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Abstract: Early detection of bacteremia is important to prevent antibiotic abuse. Therefore, we aimed
to develop a clinically applicable bacteremia prediction model using machine learning technology.
Data from two tertiary medical centers’ electronic medical records during a 12-year-period were
extracted. Multi-layer perceptron (MLP), random forest, and gradient boosting algorithms were
applied for machine learning analysis. Clinical data within 12 and 24 hours of blood culture were
analyzed and compared. Out of 622,771 blood cultures, 38,752 episodes of bacteremia were identified.
In MLP with 128 hidden layer nodes, the area under the receiver operating characteristic curve
(AUROC) of the prediction performance in 12- and 24-h data models was 0.762 (95% confidence
interval (CI); 0.7617–0.7623) and 0.753 (95% CI; 0.7520–0.7529), respectively. AUROC of causative-
pathogen subgroup analysis predictive value for Acinetobacter baumannii bacteremia was the highest
at 0.839 (95% CI; 0.8388–0.8394). Compared to primary bacteremia, AUROC of sepsis caused by
pneumonia was highest. Predictive performance of bacteremia was superior in younger age groups.
Bacteremia prediction using machine learning technology appeared possible for acute infectious
diseases. This model was more suitable especially to pneumonia caused by Acinetobacter baumannii.
From the 24-h blood culture data, bacteremia was predictable by substituting only the continuously
variable values.

Keywords: bacteremia; prediction; machine learning; data extraction time

1. Introduction

Bacteremia is a life-threatening disease that can progress to sepsis and septic shock,
finally resulting in death [1,2]. Therefore, it is essential to identify bacteremia early and be
able to predict its progression. Early intervention with appropriate antibiotics is important
for patients with bacteremia [3–5], and differentiation of bacterial and viral infections is
essential to prevent antibiotic abuse. By reducing unnecessary exposure to antibiotics in
viral infections, the occurrence of antibiotic-related adverse reactions and the emergence of
multidrug-resistant organisms can be reduced [6,7].

The field of making prediction models using machine learning has made rapid
progress in recent years, and fields such as diagnosis using medical images and anal-
ysis of unexpected events using electrocardiogram are particularly active [8–10]. As more
data is accumulated year-by-year, it is expected that performance of prediction will improve.
Meanwhile, although the prediction model for acute infectious diseases is still limited,
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the ripple effect on public health, such as reduction of infectious-disease-related deaths and
appropriate use of antibiotics, will be very inspiring.

The prediction model of infectious diseases using machine learning has been used par-
ticularly for diagnoses in specific clinical settings, such as intensive care units or emergency
rooms, and for diagnosing specific bacterial pathogens [11–14]. So far, machine learning
approaches targeting general acute infectious diseases rather than specific infection have
not been explored. Thus, we focused on analyzing the risk of progression to bacteremia
when blood cultures have been obtained from in-hospital patients. Our previous studies
have presented a model for predicting bacteremia using 3-year medical data [15,16]. Based
on our experience from the previous study, we extracted a larger clinical dataset over a
period longer than 10 years and applied learning and validation processes.

Thus, we aimed to develop a prediction model for bacteremia using causative bacterial
strain, site of infection, age, and sex of the target patients, and propose a predictive model
using a machine learning technique that can be comprehensively applied to any clinical
situation. In addition, the medical data were divided by extraction time into two groups
(within 12 h vs. 24 h of blood culture) and the effect of data extraction time on deep learning
analysis was verified.

2. Materials and Methods
2.1. Study Population

From 1 January 2007–31 December 2018, a total of 685,225 blood culture test data were
extracted from Sinchon and Gangnam Severance Hospitals, Yonsei University-affiliated
tertiary-care centers in Seoul, Republic of Korea. During a 12-year period, 521,948 cases from
Sinchon Severance Hospital and 163,277 cases from Gangnam Severance Hospital were
extracted. All inpatients who underwent blood culture tests, regardless of their admitted
location (emergency room, general ward, or intensive care unit), were included in this study.
Of these, 62,454 cases in patients younger than 18 years old were excluded from the study,
and 560,036 cases with no blood culture growth were included as a control group with non-
bacteremia. Only confirmed true bacteremia data were included in bacteremia group; those
considered to be contamination of normal skin flora (13,402 cases) and fungal infection
(4871 cases) were also excluded from the bacteremia group. The 5710 cases of duplicated
blood culture tests within 24 h in the same patient were not included in the bacteremia
group. Finally, 38,752 true bacteremia episodes were identified from 622,771 blood culture
episodes, and 560,036 non-bacteremia episodes were used as controls (Figure 1).

2.2. Data Extraction

Medical data were extracted from the Clinical Data Warehouse (CDW) system in
the Yonsei University Health System. We constructed a training dataset using the result
of bacteremia, excluding data without blood culture results. Data duplication for the
same patient was avoided by allotting unique identification. If both positive and negative
data were present simultaneously for the same patient, the negative data were removed.
Fungemia was not included in the training data in any of the positive/negative data
samples by being initially excluded from the data set. The negative data were trained using
pure non-bacteremia results in blood culture.

All medical data from the two tertiary centers, Sinchon and Gangnam Severance
Hospitals, were combined. Each data set consisted of training, validation, and test in the
ratio 8:1:1; the training and validation datasets were used for model training, while the test
dataset was used for verification.
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2.3. Definition of Bacteremia

Patients with more than one blood culture test within 24 h were considered to have
the same episode. Thus, when additional blood culture tests were performed for the
same patients after 24 h, it was considered a new episode [17]. The primary endpoint
of this study was true bacteremia defined as a positive outcome in all blood culture
episodes. For true bacteremia, common contaminants such as Bacillus spp., viridans-group
streptococci, and coagulase-negative staphylococci, were excluded based on the United
States National Healthcare Safety Network system [18,19].

However, cases of positive results in two pairs of common contaminants in three other
different blood cultures were considered as true bacteremia. In general, blood culture tests
were performed when three pairs of tests had been completed on samples collected from
three different peripheral vessels, and when one of the three pairs had been identified
with common contaminants, it was not regarded as true bacteremia. When bacteremia
and non-bacteremia data exist simultaneously in one patient, negative data were deleted,
and only positive data were selected for training.

2.4. Clinical Variables

The age, sex, vital signs, and the results of the laboratory test within 24 h from the
onset of blood culture time were used as analytical variables. Clinical data within 12 h of
blood culture were further analyzed for comparison with the 24-h data group. The clinical
variables were analyzed by numeric values, not stratified. Overall, 92 variables were
controlled for, and cases missing over 80% of results were excluded during data analysis.
Each variable was also modified by a change of annual scale. For example, in Gangnam
Severance Hospital, the measurement unit used for C-reactive protein (CRP) data was
mg/dL until June 2009, but this was changed to mg/L from July 2009. Thus, the data for
CRP estimates before June 2009 were weighted ten times more thereafter. After excluding
missing and duplicated data, 34 clinical variables were included for further ranking in the
method analysis. The clinical variable of hospital stay refers to the length of hospitalization
from the first day of admission to the time for blood culture tests of the study subjects.
The inpatient’s total length of hospital stay was not considered as a clinical variable because
it was based on the time point when the prediction model could be applied.

2.5. Subgroup Analysis

The causative pathogen of bacteremia was analyzed from 12-year medical records,
and is shown in Table S1. Bacteria were also identified in samples other than blood,
such as urine, sputum, and bile; the results were used to classify the infection site as
urinary tract infection, pneumonia, or biliary tract infection. When the same pathogen as
in blood culture was identified in urine, sputum, and bile within 1 week before or after
blood culture, it was defined as the infection at the relevant site. When blood culture
was positive but there was no bacterial growth in urine, sputum, or bile culture, it was
classified as primary bacteremia. The age at the time of blood culture was divided into
18–39, 40–59, and 60–80 years. The analysis was conducted by dividing the group into
young and immunologically competent age groups to show gradually decreasing immune
function with age. Those over 80 years of age were excluded from the refining process due
to accounting for less than 1% of the total data.

2.6. Machine Learning Technique and Statistical Analysis

The training data were used to develop a prediction model using the conventional
statistical approach and machine learning techniques, the multi-layer perceptron (MLP),
random forest, and gradient boosting algorithm (GBM), and then validation was per-
formed [20–23]. We constructed a standard multi-layer feedforward neural network (MLP
with the following three layers: one input, two hidden layers, and one output layer).
We applied 128 nodes in the hidden layer. The model was trained to optimize the cross-
entropy loss using the Root Mean Square Propagation optimizer with mini-batches of
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size 64, a learning rate of 0.001, a momentum of 0.9, and a dropout of 0.5 as a regularization
technique. Finally, the early stopping technique was applied to prevent overfitting [24–26].
For GBM, we chose extreme gradient boosting (XGBoost) as the implementation. Further-
more, we performed the comparison with XGBoost, Gradient Boosting Trees (Gbtree)-based
mode that used regression tree as a weak learner, and Dropout meets Additive Regression
Trees (DART) [27].

In addition, the performance of these models was verified by comparison with the
non-neural network model, random forest. The prediction performance was assessed
based on the area under the receiver operating characteristic curve (AUROC), sensitivity,
and specificity from the validation data. The resulting AUROCs and the 95% confidence
intervals (95% CI) were calculated. We tried to show the influence ranking by the one-out
search (OOS) method, which is a technique that learns a model by sequentially excluding
the features one-by-one from the variables in a model learning process, with many feature
variables used as input. The difference in performance was then calculated, and the
ranking of variables was set in an order based on the performance change. Furthermore,
we implemented MLP for the subgroup analysis to make the prediction model for the type
of pathogen, source of infection, and comparison of prediction accuracy by AUROC in
stratified age groups.

2.7. Ethics Approval and Consent to Participate

The protocol for this retrospective study was reviewed and approved by the Insti-
tutional Review Board of Gangnam Severance Hospital, Yonsei University College of
Medicine in Seoul, Korea (Reg. No. 3-2017-0315, approval date, 5 June 2018). The board
waived the requirement for informed consent. All procedures were conducted following
the guidelines of the Declaration of Helsinki.

3. Results
3.1. Comprehensive Analysis

A total of 38,752 bacteremia episodes were identified from 622,771 blood culture
episodes. For the 12-year period, the medical data were divided into three categories:
training, validation, and test data. The two institutions had a three-fold difference in
the size of inpatient admission capacity and a difference in the data disposition as a
proportion of disease severity; therefore, the integrated data were trained and applied for
internal validation.

When the clinical variables within 12 or 24 h before the blood culture time point
were applied, the predicting performance of bacteremia was slightly higher in the 12-h
data group (Table 1). In the MLP with 128 hidden layer nodes, AUROC of the prediction
performance was 0.762 (95% CI; 0.7617–0.7623) in the 12 h before blood culture time
data and 0.753 (95% CI; 0.7520–0.7529) in the 24 h before blood culture time data; in the
random forest model, the AUROC was 0.758 (95% CI; 0.7572–0.7591) and 0.738 (95% CI;
0.7383–0.7401), respectively. Two types of ensemble model—XGboost (Gbtree) and XGboost
(DART)—were used for the additional analysis; the AUROC was non-inferior compared
with other machine learning methods. Furthermore, the AUROC in the 12-h data group
was slightly higher than that in the 24-h data group: AUROC, 0.745 (95% CI; 0.7446–0.7455)
in the 12-h model vs. 0.730 (95% CI; 0.7300–0.7304) in the 24-h model, using XGboost
(Gbtree); 0.744 (95% CI; 0.7439–0.7446) in the 12-h model vs. 0.727 (95% CI; 0.7256–0.7275)
in the 24-h model, using XGboost (DART).
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Table 1. Performance of predicting bacteremia using various machine learning methods.

Type of Data Model AUROC (95% CI) Sensitivity Specificity

12 h

MLP 0.762 (0.7617–0.7623) 0.695 0.706
Random Forest 0.758 (0.7572–0.7591) 0.664 0.723

XGBoost (Gbtree) 0.745 (0.7446–0.7455) 0.629 0.747
XGBoost (DART) 0.744 (0.7439–0.7446) 0.638 0.747

24 h

MLP 0.753 (0.7520–0.7529) 0.602 0.730
Random Forest 0.738 (0.7383–0.7401) 0.643 0.729

XGBoost (Gbtree) 0.730 (0.7300–0.7304) 0.607 0.729
XGBoost (DART) 0.727 (0.7256–0.7275) 0.602 0.702

Clinical data were extracted within 12 or 24 h of onset of blood culture. Abbreviations: AUROC, area under the
receiver operating characteristic curve; CI, confidence interval; MLP, multi-layer perceptron; DART, Dropouts
meet multiple Additive Regression Trees.

3.2. Influence Ranking of Clinical Variables

The influence on bacteremia prediction of the clinical variables applied to the machine
learning technique analysis was analyzed using the OOS technique; the variables are
listed by order of influence in Table 2. The monocyte counts were the most critical clinical
variables for prediction of bacteremia in both the 12- and 24-h models. The neutrophil and
platelet counts also ranked high, and hospital stay ranked third among the influencing
variables in the 12-h model but ranked ninth in the 24-h model. In our previous 3-year
retrospective analysis model, alkaline phosphatase (ALP) was the top clinical variable [16],
but in this study it ranked tenth and fifth in the 12- and 24-h models, respectively.

Table 2. Influence ranking of clinical variables to bacteremia prediction.

Rank Data Fusion within 12-h Data Fusion within 24-h

1 Monocyte Monocyte
2 Platelet Neutrophil
3 Hospital stay * Platelet
4 Neutrophil Albumin
5 T. bilirubin ALP
6 BUN T. bilirubin
7 Albumin tCO2
8 tCO2 BUN
9 AST Hospital stay *

10 ALP CRP
11 ALT Total Protein
12 White blood cell count Creatinine
13 Chloride ALT
14 aPTT Pulse rate
15 Total Protein Prothrombin time
16 Pulse rate Hemoglobin
17 Respiratory rate AST
18 DBP Sodium
19 Creatinine Chloride
20 CRP ESR

* Hospital stay refers to the length of hospitalization from first day of admission to the time of blood culture
tests of the study subjects. Clinical data were integrated based on blood culture time points. Abbreviations: T.
bilirubin, total bilirubin; ALP, alkaline phosphatase; BUN, blood urea nitrogen; AST, aspartate transaminase; CRP,
C-reactive protein; ALT, alanine transaminase; aPTT, activated partial thromboplastin time; DBP, diastolic blood
pressure; ESR, erythrocyte sedimentation rate.

3.3. Type of Pathogen

The causative strains of bacteremia are listed in the order of frequency of detection,
and the top causing pathogen was Escherichia coli (E. coli), followed by Staphylococcus
aureus (S. aureus). Among the 20 clinical strain rankings listed in Table S1, additional
analysis was performed on the top five clinically meaningful strains (E coli, S. aureus,
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Klebsiella pneumonia (K. pneumonia), Acinetobacter baumannii (A. baumannii), and Pseudomonas
aeruginosa (P. aeruginosa)). In the subgroup analysis by causative pathogen of bacteremia
with the 12-h model, the prediction of A. baumannii bacteremia demonstrated the highest
predictive value, with an AUROC of 0.839 (95% CI; 0.8388–0.8394), and the AUROC for
E. coli bacteremia was 0.794 (95% CI; 0.7928–0.7946), as shown in Table 3. Prediction of S.
aureus bacteremia showed the lowest AUROC of 0.6720 (95% CI; 0.6717–0.6741). In the 24-h
model, the prediction of A. baumannii bacteremia also showed the highest AUROC of 0.840
(95% CI; 0.8400–0.8407). Prediction for K. pneumonia showed an AUROC of 0.778 (95% CI;
0.7777–0.7795), while the AUROC of S. aureus bacteremia was 0.737 (95% CI; 0.7354–0.7376)
(Figure 2A).
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Table 3. Subgroup analysis of bacteremia prediction according to causing pathogen, infection site,
age, and sex.

Type of
Data Subgroup With

Bacteremia
Without

Bacteremia AUROC (95% CI) Sensitivity Specificity

12 h

Pathogen

E. coli 1805 14,068 0.794 (0.7928–0.7946) 0.693 0.766
S. aureus 1827 14,068 0.672 (0.6717–0.6741) 0.656 0.618

K. pneumoniae 1518 14,068 0.763 (0.7616–0.7658) 0.677 0.716
A. baumannii 1727 14,068 0.839 (0.8388–0.8394) 0.789 0.750
P. aeruginosa 855 14,068 0.729 (0.7278–0.7331) 0.611 0.706

Infection site

Urine 2202 21,540 0.749 (0.7485–0.7504) 0.642 0.725
Sputum 3051 21,540 0.822 (0.8217–0.8229) 0.792 0.715

Bile 650 21,540 0.775 (0.7742–0.7764) 0.739 0.684
Primary

bacteremia 557 21,540 0.561 (0.5572–0.5651) 0.636 0.473

Age
18–39 years 1377 3885 0.781 (0.7780–0.7868) 0.3923 0.8898
40–59 years 5141 8359 0.718 (0.7152–0.7190) 0.5818 0.7382
60–80 years 8936 14,862 0.761 (0.7594–0.7622) 0.7405 0.6597

Sex
Male 9416 117,535 0.763 (0.7630–0.7636) 0.710 0.694

Female 6038 81,236 0.759 (0.7586–0.7600) 0.670 0.724

24 h

Pathogen

E. coli 2771 22,114 0.753 (0.7523–0.7353) 0.639 0.738
S. aureus 2949 22,114 0.737 (0.7354–0.7376) 0.668 0.684

K. pneumoniae 2376 22,114 0.778 (0.7777–0.7795) 0.706 0.730
A. baumannii 2621 22,114 0.840 (0.8400–0.8407) 0.817 0.747
P. aeruginosa 1280 22,114 0.718 (0.7170–0.7209) 0.688 0.661

Infection site

Urine 3489 34,502 0.787 (0.7860–0.7878) 0.751 0.689
Sputum 4700 34,502 0.805 (0.8041–0.8052) 0.670 0.756

Bile 1022 34,502 0.792 (0.7910–0.7936) 0.659 0.740
Primary

bacteremia 987 7169 0.583 (0.5823–0.5855) 0.517 0.616

Age
18–39 years 413 5712 0.758 (0.7554–0.7648) 0.463 0.845
40–59 years 1415 12,415 0.719 (0.7176–0.7214) 0.566 0.749
60–80 years 3026 21,154 0.723 (0.7221–0.7238) 0.560 0.713

Sex
Male 14,585 241,478 0.748 (0.7473–0.7481) 0.673 0.707

Female 10,030 164,521 0.760 (0.7597–0.7608) 0.619 0.760

Merge
hour

Under 12 h 323,949 20,608 0.726 (0.7261–0.7266) 0.631 0.705
Over 12 h 82,050 3957 0.726 (0.7253–0. 7258) 0.653 0.679

Clinical data were integrated based on blood culture time points. Abbreviations: AUC, area under the receiver
operating characteristic curve; CI, confidence interval; E. coli, Escherichia coli; S. aureus, Staphylococcus aureus;
K. pneumoniae, Klebsiella pneumonia; A. baumannii, Acinetobacter baumannii; P. aeruginosa, Pseudomonas aeruginosa.

3.4. Source of Infection

Compared to primary bacteremia, the expected performance of bacteremia with the
same strain reported in sputum (i.e., bacteremia caused by pneumonia) showed the highest
AUROC: 0.822 (95% CI; 0.8217–0.8299) in the 12-h model and 0.805 (95% CI; 0.8041–0.8052)
in the 24-h model. For biliary infection, an AUROC of 0.775 (95% CI; 0.7742–0.7764) was
observed in the 12-h model and 0.792 (95% CI; 0.7910–0.7936) in the 24-h model. In contrast,
the prediction for primary bacteremia showed an AUROC of 0.561 (95% CI; 0.5572–0.5651)
in the 12-h model and 0.583 (95% CI; 0.5823–0.5855) in the 24-h model (Figure 2B).

3.5. Age and Sex Subgroup Analyses

In the analysis of the three stratified age groups—young (18–39), middle (40–59),
and older (60–80 years)—the number of participants in each group increased as age in-
creased. However, the prediction performance showed the opposite tendency: the AU-
ROC was 0.781 (95% CI; 0.7780–0.7868) in the younger age group and 0.761 (95% CI;
0.7594–0.7622) in the older age group in the 12-h model. In the 24-h model, the AUROC
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decreased slightly, at 0.758 (95% CI; 0.7554–0.7648) and 0.723 (95% CI; 0.7221–0.7238) in
the younger and older age groups, respectively (Figure 2C). Furthermore, there were no
significant differences in the prediction performance by gender (AUROC, 0.763 (95% CI;
0.7630–0.7636) vs. 0.759 (95% CI; 0.7586–0.7600) in the 12-h model; 0.748 (95% CI; 0.7473–
0.7481) vs. 0.760 (95% CI; 0.7597–0.7608) in the 24-h model) (Figure 2D). The overall
comparison between extraction time of data showed similar AUROC with 0.726 (Figure 2E).

4. Discussion

From the analysis of the electronic medical data over the 12-year period, the MLP model
demonstrated the best performance of bacteremia prediction compared to using XGBoost or
random forest models. This result is consistent with the known best predictive performance
of MLP in our previous research on bacteremia prediction using a three-year cohort [16].

To explain the influence of the clinical variables, OOS was applied to the ranking
methods, with monocyte, platelet, and neutrophil counts identified as the most significant
influential variables. These clinical variables are also related to the first defense mech-
anism: the innate immunity of the host. The monocytes are involved in phagocytosis,
and the neutrophils interact with monocytes; they both coordinate an effective immune re-
sponse [28–30]. The function of platelets in sepsis is already well known: the platelet counts
are important laboratory findings in the diagnosis of sepsis and severe sepsis, and show
lower index compared to that in non-septic control groups [31]. During infection, pro-
inflammatory cytokines activate the coagulation system when endothelial damage occurs,
and finally activate the platelets. Additionally, endotoxins released by the bacteria may
trigger platelet activation. In bacteremia or during progression to sepsis, fibrin deposition
occurs and hypercoagulation continues. In this pathogenesis, platelet counts play a critical
role, and could be a marker for prognosis of diseases [32–35].

Thus, these clinically influential variables can play a key role in bacteremia prediction
using machine learning analysis. In this study, the clinically influential variables showed
excellent predictive performance for the progression to bacteremia when blood was cultured
due to fever and under general host conditions, rather than due to specific bacterial strains
or host situations as reported previously [11–13]. Thus, a prediction model can be used to
ultimately prevent progression to sepsis and septic shock.

In subgroup analysis by causative pathogen, A. baumannii, E. coli, and K. pneumoniae
showed high AUROC for bacteremia prediction. Bacteremia due to pneumonia, biliary,
or urinary tract infections showed more prominent predictive values than primary bac-
teremia. The causative bacterial pathogens of primary bacteremia are almost always
nosocomial catheter-related or community-acquired soft tissue skin infection. In particular,
S. aureus is the most common Gram-positive pathogen of primary bacteremia [36,37]. This
is consistent with the result of higher prediction of Gram-negative bacteria than Gram-
positive strains in subgroup analysis by causative pathogen in our research. The severity of
pneumonia or biliary sepsis was higher than that of primary bacteremia, it was therefore
very encouraging to note that the performance of bacteremia prediction of pneumonia and
biliary sepsis was superior. By improving the performance of the prediction of subgroup
diseases, the more severe diseases that can lead to mortality can be predicted, and early
intervention can improve patient prognosis and reduce unnecessary antibiotic use [38].

In the age subgroups, the change in laboratory data was lower in the elderly, and the
numerical change was more sensitive in the younger age group. In the elderly, fever
response is often blunted, and the elevation of the white blood cell counts may also be
absent even in the presence of bacteremia [39,40]. Our results proved that the predictive
performance in the younger age group had the highest value of the three different age
subgroups. For the two different sex subgroups, the differences in the predictive values
were not significant.

In some cases, the AUROC was higher for the 24-h model than the 12-h model. That
being said, utilization and comparison are possible in both instances, and it was confirmed
that there was no difference in AUROC between the two groups when the 24-h data was
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divided by the 12-h standard (Figure 2E). Therefore, if data within 24 h of blood culture
was applied in the analysis, there would be no difficulty in predicting bacteremia at any
time. In most cases, blood cultures are performed when a fever is above 37.7 ◦C. Thus,
the clinical data from the blood culture time can be useful for bacteremia analysis, and the
physician can decide whether to use antibiotics for febrile patients based on the laboratory
data within 24-h. Prompt intervention with appropriate antibiotics can lead to a better
prognosis. Therefore, daily application of the patient’s clinical data allows this predictive
model to be used for re-evaluating and making decisions about the patient’s condition.

There are several studies which showed better performance than our model. However,
other studies only focused on patients who had a specific pathogen [11,12], were already
diagnosed with SIRS [41], or were treated in the intensive care unit or emergency room [13],
while our study tried to make a comprehensive prediction model for general inpatients
without limiting to a specific medical situation or pathogen. We tried to create a prediction
model of bacteremia that can be comprehensively applied regardless of the place where
the blood was collected and the clinical conditions of the study subjects. Therefore, we can
apply this predictive model to actual medical practice at any time. In order to increase
the accuracy of the control group in the training set, only cases in which no pathogens
(including fungi) were found in blood culture were classified as the non-bacteremia group.
Ultimately, a comprehensively applicable prediction model was developed, and since the
AUROC shows differences according to subgroups (type of pathogen and infection site),
it is expected that the performance of prediction will be upgraded if additional medical
data and interpretations are added in actual clinical practice.

This study has some limitations. First, this is a retrospective study using electronic
medical records extracted from the CDW system. Refining 12-years of clinical data, with
vast amounts of information, is challenging but essential. If the real-time prediction model
built based on this retrospective analysis is verified with prospective data and continuously
enhanced and supplemented, the performance of the bacteremia prediction model can
be continuously improved. Second, the results of this study were based on the analysis
of integrated data extracted from two tertiary medical institutions. Therefore, external
validation is required with data extracted from multiple other centers. Third, it is necessary
to match our findings with those of novel sepsis-marker studies, which have recently
attracted attention [42,43]. In our 12-year retrospective analysis, serum procalcitonin
data were only available for the last 5 years. Therefore, inflammatory cytokines, such as
interleukin-6, and tumor necrosis factor-α, along with other novel sepsis biomarkers, such
as presepsis, CD64, and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1),
can be collected continuously as new clinical variables in order to advance the prediction
model.

5. Conclusions

In conclusion, prediction of bacteremia using a machine learning technique showed
high AUROC, with the possibility of predicting acute infectious diseases. This is a predictive
model that can be used regardless of the specific bacterial strain, site of infection, or hospital
department. Subgroup analysis by bacterial pathogen and infection site revealed that this
model is more relevant in predicting pneumonia caused by A. baumannii. In addition, when
clinical data were applied to deep learning analysis, no significant difference was observed
in the data extraction time within 12- or 24-h blood culture times. Therefore, when clinical
data is within 24 h of blood culture, bacteremia can be predicted at any time by substituting
only the continuously variable values. Daily application of the patient’s clinical data to the
prediction model and re-evaluation of the output from the model can lead to appropriate
management of patients. Consequently, real-time monitoring based on vital signs and
blood test results may improve clinical prognosis in real-life clinical practice.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/diagnostics12010102/s1, Table S1: Top twenty bacterial strains identified in blood culture.
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Table S2: Baseline characteristics between bacteremia and non-bacteremia groups using clinical data
from 12 h before blood culture tests.
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