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Chronic liver injury can be caused by many factors, including virus infection, alcohol intake,
cholestasis and abnormal fat accumulation. Nonalcoholic steatohepatitis (NASH) has
become the main cause of liver fibrosis worldwide. Recently, more and more evidences
show that hepatic microenvironment is involved in the pathophysiological process of liver
fibrosis induced by NASH. Hepatic microenvironment consists of various types of cells
and intercellular crosstalk among different cells in the liver sinusoids. Liver sinusoidal
endothelial cells (LSECs), as the gatekeeper of liver microenvironment, play an
irreplaceable role in the homeostasis and alterations of liver microenvironment. Many
recent studies have reported that during the progression of NASH to liver fibrosis, LSECs
are involved in various stages mediated by a series of mechanisms. Therefore, here we
review the key role of crosstalk between LSECs and hepatic microenvironment in the
progression of NASH to liver fibrosis (steatosis, inflammation, and fibrosis), as well as
promising therapeutic strategies targeting LSECs.

Keywords: liver sinusoidal endothelial cells, nonalcoholic steatohepatitis - NASH, liver fibrosis, cross talk,
targeted therapy
INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver disorder closely related to
insulin resistance, type 2 diabetes and genetic susceptibility, including simple fatty liver (SFL),
nonalcoholic steatohepatitis (NASH) and related fibrosis/cirrhosis. Histologically, NAFLD is
defined as the presence of more than 5% hepatocytes steatosis without evidence of
hepatocellular injury (1), while NASH is defined as the presence of more than 5%
hepatocytes steatosis and inflammation with hepatocytes injury, with or without fibrosis (2).
It is estimated that nearly a quarter of the world’s population suffering from NAFLD, including
nearly 100 million in the United States (3). With the global trend of obesity and related
metabolic syndrome, NAFLD has become an important cause of chronic liver disease in
developed countries such as Europe and the United States. At least 20%-30% of patients with
NAFLD develop NASH, the advanced stage of NAFLD, which is emerging as a leading cause of
progressive liver fibrosis and end-stage liver disease. Over time, NAFLD and NASH may
progress to cirrhosis, with a greater proportion of patients with NASH (20%) developing
org June 2022 | Volume 13 | Article 9361961
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cirrhosis in their lifetime. In Europe and the United States,
NASH is currently the main cause of liver disease in adults
waiting for liver transplantation, and it will become the most
common indication for liver transplantation in the next
decade. Patients with NASH develop hepatocellular
carcinoma at significantly higher rates than the general
population and have an annual rate that is 12 times higher
patients with NAFLD (5.77 vs 0.44 events per 1000 person-
years). NASH is a heterogeneous condition with varying rates
of disease progression and clinical outcomes, which might be
driven by the varying predominant mechanisms for the
development of the disease (4). Patients with noncirrhotic
NASH are at increased risk even though hepatocellular
carcinoma usually occurs in the context of cirrhosis (3).
Although the incidence rate and severity of NASH are very
high, there is no approved treatment at present. The existing
treatment methods are only aimed at controlling related
diseases. Therefore, it is very urgent to understand the
mechanism of NASH, especially how simple steatosis
develops into NASH and then progresses to liver cirrhosis
and/or liver cancer (5).

Recently, emerging evidence suggests that intercellular
crosstalk rather than a single cell type regulate NASH
progression. As the gatekeeper of hepatic microenvironment,
LSECs can trigger steatosis, inflammatory response, fibrogenesis
via communicating with surrounding sinusoidal cells. In the
progression of NASH to liver fibrosis, the crosstalk between
LSECs and hepatic microenvironment is very complex but
important, understanding of which is critical for developing
novel therapeutic strategies based on LSECs. In this review, we
summarize the intercellular crosstalk between LSECs and
surrounding cells in NASH to liver fibrosis, and some potential
LSECs targeted therapeutic strategies will be discussed.
THE INTERCELLULAR CROSSTALK OF
LSECS IN LIVER PHYSIOLOGICAL
MICROENVIRONMENT

Liver lobules, as the basic structural and functional unit, are
composed of parenchymal cells and non-parenchymal cells.
Hepatocytes (HCs) are the primary component of hepatic
lobules. HCs constitute 60% of the number and 80% of the
volume of hepatic lobular cells, they are the main executors of the
liver participating in various physiological functions (6). HCs are
distributed radially and form a structure named “liver plate”.
HCs have a large number of Golgi bodies, mitochondria and
rough endoplasmic reticulum, which play a key role in the
process of energy metabolism, material conversion and protein
synthesis (7). HCs have strong regeneration capacity and play an
important role in liver regeneration after injury (8). Many kinds
of nonparenchymal cells (NPCs) are distributed in hepatic
sinusoids, constitute 35% of the number and 17% of the
volume of liver cells, consist of liver sinusoidal endothelial cells
(LSECs) (50%), Kupffer cells (KCs) (20%) and stellate cells
Frontiers in Immunology | www.frontiersin.org 2
(HSCs) (<1%) (9). The remaining NPCs are composed of
lymphocytes (25%) and biliary cells (5%) (6). Although NPCs
have no advantage in quantity, there is no doubt about their
importance to the liver microenvironment (10) (Figure 1).

Among the liver NPCs, the most abundant cell type is LSECs.
Second only to hepatic parenchymal cells, LSECs constitute 15%-
20% of the number of hepatic cells and 3% of the volume of the
liver, while account for 50% of NPCs. LSECs are highly
specialized endothelial cells with fenestrae, which traverse
through the cytoplasm without basement membrane. The
fenestrae are 100-150 nm in size and are clustered in groups
that have been termed “sieve plate” (11). Fenestration is not a
unique structure of LSECs, but also exists in other organs. In
mammals, only glomerular endothelial cells and LSECs have
open fenestrae, but the glomerular endothelial cells differ from
the LSECs in that it locates on organized basement membrane, so
LSECs have a unique phenotype in mammals. The fenestration
pattern of LSECs in liver lobules vary with zonation, with larger
but fewer fenestrae per sieve plate in the periportal region and
smaller but more fenestrae per sieve plate in the pericentral
region (12). Aging and hypoxia could regulate the capillarization
pattern (13). The unique structure of LSECs makes it the most
permeable endothelial cell in mammalian vascular system (14).
Under different stimuli, LSEC regulates the bidirectional
transport of substances between hepatocytes and perisinusoidal
space by adjusting the size and number of fenestrae (15, 16).
LSECs clear antigens, cell fragments and immune complexes
through endocytic vesicles and receptor-mediated endocytosis
(17, 18).

Another unique characteristic of LSECs is their expression of
high levels of several scavenger receptors compared with
conventional endothelium. These receptors on LSECs
membrane endow LSECs with high endocytosis capacity,
which include scavenger receptor (SR-A, SR-B and SR-H),
mannose receptor and Fc gamma-receptor IIb2 (12, 19). The
main SRs of LSECs refer to SR-H/stabillin-1 and SR-H/stabillin-
2. The SRs is the primary scavenger receptor on the LSECs,
mediate endocytosis of polyanionic molecules, including
oxidized low-density lipoproteins, hyaluronan, chondroitin
sulfate, formaldehyde treated serum albumin, procollagen type
I and III N-terminal peptides and advanced glycation end
products (20). The mannose receptors are not unique to LSECs
and binds to a variety of glycoproteins and microbial glycans,
mainly clears circulating collagen alpha chains (I, II, III, IV, V,
XI), recruited tissue plasminogen activator regulating fibrinolytic
activity and lysosomal enzymes for further use by LSECs. While
Fc gamma-receptor IIb2 expressed by LSECs mainly cleans
circulating immune complexes formed with IgG, mediating
vascular immunity of LSECs (19).

What’s more, LSECs is of great significance for the
maintenance of system immune homeostasis (21). LSECs
reside along liver sinusoids and separate passenger leukocytes
from hepatocytes within sinusoids, further act as a platform for
various immune cell populations to lodge in the sinusoidal
microenvironment, such as leukocytes, macrophages and
lymphoid cells (22). LSECs have vital physiological and
June 2022 | Volume 13 | Article 936196
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immunological functions more than a physical barrier, including
filtration, endocytosis, antigen presentation and leukocyte
recruitment (23).As the first site of constant exposure to
microbial and food antigens derived from the gastrointestinal
tract via the portal vein, LSECs and KCs play a key role in taking
up and cleaning soluble antigens within the hepatic sinusoids
(23). It’s necessary to ensure that damaging immune responses
are not precipitated against harmless antigens while eliminating
invading pathogens simultaneously (23). The initial key step in
immune response is the innate pathway of antigen uptake by
pattern recognition receptors (24). Pattern recognition receptors
mainly expressed on LSECs, are highly evolutionarily conserved
and include the Toll-like receptor (TLR) family and scavenger
receptors (24). In vitro, a variety of TLRs expressed in LSECs also
mediated strong inflammatory responses upon ligand
stimulation (25, 26). Both of KCs and LSECs constant
exposure to lipopolysaccharide (LPS) leads to an LPS-
refractory state in LSECs specifically, LPS exposure is
associated with reduced nuclear translocation of nuclear factor-
kB (NF-kB) and subsequent reduced leukocyte adhesion, which
prevents the liver from being a constant exposure to bacterial
products from the gut (27, 28). A recent study demonstrated that
a high-cholesterol diet exacerbates acetaminophen-induced and
Frontiers in Immunology | www.frontiersin.org 3
liver injury via a TLR9/inflammasome-depend manner (28).
LSECs not only regulate innate immune responses but also
directly regulate adaptive immune responses through antigen
presentation to T cells. LSECs can directly contribute to
inhibition of effector function of activated T cells. LSECs also
express C-type lectin receptors such as L-SIGN and LSECtin not
only scavenger receptors, which may contribute to the clearance
of pathogens from circulation (29). As an endogenous ligand for
LSECtin, CD44 is expressed on activated T cells. LSECtin
binding to CD44 leads to inhibition of T-cell activation,
proliferation and effector function, this interaction controls
local T-cell activation and effector function (30). LSECs express
major histocompatibility complex (MHC) class I and II
molecules (23). LSECs cross-present soluble antigen to CD8+
T cells on MHC I by using scavenger receptors (31). While they
present antigens to CD4+ T cells via MHC II-restricted antigen
presentation and promote the development of regulatory T cells
(32), these tolerogenic properties of LSECs may control
autoimmunity in many in vivo studies (33, 34).

HSCs are pericytes, located in the space of Disse and
surrounded by HCs and LSECs, are the main source of
extracellular matrix (ECM) in the liver (35). A single stellate
cell can wrap up to four blood sinusoids and alter its structure
FIGURE 1 | Structure of liver sinusoidal microenvironment. As the gatekeeper of hepatic sinusoidal microenvironment, LSECs constitute the interface between the
sinusoid and blood flow. The intercellular crosstalk between LSECs and various cells including hepatocytes, lymphocytes, neutrophils, macrophages, and hepatic
stellate cells, which together consist of the hepatic microenvironment.
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and function through interactions with surrounding cells (12).
HSCs are the predominant cell type leading to liver fibrosis, the
injury of LSECs can transform quiescence HSCs into
myofibroblast like cells (activated HSCs) (36). The activities of
HSCs mainly depend on the interactions with surrounding cells
in liver sinusoids (37–39). LSECs is the main source of
endothelial nitric oxide (NO), an important substance
regulating vascular tension, produced by endothelial nitric
oxide synthase (eNOS) (12). At least in part, HCs and HSCs
regulate LSEC phenotype via paracrine secretion of vascular
endothelial growth factor (VEGF) (9). Hepatic macrophages
mainly include Kupffer cells resident in the liver and
macrophages derived from circulating monocytes (38). Hepatic
macrophages, together with surrounding cells, participate in
inflammatory response, fibrogenesis and vascular remodeling,
are very important to hepatic and systematic response to
pathogens (40, 41). Moreover, LSECs also express a variety of
adhesion molecules, influence the interaction among sinusoidal
cells, are regulated by inflammatory cytokines, including ICAM-
1, VCAM-1 and selectin (42). In liver, the space of Disse is filled
with ECM (43), which is considered to be the storage place of
growth factors, cytokines and some proteins that can be released
when needed, promoting the intercellular crosstalk among
different types of sinusoidal cells (44). As the gatekeeper of
liver sinusoidal microenvironment, LSECs play a central role in
liver sinusoidal crosstalk network due to their unique structure
and function.

The intercellular crosstalk within the sinusoids is critical to
hepatic cell growth, proliferation, migration, differentiation and
the maintenance of cell phenotype. In NASH, lipotoxicity
induced by excessive accumulation of lipids in HCs upon
metabolic imbalance, which promotes the occurrence of
oxidative stress and ER stress, metabolic inflammation,
hepatocyte ballooning and cell death, and leads to the
initiation and progress of fibrosis through the complex
crosstalk of sinusoidal cells (45). Understanding the
intercellular crosstalk in sinusoids is crucial to better
understand the progress of NASH to liver fibrosis, regulating
of which may lead to the improvement of the diseases.
SINUSOIDAL CROSSTALK IN NASH
RELATED FIBROSIS

The underlying mechanisms of NASH to liver fibrosis are still
not clear, multiple pathways involve in lipid accumulation,
cellular infiltration and fibrosis. There is a series of key events
in the progression from NASH to liver fibrosis, which can be
summarized by some hypotheses. Initially, “two hit” hypothesis
was established to described the progression of NAFLD (46). In
this theory, “first hit” usually refers to the accumulation of lipids,
including triglycerides, free fatty acids (FFAs) and cholesterol
accumulated in hepatocytes, which leads to NAFLD. In NAFLD,
a series of injuries such as lipotoxicity, mitochondrial injury,
redox imbalance and inflammation in the liver constitute the
“second hit” for NAFLD to develop into NASH (47, 48). The
Frontiers in Immunology | www.frontiersin.org 4
currently accepted theory, “multiple-hit hypothesis”, suggests
that there are multiple synergistic events leading to liver
inflammation, which may act parallel (49). In this theory,
inflammation is not necessarily accompanied by lipids
accumulation. On the contrary, it is also possible that
inflammation caused by different injuries may exist before
steatosis and may promote its progression in NASH. Insulin
resistance, oxidative stress, endoplasmic reticulum stress,
inflammatory mediators from adipose tissue, dietary factors,
gut-liver axis and some epigenetic factors are considered to be
the multiple hits for the progression of NAFLD to liver fibrosis
(5, 50). Moreover, Type 2 diabetes (T2D) is an important risk
factor for the development of NAFLD, then promotes the
development of liver injury from simple steatosis to NASH and
then leads to liver fibrosis (4, 51).

The progression of NASH to fibrosis is always accompanied
by chronic inflammation, LSECs play a key role in
inflammatory response (52) . LSECs plays an anti-
inflammatory role in the early development of NAFLD by
reducing the secretion of proinflammatory chemokines. In
NASH, impaired autophagy of LSECs enhance the expression
of chemokines, cytokines and adhesion molecules, promote the
development of l iver inflammation, endothel ial-to-
mesenchymal transition and liver fibrosis (53). After liver
injury, LSECs rapidly lose their highly specialized phenotype
and become capillarization, which impairs filtration and
endocytosis of LSECs (54). Capillarization refers to the
disappearance of the fenestrae and the formation of
continuous basement membranes, which transforms LSECs
into nonspecific endothelial cells. The accumulation of
extracellular matrix (ECM) in liver, which leads to
progressive fibrosis. The main mechanism leading to liver
fibrosis is a long-standing wound healing process (55),
fibrogenesis is driven by dysfunctions of different kinds of
sinusoidal cells, including stressed or injured hepatocytes,
activated macrophages and HSCs (56). Due to the special
position and role of LSECs in the hepatic sinusoids, LSECs
can be regarded as the gatekeeper of the hepatic sinusoidal
microenvironment, which may mediate the alterations of the
hepatic sinusoid microenvironment. Capillarization of LSECs is
a key step in the development of chronic liver disease,
maintaining normal LSECs phenotype and function can
inhibit the development of NASH to liver fibrosis. The
intercellular communications among sinusoidal cells involves
a series of complex mechanisms, here we review the crosstalk
between LSECs and neutrophils, lymphocytes, HCs, KCs, and
HSCs within hepatic sinusoids (Figure 2).

Intercellular Crosstalk Between LSECs
and Neutrophils
Liver-infiltrating immune cells, with neutrophil infiltration as a
hallmark of NASH, play a critical role in the progression of
NASH to liver fibrosis (57). Infiltration of neutrophils is
commonly observed in patients with NAFLD, and severity of
infiltration is associated with disease progression (42).
Neutrophils are the first type of immune cells that respond to
June 2022 | Volume 13 | Article 936196
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inflammatory changes in various tissues, including liver,
establishing the first line of defense through multiple
mechanisms such as phagocytosis, cytokine secretion, reactive
oxygen production and neutrophil extracellular trap formation
(57, 58). Many studies have revealed that excessive activation of
neutrophils induces liver damage within sinusoids, mainly
through release of proteases, including myeloperoxidase
(MPO), neutrophil elastase (NE), proteinase 3, cathepsins, and
matrix metalloprotease (MMP)-9 (42). Elimination of MPO, NE,
or proteinase 3 expression or activity via genetic or
pharmacological approaches may improve pathological
changes in NASH (58–60). In inflammatory liver diseases,
LSECs influence the composition of hepatic immune
populations by mediating diapedesis of leukocyte subsets via
distinct combinations of adhesion molecules and chemokines.
During NAFLD progression, LSECs acquire a pro-inflammatory
phenotype and functions, capillarization and dysfunctions of
LSECs deteriorate liver inflammation (61). In NASH, LSECs
overexpress progressively adhesion molecules including
intercellular adhesion molecule-1 (ICAM-1), vascular cellular
adhesion molecule-1 (VCAM-1) and vascular adhesion protein-
1 (VAP-1) (62), and also produce a number of pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 5
mediators including tumor necrosis factor alpha (TNF alpha),
interleukin 6 (IL-6), IL-1 and chemokine ligand 2 (CCL2). In
vivo and in vitro studies showed reduced leukocyte adhesion to
hepatic sinusoids when these adhesion molecules are blocked
(62, 63). The role of LSECs in initiating immune responses and
contributing to progressive liver diseases makes them a potential
therapeutic target for treating inflammatory liver diseases. There
is an emerging concept that neutrophils can be functionally
divided as either N1 or N2, mirroring the M1/M2 and Th1/Th2
classifications. But the precise mechanism of how LSECs induce
N1/N2, and their role in NASH and liver fibrosis, are
still unknown.

Intercellular Crosstalk Between LSECs
and Lymphocytes
In both humans and rodents, NASH is characterized by B cell
and T cell infiltration of the liver as well as by the presence of
circulating antigens targeting originating from oxidative stress
(64). LSECs regulate the behavior of lymphocytes under both
physiological and pathological conditions. The balance of
immune subsets determines the progression and outcome of
immune responses within the liver, there is now evidence that T
FIGURE 2 | Sinusoidal crosstalk mediated by LSECs play a key role in progression of NASH to liver fibrosis. A series of pathophysiological processes from NASH to
liver fibrosis are mediated by LSECs. Capillarization and dysfunction of LSECs appear in early stage of NASH. Capillarized LSECs acquire a pro-inflammatory
phenotype, recruiting immune cells including neutrophils, monocytes and lymphocytes to the hepatic microenvironment, promoting HCs steatosis and cell death,
activating HSCs and KCs, and promoting liver fibrosis.
June 2022 | Volume 13 | Article 936196
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cell subsets utilize distinct combinations the mediators to
migrate through the hepatic sinusoids under specific
microenvironment (23), including a4b1 (65), stabilin1,
ICAM1, VAP1 and so on (66). The normal liver is
characterized by immunologic tolerance. LSECs block adaptive
immunogenic responses to antigens and induce the development
of regulatory T cells (67). The progression of NASH to liver
fibrosis is associated with intense intrahepatic inflammation and
disordered hepatic immunity (68, 69). While under
inflammatory conditions, LSECs express high levels of Delta-
like and Jagged family of Notch ligands and induce the
expression of Notch target genes in Th1 cells, thereby
increasing the expression of IL-10 in Th1 cells to exert anti-
inflammatory effect (11). However, more studies found that
LSEC acquire enhanced immunogenicity in fibrosis, leading to
intensified inflammatory microenvironment and altered
intrahepatic immunity. For instance, after fibrotic liver injury
from hepatotoxins, LSECs become highly proinflammatory and
secrete a series of cytokines and chemokines. LSECs gain
enhanced capacity to capture antigens, induce the
immunogenic T cell to enhance endogenous CTLs and drive
potent de novo CTL responses (17). Although limited, emerging
evidences suggest that B cells participate in the progression of
NASH to liver fibrosis (70). Consistently, B cells have been
shown to directly contribute to the progression of
inflammation and fibrosis in mouse models of NASH and
hepatotoxicity (64). However, the specific mechanisms of
crosstalk between LSECs and B cells remain unclear (71). In
addition, LSECs also express CXCL16, which is a cell membrane-
bound ligand for CXCR6, to regulate the number of NKT cells
that patrol as part of intravascular immune surveillance in
hepatic sinusoids (72).

Intercellular Crosstalk Between LSECs
and HCs
Lots of in vivo and in vitro studies suggest that, high levels of
lipids (73), carbohydrates and gut microbiota products in diet
(74, 75), can promote the capillarization and fenestrae loss of
LSECs in the early stage of NAFLD (55, 61), while the
capillarization of LSECs will aggravate hepatocyte steatosis
(76). The capillarization of LSECs reduces the substances
exchange between sinusoids and blood, hinders the outward
flow of hepatocyte derived very low-density lipoprotein (VLDL),
and leads to the retention of cholesterol and triglycerides in the
liver (77). Meanwhile, it can also reduce the transfer of
chylomicrons to hepatocytes, enhance de novo lipogenesis and
compensatively increase the production of cholesterol and
triglyceride synthesis in hepatocytes (78).

Healthy LSECs secrete a constant compositional level of
NO in response to normal stimuli, such as shear stress and
VEGF. NO produced by eNOS maintains liver homeostasis
and the quiescence of HSCs and KCs (79). LSEC vascular
dysfunction can occur in the early stage of NAFLD, before
liver inflammation and fibrosis (80). Its dysfunction is mainly
manifested in the obstruction of eNOS activation and the
decrease of the synthesis level of hepatic vasodilator NO. The
Frontiers in Immunology | www.frontiersin.org 6
main mechanisms leading to this result include high lipid
exposure, insulin resistance and intestinal flora imbalance
(81). LSECs vascular dysfunction will also reversely promote
the development of liver steatosis: first, in the eNOS-/- mouse
model, the synthesis of NO is blocked, and the animal liver
shows a significant tendency of steatosis (82). Secondly, NO
plays a role in regulating hepatic fatty acid synthesis, which
has been shown to directly regulate the tricarboxylic acid cycle
by limiting citric acid synthesis in mitochondria, inhibiting
acetyl CoA and activating AMP-activated protein kinase
(AMPK) and other pathways (83, 84). Capillarization
reduces LSECs permeability, thus affecting the lipoprotein
secretion of HCs and the de nova lipogenesis in HCs.
Accumulation of lipid or decreased lipid clearance in liver
lead to hepatic steatosis, the abnormal accumulation of lipids
in HCs will also lead to reactive oxygen species (ROS)
overproduction, mitochondrial respiration injury and
endoplasmic reticulum stress, which aggravate the damage
of HCs (85).

After sustained liver injury, liver fibrosis develops
gradually. More and more evidences show that the
interaction between LSECs and HCs plays an important role
in the initiation and development of liver fibrosis (86). LSECs
and HCs also communicate with each other through the
VEGF-A/VEGFR-2 (VEGF receptor 2) signaling in fibrotic
liver (87). CD147 is a transmembrane glycoprotein and widely
expressed on the surface of various cells including HCs and
LSECs, has been proven to be involved in multiple biological
process, such as immune response, tumor progression and
tissue repair (88). It has been demonstrated that CD147 also
play a pivotal role in the angiogenesis of LSECs and
simultaneously expressed in HCs and LSECs in fibrotic liver.
Interestingly, anti-CD147 antibody inhibits angiogenesis via
VEGF-A/VEGFR2 axis, thereby improving the process of liver
fibrosis (89). In addition, the combination of leukocyte cell-
derived chemokine 2 (LECT2) produced by HCs and Tie1
expressed by LSECs also participates in the progress of liver
fibrosis. LECT2 is a 16-kDa secreted protein (90), which is a
functional ligand of Tie1, a poorly characterized endothelial
cell specific orphan receptor. Recently, emerging evidences
indicates that LECT2 is involved in many pathological
conditions, including sepsis, diabetes, systemic amyloidosis,
hepatocarcinogenesis and NAFLD (91–93). In vivo studies
showed that overexpression of LECT2 promotes sinusoidal
capillarization and worsens fibrosis (94).

The crosstalk between LSECs and HCs can promote the
fibrogenesis reaction, so the characterization of intercellular
communications between LSEC and HCs is an important goal
to develop the treatment of NASH to fibrosis in the future.

Intercellular Crosstalk Between LSECs
and KCs
Liver macrophage populations comprises the largest proportion
(80%-90%) of resident macrophages in the human body (95),
mainly consist of two different subsets of cells, including liver-
resident KCs and circulating monocyte-derived macrophages
June 2022 | Volume 13 | Article 936196
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(MoMFs) (96). MoMFs are derived from bone marrow
hematopoietic stem cells and recruited to the liver from blood
circulation (97–99). Liver macrophages are important mediators
of liver inflammation and fibrogenesis in the development of
NASH (100, 101). In healthy people, KCs are the main immune
cells in the liver. In the healthy rodent liver, KCs account for 20%
~ 35% of all NPCs in the liver (102). Most of KCs are distributed
in hepatic sinusoids and have the ability of self-renewal. KCs and
MoMFs can usually be polarized into two subtypes, including
“pro-inflammatory” M1 macrophages and M2 macrophages
involved in “immune regulation” in vitro (103). The M1
macrophages produce proinflammatory cytokines such as
TNF-a, IL-1b, CCL2 and CCL5. In contrast, M2 macrophages
secreted a distinct set of mediators including IL-13, IL-10, IL-4
and transforming growth factor-b (TGF-b) (104).LSECs also
have the unique function of modulating KC phenotype in the
liver. In the normal liver, LSEC-derived Delta-like ligand 4, a
Notch ligand, and TGF-b contribute to the maintenance of KC
identity (105).

As the gatekeeper of hepatic immunity, LSECs interacted
directly with the immune cells and antigens in the blood flow
(11). Adhesion of monocytes to LSECs is a crucial step for
inflammation response in NASH, which verified the central role
of macrophages in the progression of NASH to liver fibrosis.
There is a dynamic balance between M1/M2 ratio, and the
imbalance of M1/M2 ratio may be the key to the progression of
NASH to liver fibrosis. In the early stage of NAFLD, mild
inflammation is often controllable and contributes to liver
repair and regeneration after injury. LSECs play an anti-
inflammatory role by inhibiting KCs activation and monocyte
migration. LPS or excess FFAs active KCs to release a large
number of pro-inflammatory cytokines (TNF-a, TNF-b and
NF-kB etc.) and promote lipid accumulation and oxidative
stress response in HCs through paracrine, which drives the
progression from simple steatosis to NASH and even fibrosis.
As NASH progresses, it has been noted that KCs and MoMFs in
NASH liver exhibited a notable shift toward a proinflammatory
phenotype on the basis of their gene expression signatures at
the single-cell level (39). The number of M1 macrophages
increased significantly, while the number of M2 macrophages
decreased remarkably (106). And capillarization of LSEC
occurs, which is required for activation of KCs (61). LSECs
convert to a pro-inflammatory phenotype, producing pro-
inflammatory mediators that lead to the activation of KCs
(23). Activated KCs participate in angiogenesis by secreting
ROS and cytokines including TNF-a, PDGF and platelet
activating factor (PAF) (107). The pro-inflammatory
phenotype of LSECs increases the expression of the
chemokine CCL2, recruiting monocytes to the liver (62). In
addition, LSECs in NASH mouse models overexpressed
adhesion molecules ICAM-1, VCAM-1 and VAP-1, which are
critical for monocyte adhesion, transport, and participation in
local inflammatory responses (42, 55). While in the fibrosis
model, intercellular crosstalk between KCs and LSECs results in
fenestration loss and expression of CD31 increased, a surface
marker of LSECs dedifferentiation (108, 109). The precise
Frontiers in Immunology | www.frontiersin.org 7
contribution of LSECs-KCs interactions to the pathogenesis
of liver fibrosis is still to be elucidated.

Intercellular Crosstalk Between LSECs
and HSCs
HSCs are the main source of ECM synthesis, distributed in space
of Disse. Activation of HSCs is now well established as a central
driver of fibrosis in experimental and human liver injury (110,
111). In normal liver, differentiated LSECs prevent activation of
HSCs and promote reversion of activated HSCs to quiescence via
VEGF-stimulated nitric oxide production (112). Chronic injury
leads to loss of LSECs differentiation and capillarization,
diminishes their ability to suppress HSCs activation (111).
Uninterrupted inflammation can cause HSCs to active and
differentiate into myofibroblasts. The activated myofibroblasts
release a large amount of extracellular matrix (ECM) into hepatic
sinusoids, which are rich in collagen fibers, eventually promote
liver fibrosis or cirrhosis (113). In the early stage of NASH, free
cholesterol accumulation in HSCs sensitizes the cells to TGF-b
induced activation through enhancement of Toll-like receptor 4
(TLR4) mediated downregulation of TGF-b pseudo receptor
BAMBI (bone morphogenetic protein and activin membrane
bound inhibitor) (114). LSECs become capillarized and
transform into pro-vasoconstriction, pro-inflammation, pro-
angiogenesis and pro-fibrosis phenotypes (115, 116).
Intercellular crosstalk between LSECs and HSCs cells is an
important driver of liver fibrosis (22). Capillarized LSECs no
longer keep HSCs quiescence, but secrete fibronectin (FN),
platelet-derived growth factor (PDGF), TGF-b and Hedgehog
(Hh) ligands, and reduce the transcription factor Kruppel like
factor 2 (KLF2), which is a protective molecule of hepatic
vascular endothelium (117), to activate HSCs. Meanwhile,
capillarization of LSECs may also lead to impaired blood
oxygen diffusion, leading to hypoxia environment, which
further induces rapid activation of HSCs and expression of
HIF-1a (118). Activated HSCs further act on quiescent HSCs
and LSECs through autocrine TGF-b1, forming a positive
feedback loop on the progression of liver fibrosis (119). HSCs
begin to proliferate, contract and deposit a large amounts of
collagen fibers and extracellular matrix molecules in the liver
parenchyma, leading to organ stiffening and disrupting all
cellular functions (36).

Exosomes also play a bidirectional regulatory role in crosstalk
between LSECs and HSCs. Dedifferentiated LSECs secrete
exosomes rich in sphingospkinase-1 to promote the activation
and migration of HSCs. While activated HSCs can also release
Hh-rich exosomes and alter the expression of LSECs gene (120,
121). In addition, C-X-C chemokine 12 (CXCL12)/stromal
derived factor-1 (SDF-1) produced by LSECs promotes HSCs
migration during chronic liver injury (122). Sustained FGF
receptor 1 (FGFR1) activation results in higher CXCR4
expression in LSECs than CXCR7, which stimulates HSCs
proliferation and causes liver fibrosis (123). DLL4, a ligand of
notch signaling pathway, is highly expressed in LSECs of fibrotic
human liver tissues, as well as that from CCl4-induced mice.
Overexpression of DLL4 accelerates defenestration of LSECs,
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and also increases the coverage of liver sinusoids by HSCs
through endothelin-1 (ET-1) synthesis (124, 125). Meanwhile,
ET-1 produced by HSCs plays a key role in the regulation of
eNOS activation in LSECs and defenestration of LSECs (126). To
clarify the crosstalk between LSECs and HSCs in different stages
of chronic liver disease and the mechanism of gene expression
and secretion profile alterations of LSECs is of great significance
for preventing and reversing NASH to liver fibrosis.
TARGETED THERAPEUTIC STRATEGY OF
LSECs IN NASH TO LIVER FIBROSIS

Currently, no specific drug has been approved for clinical
use to treat patients with NASH or liver fibrosis. As
LSECs dysfunction drives the progression of NASH to liver
fibrosis, restoring LSECs phenotype and regulating the
crosstalk between LSECs and other liver cells within
sinusoidal microenvironment are identified as attractive
targets for treatment (Table 1).

Targeting Adhesion-Related
Molecules of LSECs
Adhesion of immune cells to LSECs is an essential step of
inflammation in NASH. Adhesion molecules are abnormally
expressed on LSECs, which provides multiple potential targets
to control inflammation in NASH. Interference with recruiting
signals would affect the intercellular communication between the
recruited and resident immune cells in the liver. The pro-
inflammatory LSECs overexpress adhesion molecules including
VAP-1, VCAM-1, CD31, ICAM-1 and E-selectin (16, 55).
Blocking these molecules or their ligands may control the
development of progression of NASH to liver fibrosis. TERN-
201, a kind of potent VAP-1 inhibitor, is still undergoing clinical
trials in China for the treatment of NASH (62, 63, 135).
Circulating inflammatory monocytes are attracted to the
hepatic microenvironment via their chemokine receptor C-C
motif chemokine receptor 2 (CCR2), while the corresponding
CCL2 is strongly expressed by various liver cells such LSECs and
KCs (136). Cenicriviroc (CVC), a dual antagonist of CCR2 and
CCR5, ameliorates hepatic inflammation in NASH mice models
by reducing the recruitment of CCR2+ monocyte in the liver.
Frontiers in Immunology | www.frontiersin.org 8
The drug has been shown to be effective in reducing fibrosis in a
Phase III clinical trial in NASH patients (NCT03028740).

Targeting NO-Related Signaling of LSECs
LSECs are the major producers of NO in the liver (137). The
balance of NO is critical in maintaining the morphology and
endothelial function of LSECs to keep the quiescence of HSCs
and KCs, it also thoroughly participates in the regulation of liver
lipid and glucose homeostasis (138). Activation of endothelial
Notch in LSECs aggravated the NASH phenotype through
eNOS-sGC signaling (139, 140). Thus, targeting NO-related
signaling may be an attractive therapeutic strategy. Statins can
increase NO bioavailability in the sinusoidal microcirculation
through reducing activity of RhoA and enhancing activity of
Akt/protein kinase B (PKB) (128, 141). In addition, statins also
regulate the LSECs phenotype that paracrinally improves HSCs
status (117). Farnesoid X receptor (FXR) is a bile-acid responsive
transcription factor that associated inflammation, fibrosis, and
vascular homeostasis (129, 142, 143). FXR agonism plays a key
role in the recovery of NO pathway and endothelial cells
dysfunction, which could effectively increase the expression of
eNOS in LSECs by promoting degradation of asymmetric
dimethylarginine (AMDA) in bile duct ligation (BDL) rats
(144). WAY-362450, an synthetic potent FXR agonist, can
protect against NASH and hepatic fibrosis in methionine/
choline-deficient (MCD) diet-fed mice model (130). Under
oxidative, NO signal and the affinity between NO and sGC are
interfered, which leads to the dysfunction of LSECs. Therefore,
regulating of sGC activity may be a potential approach to restore
the phenotypic changes, prevent sinusoidal capillarization and
activation of HSCs. Praliciguat, an oral soluble sGC stimulator
with extensive distribution to the liver in clinical development,
effectively reduced inflammation, fibrosis, and steatosis by
enhancing NO signaling in preclinical NASH models (131).

Targeting Angiogenesis of LSECs
Capillarization of LSECs occurs in the early stage of NASH,
angiogenesis is deeply involved in liver fibrogenesis. Pathological
capillarization of LSECs promotes liver steatosis, inflammation,
and fibrosis. Though current controversial results suggest it is
difficult to treat NASH or liver fibrosis through vascular
targeting, there a variety of anti-angiogenic therapies have
shown promising results (132). As a functional ligand of
TABLE 1 | Therapeutic drugs related to crosstalk between LSECs and other sinusoidal cells involved in this paper.

Target Drug Mechanisms References

adhesion-related
molecules

Cenicriviroc
TERN-201

ameliorating hepatic inflammation
reducing the recruitment of CCR2+ monocyte in the liver
inhibiting VAP-1 to control inflammation in NASH

(65, 127)

NO-related signaling Statins
WAY-362450
Praliciguat

ameliorating the LSECs phenotype that improves HSCs status by
paracrine manner
promoting ADMA degradation and recovery of NO pathway
increasing the cGMP level in LSECs

(117, 128–
131)

angiogenesis L1-10
AAV9 with shRNA of LECT2 combined with recombinant
VEGF or bevacizumab

preventing sinusoidal capillarization
inhibiting the interaction between LECT2 and its receptor Tie1
inhibiting VEGF/VEGFR signaling

(132–134)
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endothelial cell-specific receptor Tie1, LECT2 promotes liver
fibrosis by inhibiting portal angiogenesis and promoting
capillarization of liver sinusoids in various liver fibrosis
models. Studies have shown that inhibiting the interaction
between LECT2 and its receptor Tie1 effectively improved liver
fibrosis by using peptibody L1-10 (133). Liver endothelial cells
located in different zonations are heterogeneous, and their
changes and roles in the pathological process from NASH to
fibrosis are also different. Therapeutics that targeted a single
vascular endothelial cell is not enough to treat liver fibrosis
effectively. Combined muti-target therapies provide innovative
insights for blocking or slowing down liver fibrosis. In a recent
study, researchers explored a vascular-targeted therapy for liver
fibrosis by using the adeno-associated viral vector serotype 9
(AAV9) with a short hairpin RNA (shRNA) of LECT2 combined
with recombinant VEGF (rVEGF, VEGF/VEGFR signaling
activator) or bevacizumab (VEGF neutralizing antibody,
VEGF/VEGFR signaling inhibitor) to simultaneously regulate
hepatic endothelial cells in different zonations (134).

Nanomaterial-Based Drug Delivery
Targeting LSECs
For several decades, researchers have been developing drug
carriers that will increase the drug delivery to liver for targeting
NASH and liver fibrosis and decrease the side effects of drug
metabolism. Nanoparticle such as exosome offer novel insights for
NASH and liver fibrosis due to their low immunogenicity, low
toxicity and high engineering (145). Exosomes are cell-derived
nanovesicles that are involved in the intercellular crosstalk.
Therapeutics, such as small molecules or nucleic acid drug, can
be incorporated into exosomes and then delivered to specific types
of cells or tissues to realize targeted drug delivery (146). Activation
of Notch signaling in macrophages mediates the progression of
NASH to fibrosis in the liver, study shows that transcription factor
decoy oligodeoxynucleotides delivered by exosomes could be
taken up by hepatic macrophages and ameliorate hepatic fibrosis
by inhibiting Notch signaling in mice with liver fibrosis (41).
Engineering exosomes targeting LSECs are is feasible for NASH
treatment (41, 146) . Liposome, another promising
nanomaterial for drug delivery, can encapsulate both
hydrophobic and hydrophilic drugs and the hydrophilic
membrane shell may be modified by chemical moieties to target
specific liver cell type (41, 145). LSECs could be specifically
recognized by hyaluronic acid (HA)-based liposomes through
the HARE/Stabilin-2 receptor (147, 148). Nanoparticles
decorated with a stabillin receptor ligand can target to natural
tolerogenic LSECs is able to generate regulatory T cells, which can
suppress antigen-specific immune responses. Nanoparticle
modified with the peptide of stabillin receptor ligand can target
to LSECs, and modified nanoparticles loaded with different drugs
have shown therapeutic effects in in a variety of autoimmune
disease models in mice (149, 150). What’s more, functional
efferocytosis of apoptotic vesicles restore liver macrophage
homeostasis and ameliorates lipid metabolism (151). However,
there have been no studies of LSECs-targeting modified
nanoparticles for NASH or liver fibrosis treatment. The
Frontiers in Immunology | www.frontiersin.org 9
development of nanomedicine offers novel insights for NASH
and liver fibrosis therapy.
CONCLUSION AND FUTURE
PERSPECTIVES

As the gatekeeper of hepatic microenvironment, LSECs have
multiple functions due to their unique structure and anatomical
position, including substance exchange and clearance, blood flow
regulation, and immune regulation under physiological
conditions. In the early stages of NAFLD, lipotoxicity,
adipokines, inflammation and gut microbiota derived products
trigger LSECs dedifferentiation, driving capillarization and
dysfunction of LSECs. In NASH, LSECs can no longer
maintain the quiescence of KCs and HSCs, but transform into
the phenotype of pro-inflammatory, pro-angiogenic and pro-
fibrogenic. The crosstalk among LSECs and other sinusoidal cells
plays an important role in the physiological and pathological
processes of the liver, thus keeping LSECs healthy has high
therapeutic potential for NASH related liver fibrosis.

The pathological process from NASH to fibrosis includes liver
steatosis, inflammation, and fibrosis. Here we only review
intercellular crosstalk mediated by LSECs within the sinusoidal
microenvironment, the detailed mechanisms are involved with
multiple alterations of LSECs, including morphology and
endothelial function, paracrine and autocrine signals, hepatic cell-
derived extracellular vesicles, and autophagy abnormalities. In fact,
the crosstalk among various cells in the sinusoid microenvironment
is very complex. There are no strongly specific drugs to treat NASH
and liver fibrosis, and several candidates are still undergoing
preclinical or clinical trials. Currently, our understanding of
intercellular crosstalk in the hepatic sinusoidal microenvironment
is very limited. In recent years, the rapid development of single-cell
technology has provided researchers with powerful tools to gain
deep insights into the molecular mechanisms involved in diseases.
To explore the intercellular crosstalk between various sinusoidal
cells at the single-cell level will help us deeply understand the
pathological process from NASH to liver fibrosis, so as to explore
better therapeutic strategies.
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