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Neuronal networks in the brain are the structural basis of human cognitive function,

and the plasticity of neuronal networks is thought to be the principal neural mechanism

underlying learning and memory. Dominated by the Hebbian theory, researchers have

devoted extensive effort to studying the changes in synaptic connections between

neurons. However, understanding the network topology of all synaptic connections has

been neglected over the past decades. Furthermore, increasing studies indicate that

synaptic activities are tightly coupled with metabolic energy, and metabolic energy is

a unifying principle governing neuronal activities. Therefore, the network topology of all

synaptic connections may also be governed by metabolic energy. Here, by implementing

a computational model, we investigate the general synaptic organization rules for neurons

and neuronal networks from the perspective of energy metabolism. We find that to

maintain the energy balance of individual neurons in the proposed model, the number

of synaptic connections is inversely proportional to the average of the synaptic weights.

This strategy may be adopted by neurons to ensure that the ability of neurons to transmit

signals matches their own energy metabolism. In addition, we find that the density of

neuronal networks is also an important factor in the energy balance of neuronal networks.

An abnormal increase or decrease in the network density could lead to failure of energy

metabolism in the neuronal network. These rules may change our view of neuronal

networks in the brain and have guiding significance for the design of neuronal network

models.

Keywords: neuronal networks, network topology, synaptic organization rules, metabolic energy, energy balance,

computational model

INTRODUCTION

The cognitive functions of the brain are performed through interactions among thousands of
neurons, and neuronal networks in the brain are the structural basis of such interactions (Gu
et al., 2015; Medaglia et al., 2015). Understanding the general synaptic organization rules by
which neurons are organized into neuronal networks is essential for gaining further insight into
brain cognitive functions. However, most previous works have focused on changes in synaptic
connections between neurons but seldom on the network topology of these connections. Over
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the past decades, extensive studies have shown that neurons in
neuronal networks interact with each other through synaptic
connections, and brain cognitive functions such as the formation
of memories and the learning of actions, are closely related to
the changes in synaptic connections (Neves et al., 2008; Sweatt,
2016). Based on vast experimental observations, researchers have
proposed various theories to interpret these changes. The most
influential theory is Hebb’s postulate, which studies changes in
synaptic connections as a function of pre- and post-synaptic
neuronal activities (Hebb, 1949; Caporale and Dan, 2008).
Nevertheless, increasing studies indicate that in addition to
pre- and post-synaptic neuronal activities, other factors can
also modulate the changes in synaptic connections, such as
glia and neuromodulators (Picciotto et al., 2012; Corty and
Freeman, 2013; Mitsushima et al., 2013; De Pittà et al., 2016).
These findings raise the question of whether there exist any
general synaptic organization rules that potentially guide the
changes in synaptic connections. Growing evidence suggests
that metabolic energy may be a unifying principle governing
neuronal activities (Laughlin, 2001; Niven and Laughlin, 2008;
Hasenstaub et al., 2010; Yu and Yu, 2017), which naturally leads
to the inference that changes in synaptic connections are also
under the governance of metabolic energy. Synaptic transmission
and dendritic integration are two main metabolically expensive
steps in neuronal information processing, and any changes in
synaptic connections can result in fluctuations of their energy
consumption (Attwell and Laughlin, 2001; Howarth et al., 2012;
Yu et al., 2017). In particular, synaptic transmission may play
very important roles in regulating collective neuronal activities,
such as synchronization (Wang et al., 2011; Guo et al., 2012),
firing patterns and dynamics (Guo et al., 2016b), and resonance
(McDonnell and Abbott, 2009). To ensure normal information
processing in neurons, the energy balance between synaptic
transmission and dendritic integration should be maintained
regardless of how synaptic connections change. Obviously,
due to the close coupling between synaptic activities and
metabolic energy, the network topology of synaptic connections
should follow some general synaptic organization rules so that
constructed neuronal networks match their energy metabolism.

In this paper, from the perspective of energy metabolism,
a computational model is developed to investigate the general
synaptic organization rules for neurons and neuronal networks.
In this model, all regulatory actions on synaptic connections
are performed under energy constraints proposed to maintain
the energy balance between synaptic transmission and dendritic
integration in all neurons of the neuronal networks. We first
study the effects of metabolic energy on synaptic connections
in individual neurons and neuronal networks and then discuss
the general synaptic organization rules for neurons and neuronal
networks under the effects of metabolic energy based on the
simulation results. Some studies argue that in addition to synaptic
connections, neurons can transmit information through field
coupling (Xu et al., 2018), which also consumes energy. And that,
body temperature is closely related to energy metabolism in the
brain (Yu et al., 2014). Therefore, based on the conclusions in this
paper, implicit influences of field coupling and body temperature
on the energy metabolism will be discussed in the end.

METHODS

Model of Biological Neuronal Networks in
the Brain
The architecture of neuronal networks undoubtedly plays
a strong role in determining neuronal activity and energy
metabolism, and vice versa (Raichle and Mintun, 2006; Smith
et al., 2009). In neuronal networks, neurons are closely
coupled with glia, and adjacent capillaries provide them
sufficient metabolic substrates and remove metabolic wastes
(Magistretti and Allaman, 2015) (Figure 1A). Unlike artificial
neural networks in a simple feed-forward structure, brains
are characterized by highly recurrent neuronal networks that
can exhibit abundant activity patterns and perform complex
computations (Sussillo and Abbott, 2012; Nessler et al., 2013;
Sussillo, 2014). Therefore, a small-scale and recurrent neuronal
network is built here to simulate the spiking activities in
biological neuronal networks under the effects of metabolic
energy.

Consider a dynamic network of N neurons described by the
following differential equation:

ẋj = ψ(xj)+
N
∑

i=1

wij · ε(xi)+
M
∑

k=1

bkj · uk, j = 1, 2, ...,N (1)

where xj captures the state of the j-th neuron, and ψ(·) is a non-
linear function that describes the dynamics of the j-th neuron
itself; wij denotes the weight of a directed connection from the
i-th neuron to the j-th neuron, and its range is 0 ≤ wij ≤ 1;
ε(·) defines the output spiking signal of the i-th neuron; M is
the number of external signal sources of the network; bkj is the
weight of a directed connection from the k-th external signal
source to the j-th neuron, and uk denotes the spiking signal
produced by the k-th external signal source. Obviously, Equation
(1) defines the wiring diagram of the network. In the network,
the neurons simultaneously receive signals from other neurons
within the network as well as signals from sources outside the
network, and the states of the neurons can change over time. For
the individual neurons in the network, the leaky integrate-and-
fire (I&F) neuron model is used here to simulate their activities
(see Supplementary Materials) (Izhikevich, 2004). It is assumed
that the neuronal network contains NE excitatory neurons and
NI inhibitory neurons, i.e., N = NE + NI (Figure 1B). In the
network, excitatory neurons can be connected with any neurons,
but inhibitory neurons can only be connected with excitatory
neurons. That is, there are three types of synaptic connections
in the network: those from excitatory neurons to excitatory
neurons, those from excitatory neurons to inhibitory neurons,
and those from inhibitory neurons to excitatory neurons. The
connections between neurons are unidirectional. For example,
if there is a connection from the i-th neuron to the j-th neuron,
the connection from the j-th neuron to the i-th neuron definitely
does not exist. At the beginning of the simulation, whether there
are synaptic connections between neurons is random, and the
signaling directions and synaptic weights between neurons are
also randomly assigned. During the simulation, the directions
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remain unchanged, but the synaptic weights vary according to
the rules proposed later in this paper. According to experimental
results, the ratio of the number of excitatory neurons to the
number of inhibitory neurons is set to 4:1 in the neuronal
network (Markram et al., 2004), and inhibitory neurons are
used to balance the activity intensity of the entire network
(Hattori et al., 2017). For simplicity, the synaptic weights between
excitatory neurons and inhibitory neurons are assumed to remain
fixed. In this case, the shaping of the network architectures by
metabolic energy is reflected by the changes in synaptic weights
between excitatory neurons.

Energy Constraints of Neurons in the
Neuronal Network
Because both the number of capillaries throughout the network
and the ability of each capillary to transport oxygen and
glucose are limited, maintaining the energy balance of various
neuronal activities is essential for the normal operation of
neurons and neuronal networks (Waterson and Horvath, 2015).
Experimental and theoretical studies have shown that the
primary processes that consume metabolic energy in neuronal
information processing are synaptic transmission and dendritic
integration (Alle et al., 2009; Howarth et al., 2012; Yuan et al.,
2018). For synaptic transmission, there is energy consumption
in the presynaptic release, postsynaptic action, and recycling
of neurotransmitters, while for dendritic integration, energy
consumption occurs during the generation of action potentials.
Synaptic transmission and dendritic integration account for∼59
and ∼21% of the total signaling-related energy consumption,
respectively (Howarth et al., 2012). Maintaining the energy
balance between synaptic transmission and dendritic integration
is necessary for neurons and their networks to perform normal
information processing. To achieve an energy balance similar
to real biological neurons, the following energy constraints are
imposed on each neuron, as follows:

min |α − c| ,

s.t.α=

∫ t+1T
t Etransj dτ

∫ t+1T
t Etransj dτ +

∫ t+1T
t E

integ
j dτ

(2)

Etransj > 0,E
integ
j > 0.

where Etransj and E
integ
j are the metabolic energies consumed

in synaptic transmission and dendritic integration of the j-th
neuron at time t, respectively; α represents the ratio of the
metabolic energy consumed in synaptic transmission to the
total metabolic energy consumed in synaptic transmission and
dendritic integration within1T. The value of the ratio α is equal
to or infinitely close to constant c when the metabolic energy
consumed in synaptic transmission and dendritic integration are
both at normal levels. According to the experimental findings,
the constant c is fixed at 0.75 (Howarth et al., 2012). Equation
(2) implies that the ratio of the metabolic energy consumed in
synaptic transmission to the total metabolic energy consumed in
synaptic transmission and dendritic integration should approach
a constant over any given period of time1T.

In the synaptic transmission phase, assuming presynaptic
terminals only contain one release site, each action potential
can induce an average of 0.25 synaptic vesicles to release
neurotransmitters in presynaptic neurons at 37◦C, and the energy
expended per vesicle of neurotransmitters released is 1.64 × 105

ATP molecules (Attwell and Laughlin, 2001; Yu et al., 2017).
In other words, the metabolic energy consumed in synaptic
transmission is Etrans

single
= 4.1 × 104 ATP molecules, which

corresponds to one action potential arriving at the presynaptic
terminal. Thus, the metabolic energy consumed in synaptic
transmission can be calculated according to the number of
action potentials arriving at presynaptic terminals. Because many
biochemical reactions in synaptic transmission, such as synaptic
vesicle cycling and the binding of neuromodulators to receptors,
are not instantaneously completed, themetabolic energy does not
suddenly decrease due to the transmission of action potentials
Südhof, 2013; Wu et al., 2014. We multiply the metabolic energy
Etrans
single

expended per action potential in synaptic transmission and

an exponential function ϕ1(t) = (t − tk)/τ
2
trans · e−(t−tk)/τtrans to

reflect the time-varying characteristics of the metabolic energy
consumed in synaptic transmission. In addition, the weight of
synaptic connections is also an important factor in determining
the energy consumption. A larger connection weight means
that more information is transmitted and that the energy
consumption is greater. Therefore, the energy consumed in the
synaptic transmission of the j-th neuron at time t can be described
as follows:

Etransj =

Ntrans
j
∑

k=1

(

Etranssingle · wij ·
(t − tk)

τ 2trans
· e

−
(t−tk)
τtrans

)

, (t ≥ tk ≥ 0)(3)

where Ntrans
j is the number of action potentials propagating to

the j-th neuron before time t, τtrans is the time constant of the
change in the energy consumption of synaptic transmission, wij

is the synaptic weight from the i-th neuron to the j-th neuron,
and tk is the time at which the k-th action potential reaches the
j-th neuron. The greater the time constant τtrans is, the longer
the duration of the energy consumption process, and conversely,
the shorter the duration (Figure 2A). In particular, the integral
of ϕ1(t) from tk to positive infinity is always equal to 1, which
guarantees that in the case of constant synaptic weights, the total
metabolic energy consumed to propagate each action potential
remains constant. When wij = 1, the total metabolic energy
consumed to propagate each action potential is equal to 4.1 ×

104 ATP molecules.
In the dendritic integration phase, the ion pumps on

membranes must consume a large amount of metabolic energy to
recover the concentration balance of ions inside and outside the
membranes (Magee, 2000; Spruston, 2008; Stuart and Spruston,
2015). The metabolic energy needed for a single action potential

is estimated to be E
integ

single
= 1.2 × 108 ATP molecules (Attwell

and Laughlin, 2001; Howarth et al., 2012; Yu et al., 2017).
Thus, the metabolic energy consumed in dendritic integration
can be calculated according to the number of generated action
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FIGURE 1 | Architectures of biological neuronal networks in the brain. (A) Biological networks in the brain contain many neurons, glia, and adjacent capillaries. These

neurons are not only densely connected to each other in a complex recurrent way but are also tightly coupled to glia. Glia can continuously transport oxygen and

energy substrates within capillaries to neurons and then remove metabolic wastes from neurons. (B) From the perspective of graph theory, neurons as well as the

synaptic connections between them can be summarized and represented as a set of nodes and edges forming a network. In the network, red, and blue circles

represent excitatory and inhibitory neurons, respectively. Synaptic connections between excitatory neurons are indicated by red arrows, and synaptic connections

between excitatory and inhibitory neurons are indicated by blue arrows. Note that synaptic connections between inhibitory neurons do not exist in the network. All

neurons in the network receive stimuli from outside the network. For simplicity, only a portion of the neurons and synaptic connections are drawn in the figure.

potentials. Similarly, because the active transport of ions is
not instantaneous, the corresponding metabolic energy is not
immediately consumed. To reflect the time-varying characteristic
of metabolic energy consumption, we multiply the metabolic

energy E
integ

single
expended per action potential in dendritic

integration and an exponential functionϕ2(t) = (t − tl)/τ
2
integ ·

e−(t−tl)/τinteg . Therefore, the energy consumed in the dendritic
integration of the j-th neuron at time t can be described as
follows:

E
integ
j =

N
integ
j
∑

l=1

(

E
integ

single
·
(t − tl)

τ 2integ
· e

−
(t−tl)
τinteg

)

, (t ≥ tl ≥ 0) (4)

where N
integ
j is the number of action potentials generated by the

j-th neuron before time t, τinteg is the time constant of the change
in the energy consumption of dendritic integration, and tl is the
time at which the l-th action potential is generated by the j-th
neuron. The greater the time constant τinteg is, the longer the
duration of the energy consumption process, and conversely, the
shorter the duration (Figure 2A). Similarly, the integral of ϕ2(t)
from tl to positive infinity is always equal to 1, which guarantees
that the total energy consumed to generate each action potential
is equal to 1.2× 108 ATP molecules.

Equations (3, 4) have similar characteristics, and they both
contain an exponential function. In fact, the curves determined
by the exponential functions show a tendency to rise first
and then decrease, and the time constant determines the rise
and decay times of the curves (Figure 2A). The exponential
functions are usually used to describe the changes in postsynaptic
membrane potentials and ion currents induced by spikes
in neurons (Gerstner, 1995; Bohte et al., 2002). Here, the

exponential functions are used to describe the time-varying
characteristics of the energy consumption when calculating
the metabolic energies consumed in synaptic transmission and
dendritic integration. Because the physical units of the time
constants (τtrans and τinteg) and time variables (tk, tl, and t) are
both second, the calculated results of the exponential functions
are dimensionless values. The weight wij is also a dimensionless
value. Therefore, the calculated results of Equations (3, 4) have

the same physical units as the energy constants (Etransj and E
integ
j ).

For convenience, the default values of some parameters in the
network model are summarized in Table 1.

Synaptic Learning Rules With the Energy
Constraints
Synaptic transmission and dendritic integration, two
metabolically expensive signaling-related activities in neurons,
require a large amount of metabolic energy to fuel, which also
means that they are strongly regulated by limited metabolic
energy (Attwell and Laughlin, 2001; Howarth and Peppiatt, 2010;
Howarth et al., 2012). Although the specific mechanisms for
achieving the regulation of synaptic transmission and dendritic
integration by metabolic energy have not been completely
revealed, their energy consumption is undoubtedly closely
related to synaptic connections, specifically, the number of
synaptic connections and the strength of synaptic connections.
For example, if the number of synaptic connections to a
single neuron is reduced and the strength of the synaptic
connections is weakened, the activity intensity of postsynaptic
neurons will decrease, and the metabolic energy consumed in
synaptic transmission and dendritic integration will be reduced
accordingly. Therefore, to reflect the close relationship between
metabolic energy and synaptic connections, we refer to the
three-factor synaptic plasticity rules (Frémaux and Gerstner,
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FIGURE 2 | The regulation of synaptic weights by metabolic energy. (A) Assuming that a single action potential is transmitted to postsynaptic neurons via synapses or

is generated at the axonal initial segment at time t0, the energy consumption can be described by the curves in the figure. The larger the time constant is, the longer

the duration of the process. In addition, no matter what the value of the time constant is, the area enclosed by the curves and horizontal axis can be mathematically

proven to equal 1. (B) The classical Hebbian postulate modifies synaptic weights based solely on the activities of presynaptic and postsynaptic neurons (see

Supplementary Materials). If postsynaptic neurons fire earlier than presynaptic neurons (1t < 0), the strength of synaptic connections is weakened; otherwise, the

strengths are enhanced (1t > 0). Furthermore, the strengths are not related with the ratio α of the energy consumed in synaptic transmission to the total energy

consumed in synaptic transmission and dendritic integration. That is, in the case that 1t is constant, the change in synaptic weights cannot vary with α. (C) The

strength of synaptic connections is affected by the activities of pre- and post-synaptic neurons and by the metabolic energy of synaptic transmission and dendritic

integration. Namely, the changes in synaptic weights not only obey Hebbian rules but also depend on the ratio α. When 1t is constant, the change in synaptic weights

is inversely proportional to the ratio α.

2016; Foncelle et al., 2018) and then combine the synaptic
learning rules (STDP) with the energy constraints, as follows:

ẇ = f (α) ·H
(

pre, post
)

(5)

f (α) =
2

1+ e
λ·
1t
|1t| ·(α−c)

, (λ > 0) (6)

where ẇ describes the rate of change of synaptic weights, and
pre and post denote the spike trains of pre- and post-synaptic
neurons, respectively. The variable α and constant c are the
same as in Equation (2). The function H(·) describes how
pre- and postsynaptic spike trains determine the changes in
synaptic weights (see Supplementary Materials), and f (·) is a
function that describes the regulation of the changes in synaptic
weights by metabolic energy. λ is a dimensionless constant that
specifies the degree of influence of metabolic energy on neuronal
activities, and 1t is equal to the latest spike time of postsynaptic
neurons minus that of presynaptic neurons. It can be found that
when neurons reach an energy balance, our synaptic learning
rules can be changed into the classical STDP learning rules. In
this situation, the increment or decrement in synaptic weights
depends only on the spiking activities of pre- and post-synaptic
neurons (Figure 2B). In fact, the largest difference between two

synaptic learning rules is the way in which the value of the
function f (·) is determined. In our synaptic learning rules, this
value is given based on the energy consumption ratio between
synaptic transmission and dendritic integration. According to
our rules, when the ratio α deviates from the constant c, the
changes in synaptic weights will be regulated bymetabolic energy,
and the greater the deviation is, the stronger the regulation.
More specifically, when the ratio α is larger than the constant
c, the increment and decrement in the synaptic weights derived
from the STDP rules will be reduced and amplified, respectively.
Conversely, in the case that α is smaller than c, the increment and
decrement in the synaptic weights derived from the STDP rules
will be amplified and reduced, respectively (Figure 2C). Based on
these analyses, it is clear that the changes in synaptic weights are
inversely proportional to the ratio α, which is similar to negative
feedback in engineering (Davis, 2006).

Extensive studies have shown that the negative feedback
widely occurs in organisms and helps organisms maintain
homeostasis (Davis, 2006; Turrigiano, 2007). Energy balance is
an essential part of neuronal homeostasis. Thus, although the
specific biological mechanisms through which metabolic energy
exerts feedback control on neuronal activities have not been
fully revealed, there is no doubt that all the changes in synaptic
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connections must maintain the energy balance in neurons.
Moreover, increasing studies also show that metabolic energy
is a unifying principle governing various neuronal activities
(Laughlin, 2001; Bialek et al., 2006; Niven and Laughlin, 2008;
Hasenstaub et al., 2010). From this perspective, the combination
of the energy constraints and synaptic learning rules in ourmodel
is biologically reasonable. The proposedmodel is implemented in
MATLAB, in which GPU is adopted for parallel operations; the
code is available upon request.

RESULTS

Effects of Metabolic Energy on the
Synaptic Connections in Individual
Neurons
We assume that an individual neuron has m synaptic
connections, and their weights are represented bywi(0 < i ≤ m).
As external stimuli, m action potential sequences with a
frequency of f Hz are transmitted to the neuron via synaptic
connections with different weights, respectively. For simplicity,
the number of synaptic connections in a single neuron is set
to 2,000. In addition to the energy constraints, all parameters
are fixed in the simulations. It can be found from Figure 3A

that in the presence of the energy constraints, the ratio of the
energy consumed in synaptic transmission to the total energy
consumed in synaptic transmission and dendritic integration
gradually increases and then stabilizes around the set point,
while the ratio in the absence of the energy constraints almost
remains unchanged. In addition, the ratio in the presence of
the energy constraints is obviously larger than that in the
absence of the energy constraints, which is consistent with
experimental findings that neurons consume more metabolic
energy in synaptic transmission (∼59%) than in dendritic
integration (∼21%).

There are only three ways in which the energy consumption
of synaptic transmission and dendritic integration can be
altered, namely, altering the number of synaptic connections, the
synaptic weights, and the frequency of external stimulus. Given
that the number of synaptic connections and the frequency of
the external stimulus are fixed in the simulation, only altering
synaptic weights can lead to changes in energy consumption.
Thus, we sample the synaptic weights obtained in the simulations
in both cases and statistically analyse these data. As expected,
the differences in the synaptic weights are surprisingly obvious
in both cases. From Figure 3B, it can be found that the changes
in the trends of the average weights of all synaptic connections
in neurons in both cases are the same as their respective ratio
α, and the average synaptic weight in the presence of the energy
constraints is obviously larger than that in the absence of the
energy constraints. After the average synaptic weights in both
cases become stable, the average weights of the former and the
latter are approximately equal to 0.758 and 0.498, respectively.
Furthermore, although the average synaptic weights in both cases
become stable, their standard deviations still change over time.
Clearly, the standard deviation in the presence of the energy
constraints first decreases and then slightly increases, while the

standard deviation in the absence of the energy constraints always
decreases (Figure 3B). To further investigate the distribution of
the synaptic weights, after the synaptic weights in both cases
become stable, the corresponding synaptic weight distribution
is drawn in Figure 3C. It can be found that there exists a
large difference in the synaptic weight distributions in both
cases. The synaptic weight distribution in the presence of the
energy constraints has no obvious regularity and the distribution
range is ∼0.55∼0.85, while the synaptic weight distribution
in the absence of the energy constraints roughly follows a
normal distribution. The largest difference is that the synaptic
weights of neurons with the energy constraints are overall
larger than the synaptic weights in the absence of the energy
constraints. These simulation results suggest that the energy
constraints in our model can achieve an energy balance between
synaptic transmission and dendritic integration by increasing or
decreasing the synaptic weights in individual neurons.

To study the effects of metabolic energy on the synaptic
connections in individual neurons more comprehensively, we
set different numbers of synaptic connections m to investigate
the changes in the ratio α, the average of synaptic weights and
the spike frequency of neurons in the presence and absence of
the energy constraints. The ratio α in both cases is recorded
after it is roughly stable. As shown in Figure 3D, in the
presence of the energy constraints, the ratio α can always be
maintained stable near the set point as the number of synaptic
connections increases, while the ratio α in the absence of the
energy constraints quickly increases as the number of synaptic
connections increases. With the energy constraints, neurons can
maintain an energy balance even if the number of synaptic
connections changes. Without the energy constraints, although a
greater number of synaptic connections can simultaneously cause
an increase in the energy consumption of synaptic transmission
and dendritic integration, the increase in energy consumption of
synaptic transmission is faster than that of dendritic integration.
The average weights of the synaptic connections as well as the
spike frequencies of neurons in both cases are also recorded
after they are roughly stable. Their average weights vary non-
linearly with the number of synaptic connections, but the change
in tendencies are diametrically opposite (Figure 3E). The average
synaptic weight in the presence of the energy constraints sharply
decreases as the number of synaptic connections increases,
whereas the average synaptic weight in the other case increases
slowly with the number of synaptic connections. In addition,
as the number of synaptic connections increases, the spike
frequency of neurons with the energy constraints remains almost
unchanged, while the spike frequency in the absence of the
energy constraints linearly rises (Figure 3F). From the simulation
results, it can be concluded that with the energy constraints,
no matter how the number of synaptic connections changes,
neurons can always adjust synaptic weights accordingly to keep
the energy balance. This suggests that the energy balance in
individual neurons is determined by both the number and
weights of synaptic connections rather than any one of them. In
addition, the spike frequency is generally regarded as an indicator
of the activity intensity as well as the energy consumption of
neurons. Larger spike frequencies means more intense neuronal
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FIGURE 3 | Simulation results of a single neuron with energy constraints. (A) In the presence and absence of energy constraints, the ratios of the energy consumed in

synaptic transmission to the total energy consumed in synaptic transmission and dendritic integration are recorded and plotted in the corresponding curves,

respectively. It is noted that during the simulation, the frequency of the external stimulus is set to 10Hz unless otherwise specified. (B) In the simulation process, the

synaptic weights in both cases are sampled every 7.68 s. In addition, their averages and standard deviations are calculated, respectively. (C) After the synaptic

weights in both cases become stable, the corresponding synaptic weight distribution is drawn. Chi-square results show that the stable synaptic weights without the

energy constraints roughly agree with a normal distribution. (D–F) In the case of different numbers of synaptic connections, the ratio α, the average of synaptic

weights and the spike frequency in the presence and absence of the energy constraints are recorded. It should be noted that these data are recorded when the ratio

α becomes stable.

activities and more energy consumption. From this perspective,
the neurons in the presence of the energy constraints can
not only balance the energy consumption between synaptic
transmission and dendritic integration but also keep the total
energy consumption of neurons unchanged even if the external
stimulus intensely fluctuates.

Effects of Metabolic Energy on the
Synaptic Connections in the Neuronal
Network
Neurons are crucial components of neuronal networks, and their
energy metabolism properties have a great influence on the
energy consumption of signaling-related activities in neuronal
networks. We show above how metabolic energy strongly affects
the synaptic connections and the activity intensities in individual
neurons. Here, to investigate the effects of metabolic energy
on the synaptic connections in neuronal networks, we set the
number of excitatory and inhibitory neurons in the neuronal
network to 500 and 125, respectively, and simulate the spiking
activities in the entire neuronal network. Action potential
sequences with a frequency of f Hz are transmitted to all neurons
via synaptic connections with different weights. These action
potential sequences are regarded as external stimuli that ensure
the neurons in the neuronal network remain active during the
simulation.

The effects of metabolic energy on the basic properties
of the synaptic connections in the neuronal network, such
as the average ratio α, the average synaptic weight, and the

synaptic weight distribution of the neuronal network, are first
investigated. The average ratio α and the average synaptic weight
of the neuronal network can be calculated according to the ratios
of all the neurons as well as all the synaptic weights in the
neuronal network. When the average ratio approaches the set
point, the neuronal network is considered to reach the energy
balance between synaptic transmission and dendritic integration.
As shown in Figure 4A, during the simulation, the average
ratio α of the neuronal network with the energy constraints
quickly approaches and stabilizes near the set point, whereas the
average ratio in the absence of the energy constraints remains
almost unchanged and is always stable at a value higher than
the set point. In addition, the standard deviation of the average
ratio α in the presence of the energy constraints is significantly
smaller than the standard deviation in the absence of the energy
constraints. In fact, even if the frequency of the external stimulus
received by each neuron in the network is the same, there
are still large differences in the spiking activities of neurons
due to the diversities in synaptic weights, spiking times, and
synaptic connections in the network. Despite this, the average
ratio α of the neuronal network with the energy constraints still
approaches the set point, i.e., the energy balance between synaptic
transmission and dendritic integration is achieved. These results
suggest that the energy constraints not only can achieve the
energy balance of individual neurons but also that of neuronal
networks. The changes in the average synaptic weights of the
neuronal network in both cases are shown in Figure 4B. It can be
seen that the average synaptic weight of the constrained neuronal
network is obviously smaller than that of the unconstrained
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neuronal network. The former decreases first and then gradually
increases, and it eventually stabilizes at approximately 0.46,
while the latter is always stable at approximately 0.5. As we
know, the average synaptic weight can only reflect the overall
strength of the synaptic connections in the neuronal network,
but it cannot show the differences among synaptic weights.
To study the differences in synaptic weights in the neuronal
network in both cases, the synaptic weight distributions after the
average synaptic weights in the neuronal networks become stable
are shown in Figures 4C,D, respectively. The synaptic weight
distribution in the constrained neuronal network is centered
around the average weight of 0.46, while the distribution of
the synaptic weights in the unconstrained neuronal network is
centered around the average weight of 0.5.Moreover, the synaptic
weight distribution range in the former network is much wider
than that of the latter network. It is worth noting that the initial
synaptic weights in the neuronal network conform to a uniform
distribution between 0 and 1, and the initial average synaptic
weight of the neuronal network should be equal to 0.5. Thus,
the simulation results again confirm that the energy constraints
can achieve the energy balance in the network by changing
the overall synaptic weights. In the simulation for the neuronal
network, it can be clearly found that there are significant relations
between the standard deviation of the synaptic weights and the
energy constraints. To understand why the standard deviation
of the synaptic weights in the constrained network is greater
than that in the unconstrained network, we randomly select 50
neurons from the neuronal network in both cases and calculate
the number of their synaptic connections and their average
synaptic weights (Figures 4E,F). Obviously, in the presence of
the energy constraints, the number of synaptic connections is
inversely related to the average synaptic weights, while in the
absence of the energy constraints, there is no obvious relation
between the number of synaptic connections and the average
synaptic weights. As we know, neurons in the neuronal network
have different numbers of synaptic connections. Therefore, when
neurons in the network reach the energy balance, the synaptic
weights differ greatly, resulting in a larger standard deviation.

After understanding the effects of metabolic energy on the
basic properties of the synaptic connections in the neuronal
network, we focus on a very important issue, namely, the
relationship between the number of neurons and the synaptic
connections in the neuronal network in the presence of
the energy constraints. We simulate the spiking activities
of the neuronal network with different numbers of neurons
(Figures 4G–I). In addition to the average ratio and the average
synaptic weight, the average spike frequency is also calculated
according to the spike frequencies of all the neurons in the
network. In the presence of the energy constraints, as the
number of neurons in the neuronal network increases, the
average ratio and the average spike frequency of the neuronal
network remain almost unchanged, but the average synaptic
weight gradually decreases. However, in the absence of the energy
constraints, the average ratio, the average synaptic weight, and
the average spike frequency exhibit the diametrical opposite of
those in the presence of the energy constraints. The results
suggest that with the energy constraints, all of the neurons in

the neuronal network can maintain the energy balance between
synaptic transmission and dendritic integration no matter how
the number of neurons in the neuronal network changes. In
addition, it can also be found that with the energy constraints,
the number of neurons in the neuronal network is inversely
proportional to the average synaptic weight of the network. In
fact, the neuronal network defined in the paper adopts a full
connection strategy to organize all neurons. That is, the increase
in the number of neurons in the neuronal network means that
the number of synaptic connections per neuron increases. We
elaborate the relation between the number and the average weight
of synaptic connections in the simulation of individual neurons
with the energy constraints. Obviously, in the presence of the
energy constraints, the relation between the number of neurons
in the neuronal network and the average synaptic weight of
the network is actually an extension of the relation between
the number and the average weight of synaptic connections
in neurons. Similar to individual neurons, the average spike
frequency of neuronal networks can also be used to characterize
the energy consumption of neuronal networks. Figure 4I shows
that in the presence of the energy constraints, the average spike
frequency of the neuronal network remains stable as the number
of neurons in the network increases, which means that its energy
consumption remains almost constant. For the neuronal network
without the energy constraints, as the number of neurons in the
network increases, the average spike frequency cannot stabilize,
and the energy consumption is not constant.

DISCUSSION AND CONCLUSION

Counterbalances Between the Number and
Strength of Synaptic Connections in
Neurons
The study described in this paper aims to explore the
general synaptic organization rules for neurons and neuronal
networks. With our proposed computational model, the basic
properties of the synaptic connections of individual neurons
are first explored, such as the average of synaptic weights,
the number of synaptic connections, and the ratio of the
energy consumed in synaptic transmission to the energy
consumed in synaptic transmission and dendritic integration.
We find that while keeping the ratio of neurons constant,
the number of synaptic connections is inversely proportional
to the average of the synaptic weights. As defined, the ratio
is actually a measure of the energy balance between synaptic
transmission and dendritic integration in neurons. Maintaining
the metabolic energy balance in neurons is a prerequisite for
the normal function of neurons, which means that the ratio
is roughly constant in neurons under normal physiological
conditions. Therefore, the number of synaptic connections may
be inversely related to the strength of synaptic connections in
real biological neurons, and maintaining an inverse correlation
between the number and strength of synaptic connections may
be a strategy by which neurons maintain their own energy
balance.
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FIGURE 4 | Simulation results of neuronal networks with and without energy constraints. (A,B) in the presence or absence of the energy constraints, the average ratio

α and the average weight of the neuronal network change over time. (C,D) in the presence or absence of the energy constraints, the synaptic weight distribution when

the average ratio and the average weight of the neuronal network become stable. (E,F) in the presence or absence of the energy constraints, the relations between

the number of synaptic connections and the average weights of a portion of neurons when both networks reach stability. In both cases, the correlation coefficients

between the number of synaptic connections and the average synaptic weights are also calculated. The closer the absolute value of the correlation coefficient is to 1,

the stronger the correlation between the variables. (G–I), the average ratio, the average weight, and the frequency of the neuronal network vary with the number of

neurons in the neuronal network.

The quantitative relationship among the number of synaptic
connections, the average of synaptic weights, and the ratio in the
simulation results can be mathematically described as follows:

m · w̄ ∝
1Etrans

1Etrans +1Einteg
= α (7)

where m represents the number of synaptic connections, w
represents the average synaptic weight, and the ratio α is
the same as that in Equation (2). 1Etrans and 1Einteg are
the metabolic energies consumed in synaptic transmission and
dendritic integration over a period of time 1T, respectively. It
is clear that the left part of Equation (7) is equal to the product
of the number and average weight of synaptic connections. It is
well-known that synaptic connections are essential structures in
neurons responsible for transmitting signals, and their number
and strength determine the ability of neurons to transmit signals.
Thus, the left part of Equation (7) actually characterizes the

ability of neurons to transmit signals. The right part of Equation
(7) undoubtedly reflects the energy metabolism in neurons.
When signals flow to neurons, a large amount of energy is
consumed to transmit and integrate these signals, and the
metabolic energy consumed in these two processes depends on
the ability of neurons to transmit signals. At a given time, a
stronger ability of neurons to transmit signals corresponds to
more metabolic energy consumed in synaptic transmission and
dendritic integration, and vice versa. Obviously, the equation
indicates that the ability of neurons to transmit signals should
match their energy metabolism. Because this ability strongly
depends on synaptic connections in neurons, we can further
conclude from this equation that the synaptic connections in
neurons should match their energy metabolism.

Our simulation results may provide some insight regarding
the answer to the questions, why do neurons have thousands
of synapses, and what factors affect the number of synaptic
connections? (Hawkins and Ahmad, 2016) According to the
above conclusions, the number of synaptic connections of
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TABLE 1 | The default values of several parameters.

Symbol Meaning Value

Etrans
single

The energy expended per action potential in synaptic transmission 4.1 × 104 ATP molecules

E
integ
single

The energy expended per action potential in dendritic integration 1.2 × 108 ATP molecules

c When the neurons are in energy balance, the ratio of the energy consumed in synaptic

transmission to the total energy consumed in synaptic transmission and dendritic integration

within 1T

0.75

1T Sliding time window for the calculation of the energy consumption 5 s

τtrans The time constant of the change in the energy consumption for synaptic transmission 20 ms

τinteg The time constant of the change in the energy consumption for dendritic integration 100 ms

λ A dimensionless constant that specifies the degree of influence of metabolic energy on

neuronal activities

300

f The frequency of external spiking signals 10 Hz

neurons cannot increase infinitely. In the case that the metabolic
energy balance remains constant, infinitely increasing the
number of synaptic connections would inevitably result in the
weights approaching zero. Synaptic connections whose weights
are close to zero have weak information transmission capabilities.
In contrast, if the number of synaptic connections is sacrificed for
robust information transmission capabilities, this in turn leads to
a decrease in the diversity of information received by neurons
(Hawkins and Ahmad, 2016). Therefore, the number of synaptic
connections owned by neurons depends on several factors such
as the level of metabolic energy supply, the strength of synaptic
connections, and the diversity of information.

Network Density Is Also an Important
Factor for the Energy Balance in Neuronal
Networks
After investigating the effects of metabolic energy on synaptic
connections in individual neurons, we subsequently extend the
simulation from individual neurons to neuronal networks with
different numbers of neurons. The simulation results reveal that
there is a roughly constant quantitative relationship among the
number of neurons in the network, the average of synaptic weight
in the entire network, and the average of the ratio of the energy
consumed in synaptic transmission to the energy consumed in
synaptic transmission and dendritic integration. In detail, while
keeping the average ratio unchanged, the number of neurons in
the network is inversely proportional to the average of synaptic
weight of the entire network. This conclusion is an extension
of the conclusion derived from the simulation of individual
neurons.

To obtain more general synaptic organization rules, we
analyse the simulation results from the perspective of graph
theory. According to graph theory, neurons and synaptic
connections can be regarded as nodes and edges in the network,
respectively, and the number of synaptic connections of neurons
is equivalent to the degree of nodes. It is worth noting that the
neurons in the neuronal network defined by us in this paper are
organized in a full connection manner. This means that as the
number of neurons in the neuronal network increases, the degree
of nodes also increases. However, in real biological neuronal
networks, each neuron is coupled to only certain number of

neurons, which is much smaller than the total number of neurons
in the network (Golomb and Hansel, 2000). That is, the neuronal
network is actually a non-fully connected network. For the
convenience of discussion, the concept of network density is
introduced here. The density of the network can be characterized
by the average degree

〈

k
〉

of the network, which is the ratio of
the number of edges to the number of nodes in the network. The
greater the average degree of the neuronal network, the larger its
density; otherwise, the smaller its density. Assuming a non-fully
connected neuronal network, when we keep the average ratio
unchanged and simultaneously increase the number of neurons
and decrease the average degree of the neuronal network, the
number and average weights of synaptic connections in the
network do not change significantly. Therefore, the relations
among average degree, the number of neurons, and the average of
synaptic weights in the neuronal network can be mathematically
described as follows:

〈

k
〉

· N · w̄ ∝
1

N
·

N
∑

j=1

1Etransj

1Etransj +1E
integ
j

= ᾱ (8)

where
〈

k
〉

, N, and w represent the average degree, the number
of neurons in the network, and the average weight of all
synaptic connections in the neuronal network, respectively. α
represents the average of the ratio α of all neurons in the

neuronal network.1Etransj and1E
integ
j represent the total energy

consumed in synaptic transmission and dendritic integration in
the j-th neuron over a period of time 1T, respectively. Similar
to individual neurons, the number and strength of synaptic
connections in the neuronal network also determine the ability
of the neuronal network to transmit signals. Thus, the left part
of Equation (8) actually characterizes the ability of the neuronal
network to transmit signals, and the right part reflects the energy
metabolism in the network. When signals flow in the neuronal
network, a large amount of metabolic energy is consumed to
transmit and integrate these signals, and the metabolic energy
consumed in these two processes depends on the ability of the
neuronal network to transmit signals. At a given time, a stronger
ability of the neuronal network to transmit signals corresponds to
more metabolic energy consumed in synaptic transmission and
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dendritic integration, and vice versa. According to this equation,
many conclusions similar to those obtained from the simulation
results of individual neurons can also be obtained. For example,
the ability of the neuronal network to transmit signals and the
synaptic connections in the neuronal network should match
the energy metabolism in the network. Furthermore, the more
important inference we obtain is that in addition to the number
and strength of synaptic connections discussed above, the density
of the network is also associated with the energy metabolism in
the network. Obviously, in the case of keeping the number of
neurons in the neuronal network unchanged, when the average
degree of the neuronal network increases, the strength of synaptic
connections in the network should be reduced to maintain the
energy balance. Otherwise, failure of the energy balance occurs.

Currently, increasing studies indicate that neurological
disorders, such as Parkinson disease, Alzheimer’s disease, and
autism, and cognitive dysfunction are mainly caused by the
pathological changes in neuronal networks (Belmonte et al., 2004;
Crossley et al., 2014; Stam, 2014). Patients with these diseases
exhibit failure of the energy metabolism of neuronal networks
(Kapogiannis and Mattson, 2011; Pathak et al., 2013; Hillary and
Grafman, 2017). The conclusions obtained in this paper may,
to some extent, show how abnormalities in neuronal networks
lead to failure of the energy metabolism of neuronal networks.
According to our conclusions, the density of neuronal networks,
the number of neurons in neuronal networks, and the strength of
synaptic connections are associated with the energy metabolism
of neuronal networks. When any one of these properties changes,
the others can change accordingly to maintain the normal energy
metabolism of the network. However, the adaptability of these
properties is limited. When some of these properties change
abnormally and exceed the adaptability of other properties,
failure of the energy metabolism of neuronal networks occurs. As
we know, the neuronal networks in the brain contain several tens
of billions of neurons, and energy supply is limited. Even a slight
change in the average degree of a local brain region can result in
a large impact on energy metabolism in that brain region.

Note that the ratio of the number of excitatory neurons to the
number inhibitory neurons is fixed at 4:1 in the network in this
paper. In fact, excitatory neurons and inhibitory neurons account
for 70–80 and 20–30% of all neocortical neurons, respectively
(Markram et al., 2004). In the neural system, regardless of
the level of excitation, the inhibitory system can automatically
scale its output to provide matching opposition across a large
dynamic range (Guo et al., 2016a). The inhibitory neurons in the
network of this paper receive external signals and can balance
the activity intensity of the entire network. Therefore, when the
ratio of excitatory to inhibitory neurons changes, the activity
intensity and energy consumption of the network will also change
accordingly.

Implicit Influences of Field Coupling and
Body Temperature on the Energy
Metabolism
In this paper, synaptic connections are regarded as the only
bridge for signal transmission between neurons in the neuronal

network. In addition, some studies argue that field coupling could
be another effective way for signal transmission because field
coupling can realize phase synchronization between neurons (Ma
et al., 2017). Further studies indicate that the synchronization
degree is dependent on the coupling intensity and weight, and
that the synchronization can be modulated by field coupling
(Guo et al., 2017). During the movement, the charged ions in the
magnetic field need consume energy to overcome the resistance
from the cytoplasm, which may be one of the ways in which
metabolic energy is consumed in field coupling. Therefore, it
can be inferred that in addition to synaptic connections, part of
the metabolic energy in the network may be also converted into
magnetic field energy and even electric field energy during signal
transmission.

The experimental results in this paper show that energy
metabolism could constrain the topology of the neuronal
network. Thus, it can be further inferred that the topology
of the neuronal network is also related to the factors that
can regulate energy metabolism in the brain. Some studies
indicate that changes in body temperature can affect the
metabolic rate and consequently the evolution of the brain
(White et al., 2006). For example, warm temperatures can
promote a variety of biochemical processes, and for a given
body mass, warmer living conditions should result in larger
brains. A larger brain means that the topology of the neuronal
network in the brain is more complex, which is often associated
with greater intelligence, better tool-making skills, and other
enhanced characteristics. In addition, a warm body temperature
can facilitate energy efficient cortical action potentials (Yu et al.,
2012), and energy-efficient population coding constrains the size
of a neuronal system (Yu et al., 2016). Therefore, it can be inferred
that the topology of the neuronal network may be indirectly
regulated by body temperature via the energy metabolism in the
brain.
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