Glioblastoma is a grade IV glioma accounting for approximately 55% of all cases of malignant brain 
tumors. The 5-year overall survival for glioblastoma is only about 5% even after aggressive treatments 
including maximal surgical removal of the tumor, ionizing radiation, and chemotherapy (1–6). This 
poor prognosis is, at least in part, owing to the high incidence of tumor recurrence; nearly 100% of 
glioblastoma patients will succumb to tumor recurrence if they live more than 2 years. The average 
survival for patients with recurrent glioblastoma is about 7.5 months (7), because these patients 
often cannot undergo another major resection, and the tumors are resistant to radiation and chemo-
therapies (7–10). With no standard of care treatment for recurrent glioblastoma, new strategies 
for therapeutic intervention are urgently needed. Therapies targeting essential survival pathways 
in glioblastoma [e.g., inhibitors of receptor tyrosine kinases (RTKs) or signaling molecules] have 
achieved modest, yet encouraging, therapeutic benefits in recurrent glioblastoma (11–22). The dif-
ficulty of designing targeted therapies in the clinic is often attributed to the lack of biomarkers for 
patient selection, the high toxicity of these drugs, the difficulties in delivering drugs into the brain, 
and the unclear mechanisms of therapeutic targets in glioblastoma.
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TABle 1 | Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitors in 
clinical trials for glioblastoma in the United States.

Pi3K 
inhibitors

Targets Trial phases nCT number

XL765 PI3K/mechanistic 
target of rapamycin 
(mTOR)

I NCT01240460

XL147 Pan-PI3K I NCT01240460
XL765 PI3K/mTOR I (with temozolomide) NCT00704080
BEZ235 PI3K/mTOR I/II NCT02430363
GDC-0491 Pan-PI3K I/II NCT02430363
BKM120 Pan-PI3K II NCT01339052
BKM120 Pan-PI3K I/II (with INC280) NCT01870726
BKM120 Pan-PI3K I/II (with Bevacizumab) NCT01349660
BKM120 Pan-PI3K I (with LDE225) NCT01576666

Data were retrieved from http://clinicaltrials.gov. Temozolomide is a DNA alkylating 
agent used for treating glioblastoma. INC280 is an inhibitor of MET proto-oncogene. 
Bevacizumab targets vascular endothelial growth factor. LDE225 is an inhibitor of 
Hedgehog signaling.
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Phosphatidylinositol-4,5-Bisphosphate 
3-Kinase (Pi3K) Signaling
The PI3K pathway plays an essential role in signal transduc-
tion and modulates various biological processes including cell 
proliferation, survival, motility, death, and metabolism (23, 24). 
Aberrations in these processes are pivotal in the pathogenesis of 
cancer, including glioblastoma (25, 26). Upon activation of RTKs 
or G protein-coupled receptors (GPCRs), PI3K phosphorylates 
phosphatidylinositol-4,5-bisphosphate (PIP2 or PtdIns4,5P2) 
on the plasma membrane, yielding phosphatidylinositol-3,4,5-
triphosphate (PIP3 or PtdIns3,4,5P3), which subsequently 
activates V-Akt murine thymoma viral oncogene homolog 
(AKT) to inhibit cell death and thereby sustain cell survival. The 
PI3K pathway is negatively regulated by the tumor suppressor 
phosphatase and tensin homolog (PTEN), which dephospho-
rylates PIP3 [reviewed in Ref. (27, 28)]. Based upon genome 
sequencing data from The Cancer Genome Atlas (TCGA), 
more than 88% of glioblastoma tumors harbor mutations in the 
signaling pathways driven by RTKs, oncogenic RAS gene fam-
ily, and/or PI3K (29). PTEN is altered in approximately 40% of 
glioblastoma patients and is considered as a biomarker of glio-
blastoma prognosis (30, 31). Frequent mutations in PTEN and 
certain PI3K genes have been reported in primary and recurrent 
glioblastomas (29, 32–40). The oncogenic role of these genes 
has been validated in genetically engineered mouse models of 
glioblastoma [summarized in Ref. (41–43)]. A recent study ana-
lyzing the spatiotemporal genomic architecture of glioblastoma 
found that mutations of a PI3K gene were commonly clonal, 
early events of tumorigenesis, and affected the tumor response 
to therapies (44).

Because of the critical role of hyper-activation of PI3K in 
cancer and therapeutic resistance, considerable efforts have been 
directed to develop chemical inhibitors targeting the PI3K/AKT 
signaling pathway. To date, there are more than 50 chemical 
compounds specifically blocking the activity of PI3K/AKT and 
showed promising effects on tumor inhibition in preclinical stud-
ies, but only some drugs have successfully entered clinical trials 

for glioblastoma treatment (Table 1). PI3K or PI3K/mechanistic 
target of rapamycin (mTOR) dual inhibitors (e.g., XL765, wort-
mannin, PI-103, PX-866, and LY294002) alone or in combina-
tion with radiotherapy or chemotherapy substantially inhibited 
glioblastoma cell growth in preclinical studies (45–49). A pan 
PI3K inhibitor PX-866 showed modest effect on the prognosis 
of 33 recurrent glioblastoma patients in a phase II clinical trial 
(12). While this is encouraging, the high toxicity and severe side 
effects associated with non-selective PI3K inhibitors has limited 
their clinical applications (50–53). An in-depth understanding 
of PI3K signaling will help improve the therapeutic efficacy of 
PI3K-based glioblastoma therapies.

THe DiveRGenT ROleS OF ClASS iA 
Pi3K CATAlYTiC SUBUniTS in 
GliOBlASTOMA

Classification of Pi3K Genes
Based on the structural differences, specificities to their sub-
strates, and differences in modes of regulation, PI3K genes are 
grouped into three classes (I, II, and III) (26). Class I PI3K genes 
control the activity of PI3K/AKT signaling and are often geneti-
cally altered in glioblastoma (29). Class II PI3K genes, while not 
well studied, are implicated in regulating angiogenesis and cilium 
function (26). Class III PI3K genes are primarily involved in the 
regulation of autophagy (54). In this review, we will focus on 
class I PI3K genes owing to their essential roles in PI3K/AKT 
signaling pathway and glioblastoma. The differential regulation 
of class I PI3K genes further divides this class into two subclasses: 
IA and IB. The class IA PI3K gene family consists of three highly 
homologous catalytic subunits PIK3CA, PIK3CB, and PIK3CD 
(PI3K catalytic subunit α, β, and δ) that encode p110α, p110β, 
and p110δ, respectively. These subunits form a complex with 
any of five regulatory subunits p85α, p55α (a splicing variant of 
p85α), p50α (a splicing variant of p85α), p85β, and p55γ, encoded 
by PIK3R1, PIK3R2, and PIK3R3 (PI3K regulatory subunit 1, 2, 
and 3), respectively. Class IB PI3K is composed of one catalytic 
subunit p110γ encoded by PIK3CG (PI3K catalytic subunit γ) 
and two regulatory subunits: p101 encoded by PIK3R5 (PI3K 
regulatory subunit 5) and p87 (also known as p84 or p87PIKAP) 
encoded by PIK3R6 (PI3K regulatory subunit 6) (26, 55). Our 
recent work has revealed that class IB catalytic subunit p110γ 
is expressed at an undetected level in glioblastoma cells and 
blocking this specific subunit exhibits no cytotoxicity (56). As 
such, we will herein only discuss the role of class IA PI3K catalytic 
subunits in glioblastoma.

PiK3CA in Glioblastoma
PIK3CA, frequently mutated in cancer (57), is often oncogenic 
(58–61); hence, much attention has been drawn on this particular 
PI3K subunit in many different cancers. The frequency of PIK3CA 
mutations in glioblastoma ranges from 4.3 to 26.7% due to diverse 
detection approaches and different sample sizes (29, 39, 40, 57, 
62–65). For example, Broaderick et al. reported that 5 out of 105 
glioblastoma patients harbored PIK3CA mutations (4.8%) (66), 
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whereas PIK3CA mutations were detected in 4 samples when 
Sameul et al. analyzed 15 glioblastoma specimens (26.7%) (57). 
Genome-wide sequencing of 91 glioblastomas revealed a 6.6% 
mutation rate in the PIK3CA gene (29). However, frequencies of 
PIK3CA mutations detected by PCR amplification followed by 
DNA sequencing varied significantly as stated above. Based on 
the report from Kita et al. (62), PIK3CA mutations in primary 
(directly diagnosed as glioblastoma) or secondary (originated 
from low-grade gliomas) glioblastoma were 4.7% (5 out of 107) 
or 3.1% (1 out of 32), respectively. To date, there is no evidence 
showing that PIK3CA mutations alone are able to transform glia 
cells to induce the formation of glioblastoma. Additional studies 
investigating the role of PIK3CA mutants in glioblastoma are 
therefore needed.

Our laboratory recently analyzed the gene expression profile 
and clinical data from 99 recurrent glioblastomas retrieved from 
the TCGA database. We found that PIK3CA mutations had no 
correlation with recurrence rate. In addition, levels of PIK3CA 
mRNAs had no significant association with recurrence risk and 
recurrence-associated patient survival (56). In the same study, 
we knocked down PIK3CA/p110α in a panel of glioblastoma 
cell lines and found that loss of PIK3CA/p110α failed to both 
inactivate AKT and block the survival of A172, U87MG, SF295, 
and U251 glioblastoma cells. Our results together suggest that 
PIK3CA/p110α is dispensable for PI3K/AKT signaling in glio-
blastoma, and perhaps the progression of this deadly disease. 
Consistent to our results, depletion of PIK3CA using short 
hairpin RNAs (shRNAs) did not decrease levels of active AKT 
in U251 and U87MG cells and failed to inhibit the viability of 
U251 cells or the growth of U87MG xenograft tumors (67–69). 
However, inconsistent or contradictory results have been shown 
in some other studies. For example, Weber et  al. reported that 
knockdown of PIK3CA/p110α blocked the survival and migra-
tion of SKMG26, D54, and primary glioblastoma cells (70). In 
combination with temozolomide or carmustine, small interfering 
RNAs (siRNAs) of PIK3CA and AKT3 substantially reduced the 
viability of T98G glioblastoma cells (71). Future studies should 
focus on clarifying the role of PIK3CA/p110α in glioblastoma 
using patient-derived primary glioblastoma cells in conjunction 
with orthotopic glioblastoma models or genetically engineered 
mouse glioblastoma models.

In our recent work, we tested a panel of p110α-specific 
inhibitors (PIK75, BYL719, MLN1117, and HS173) in 
glioblastoma. PIK75 and HS173 significantly inhibited the 
viability of glioblastoma cell lines and primary tumor cells, 
whereas MLN1117 and BYL719 only showed modest toxicity 
(56). Congruently, other studies showed that PIK75 at 100 nM 
blocked the growth of U87MG cells (72) or T98G cells in 
culture or in animals (73), whereas BYL-719 alone did not 
induce a remarkable growth inhibition in LN229 and U87MG 
cells (74). As stated earlier, p110α inhibitors often induce 
hyperglycemia in patients (50, 75, 76). This is consistent with 
our observation that p110α inhibitors are significantly toxic to 
astrocytes (IC50 ranging from 0.1 to 8 µM) (56). Hence, it is 
perhaps difficult to utilize p110α-specific inhibitors as cancer 
drugs due to their limited therapeutic window.

PiK3CB in Glioblastoma
Compared to PIK3CA, oncogenic PIK3CB mutations are rare. 
Several studies have recently revealed that mutations at the 
residue D1067 (PIK3CBD1067Y, D1067A, or D1067V) display oncogenic 
potential, and confer resistance to erlotinib [an inhibitor of 
epidermal growth factor receptor (EGFR)] in non-small-cell 
lung cancer or decrease the sensitivity of breast cancer cells to 
pictilisib (also known as GDC-0941, an inhibitor of p110α/δ) 
(77, 78). Similarly, PIK3CBA1048V induces tumor formation with 
a short latency after introduced into human embryonic kidney 
HA1E-M cells (79). Intriguingly, PIK3CBD1067A and PIK3CBD1067V 
have been found in two glioblastoma patients based on the TCGA 
genomic sequencing data of 599 glioblastoma tissues, indicative 
of an approximately 0.3% mutation rate. Other than oncogenic 
mutants described above, wild-type PIK3CB/p110β protein 
is able to induce tumor formation. Biochemical studies have 
revealed that the amino acid K342 in wild type p110β exhibits 
structural changes (i.e., disrupted interactions between p110β 
and its regulatory partner p85), which endows p110β with an 
unusually high transformation potential similar to the oncogenic 
p110α mutant p110α-N345K (80). In fact, p110β is proven to 
be essential for the formation of prostate and breast cancer in 
mouse models (81, 82) and for tumors driven by the loss of PTEN  
(68, 81) or GPCRs (26, 83–85).

In search of novel survival factors for glioblastoma, we recently 
identified 20 kinase genes important for the survival of U87MG 
cells (86). Through exploring the relationship of these candidates 
with glioblastoma recurrence using the TCGA patient data, we 
found that high levels of PIK3CB mRNAs correlated with high 
incidence and poor survival of glioblastoma recurrence (86). 
Compared to other class IA PI3K isoforms, PIK3CB was the 
only PI3K catalytic subunit that showed a strong association 
with recurrence rate, risk, and prognosis (56). In line with the 
observation that PIK3CA mutations and levels of PTEN exhibited 
no relationship with glioblastoma disease progression (56), the 
above results have demonstrated that PIK3CB is more important 
than other PI3K catalytic subunits and PTEN in the diagnosis and 
prognosis of glioblastoma recurrence.

Our recent work also determined the role of PI3K catalytic 
subunits in AKT signaling and survival of glioblastoma cells (56). 
First, we found that levels of p110β, but not other p110 isoforms 
or PTEN, strongly correlated with levels of active AKT in nine 
glioblastoma cell lines, eight primary glioblastoma cells, and six 
lines of glioblastoma stem cells. In U87MG cells that express high 
levels of p110β (p110βhigh), depletion of p110β inactivated AKT, 
whereas knockdown of other p110 proteins had no effect. In con-
trast, p110β knockdown failed to mitigate AKT activity in A172 
cells expressing a low level of p110β (p110βlow). These results were 
further substantiated by the observation that p110β-selective 
inhibitors are more specific in deactivating AKT than other 
PI3K isoform-selective inhibitors. These results demonstrate 
that p110β dictates AKT activation and promotes cell survival 
in p110βhigh glioblastoma cells. This conclusion is further sup-
ported by the results from other studies. Zhao et al. showed that 
the p110β-specific inhibitor TGX-221 significantly decreased the 
levels of phosphorylated AKT at both S473 and T308 (pAKTS473 
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FiGURe 1 | PIK3CB/p110β in glioblastoma. This figure illustrates a PIK3CB/
p110β-dictated survival pathway in glioblastoma. Receptor tyrosine kinases 
(RTKs) or G protein-coupled receptors (GPCRs) selectively activates PIK3CB/
p110β (but not PIK3CA/p110α or PIK3CD/p110δ), leading to production of 
phosphatidylinositol-3,4,5-triphosphate (PIP3) and subsequent 
phosphorylation of AKT. The activation of this signaling pathway promotes 
cancer cell survival while inhibiting cell death, the consequences of which are 
drug resistance and tumor recurrence. Hence, PIK3CB/p110β promotes 
glioblastoma disease progression and targeting PIK3CB/p110β using 
selective inhibitors represents a novel and effective approach to treating 
glioblastoma.
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and pAKTT308) in U87MG cells, whereas the p110α inhibitor 
PIK75 and p110δ inhibitor CAL101 only induced a reduction of 
pAKTT308, but not pAKTS473 (72). This difference may explain 
why SP600125 (an inhibitor of c-Jun N-terminal kinases) only 
synergizes with TGX-221, but not PIK75 or CAL101, to inhibit 
cell viability and tumor growth (72). Chen et al. (67) and Pu et al. 
(87) also reported that shRNAs of PIK3CB, but not PIK3CA, 
inactivated AKT and decreased cell viability of U251 cells. More 
importantly, depletion of PIK3CB substantially blocked the 
growth of U251 xenografts in mice. Similarly, Wee et  al. (68) 
and Millan-Ucles et al. (88) showed that siRNAs or shRNAs of 
PIK3CB, but not shRNAs of PIK3CA, inhibited the growth of 
U87MG cells.

We exploited a panel of PI3K isoform-selective inhibitors 
and tested their activities on glioblastoma cell viability (56). 
The p110β inhibitor TGX-221 and GSK2636771 mitigated the 
proliferation of p110βhigh U87MG and SF295 cells while having 
no effect on p110βlow A172 and LN229 cells. The p110α inhibi-
tor PIK75 showed a strong cytotoxicity to all glioblastoma cell 
lines tested, whereas another p110α inhibitor BYL719 failed to 
display selective growth inhibition in p110αhigh cells. To provide 
a possible explanation for the unusually high toxicity of PIK-75, 
we monitored activity of AKT and extracellular signal-regulated 
kinase (ERK) and found that PIK-75 inhibited both AKT and 
ERK, suggesting that this particular p110α inhibitor is not a 
selective inhibitor of PI3K/AKT. By contrast, the p110β inhibi-
tor TGX-221 only attenuated the activity of AKT, but not ERK. 
Hence, p110β inhibitors are more selective in affecting PI3K 
activities in glioblastoma. Relevant to clinical applications, IC50s 
of p110β inhibitors in human astrocytes are relatively high (100.4 
and 291 µM, respectively). In stark contrast, other PI3K inhibitors 
robustly block astrocyte growth with IC50s ranging from 0.1 to 
21.2 µM. Given this low cytotoxicity to normal astrocytes, selec-
tively targeting PIK3CB/p110β is expected to have minimal side 
effects, thereby representing an appealing approach in treating 
glioblastoma.

PiK3CD in Glioblastoma
A PIK3CD/p110δ inhibitor idelalisib had achieved a plausible 
clinical outcome in treating chronic lymphocytic leukemia (CLL) 
(89). While PIK3CD/p110δ has been well studied in blood can-
cers, little is known about the role of this subunit in glioblastoma. 
We have probed different glioblastoma cells with a PIK3CD/
p110δ antibody (56). We found that this subunit was differentially 
expressed in glioblastoma cells and its expression levels did not 
correlate with AKT activation. Moreover, knockdown or inhibi-
tors of PIK3CD/p110δ failed to inhibit AKT and cell viability. 
Our results suggest that PIK3CD/p110δ plays a dispensable role 
in the disease progression of glioblastoma. This conclusion is also 
supported by studies from Jones et al. (90), Holland et al. (73), and 
Zhao et al. (72). In these studies, treatment of U87MG, T98G, or 
LN18 cells with PIK3CD/p110δ inhibitors CAL101 or IC87114 
displayed no or negligible cytotoxicity.

However, Schulte et  al. have shown that expression of 
PIK3CD/p110δ, but not other PI3K catalytic subunits, is sig-
nificantly enhanced in BS153 glioblastoma cells with acquired 

resistance to the EGFR inhibitor erlotinib (91). siRNA of p110δ 
restores erlotinib sensitivity in BS153 cells. In another study, 
siRNA-mediated knockdown of p110δ mitigates the migration 
of U87MG cells, whereas siRNAs of p110α and p110β exhibit no 
activity (92). Together, these results suggest that PIK3CD/p110δ 
regulates the migration, but not the survival, of glioblastoma 
cells. Nonetheless, the role of this subunit in glioblastoma and 
whether targeting PIK3CD/p110δ is an effective treatment for 
glioblastoma require further research.

Divergent Roles of Class i Pi3K Genes in 
normal and Malignant Tissues
A growing body of information strongly suggests that the 
four PI3K catalytic subunits are not functionally redundant in 
normal and malignant tissues. For example, insulin signaling 
often requires p110α, but not p110β, suggesting that blockade 
of p110α may be more harmful to normal tissue than inhibit-
ing p110β (81, 93–96). Indeed, p110α inhibitors often induce 
hyperglycemia in patients (50, 75, 76). Two other PI3K catalytic 
subunits, p110γ and p110δ, are highly expressed in immune 
cells and have been shown to be more involved in maintaining 
homeostasis of the immune system and in the development of 
blood malignancies (97–100). The p110δ inhibitor, idelalisib 
(CAL-101), has been recently approved by the Food and Drug 
Administration to treat relapsed CLL, and this drug has achieved 
an overall response in more than 70% of patients in a phase I 
clinical trial (89). Furthermore, a combination of idelalisib and 
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particular, research from our group strongly suggests that 
PIK3CB/p110β is a dominant PI3K catalytic subunit that dictates 
PI3K/AKT signaling, thereby becoming a selective survival factor 
for glioblastoma. Future research will focus on elucidating the 
molecular mechanisms underlying the selective activation of 
p110β/AKT signaling in p110βhigh glioblastoma. These details at 
the molecular level will shed light on the design and production 
of PIK3CB/p110β-selective inhibitors with stronger inhibition 
of glioblastoma and less toxicity to normal brain tissues. Taken 
together, PI3K catalytic subunits play divergent roles in glioblas-
toma, underscoring the importance and necessity of selectively 
targeting one PI3K subunit to treat glioblastoma.
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