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Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both
the establishment and the maintenance of neuronal polarity. For a long time, the
most prominent roles that were attributed to actin in neurons were the movement of
growth cones, polarized cargo sorting at the axon initial segment, and the dynamic
plasticity of dendritic spines, since those compartments contain large accumulations of
actin filaments (F-actin) that can be readily visualized using electron- and fluorescence
microscopy. With the development of super-resolution microscopy in the past few
years, previously unknown structures of the actin cytoskeleton have been uncovered:
a periodic lattice consisting of actin and spectrin seems to pervade not only the whole
axon, but also dendrites and even the necks of dendritic spines. Apart from that striking
feature, patches of F-actin and deep actin filament bundles have been described along
the lengths of neurites. So far, research has been focused on the specific roles of actin in
the axon, while it is becoming more and more apparent that in the dendrite, actin is not
only confined to dendritic spines, but serves many additional and important functions.
In this review, we focus on recent developments regarding the role of actin in dendrite
morphology, the regulation of actin dynamics by internal and external factors, and the
role of F-actin in dendritic protein trafficking.
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INTRODUCTION

The unique ability of neurons to compute and allocate information relies on their polarized
morphology, which comprises several functionally distinct compartments. Dendrites are long,
highly branched extensions from the cell body that can reach hundreds of microns, forming a
widespread and complex arbor. They integrate information from typically thousands of synaptic
inputs, which is then further transmitted via the cell body to the neuron’s single axon (Magee, 2000;
Gulledge et al., 2005). Dendrites can be morphologically and functionally sub-compartmentalized,
particularly in pyramidal neurons (Shah et al., 2010; Yuan et al., 2015). One of the critical aspects
in establishment and maintenance of the dendritic structure is the well-controlled turnover of
cytoskeletal elements (Tsaneva-Atanasova et al., 2009). F-actin and microtubules (MTs) are the
main mediators of neuronal polarity. Their organization is spatially and temporally controlled by
numerous actin binding proteins (ABPs) and microtubule associated proteins, which extensively
interact and feed back to each other (Georges et al., 2008; Coles and Bradke, 2015). The process
of neuronal polarization is largely driven by an intrinsic program (Horton et al., 2006), however,

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 May 2017 | Volume 11 | Article 147

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
https://doi.org/10.3389/fncel.2017.00147
http://creativecommons.org/licenses/by/4.0/
mailto:marina.mikhaylova@zmnh.uni-hamburg.de
mailto:marina.mikhaylova@zmnh.uni-hamburg.de
https://doi.org/10.3389/fncel.2017.00147
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2017.00147&domain=pdf&date_stamp=2017-05-18
http://journal.frontiersin.org/article/10.3389/fncel.2017.00147/abstract
http://loop.frontiersin.org/people/425746/overview
http://loop.frontiersin.org/people/46649/overview
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


fncel-11-00147 May 16, 2017 Time: 16:52 # 2

Konietzny et al. Actin Cytoskeleton in Dendrites

this program is subject to modification by diverse environmental
stimuli, including synaptic activity, that can rapidly feed back
to the cytoskeleton. In light of novel discoveries related to the
role and organization of neuronal F-actin, in this review we will
focus on the mechanisms and molecular players that fine-tune the
actin cytoskeleton, thereby controlling dendrite morphology and
function.

ORGANIZATION OF F-ACTIN IN
DENDRITES

Actin filaments can be arranged in linear or in branched
conformations, and together with stable MT arrays and
neurofilaments they form the cytoskeleton in dendrites (Yuan
et al., 2012; Sainath and Gallo, 2014). Perhaps the most
striking F-actin-based structures in dendrites are so-called spines,
small membranous protrusions that harbor synapses. F-actin
arrangement within spines is very dynamic and is subject to
constant activity-dependent remodeling (Okamoto et al., 2004).
Apart from that, additional F-actin based structures within
the shafts of dendrites have been discovered more recently:
actin patches, longitudinal fibers, and rings (Figures 1A,B).
Actin patches are areas of a few microns enriched in branched
F-actin (Willig et al., 2014), and were suggested to serve as
outgrowth points for filopodia (Korobova and Svitkina, 2010).
Longitudinal actin fibers are long bundles of F-actin that
traverse along the lengths of dendrites (D’Este et al., 2015;
Bär et al., 2016). Their properties and functions are so far
unexplored. Actin rings, originally described in axons (Xu
et al., 2013), are periodic cortical actin structures that are also
present in dendrites and in necks of dendritic spines (D’Este
et al., 2015; Bär et al., 2016; He et al., 2016). According to
the current model, this periodic lattice consists of several short
and stable actin filaments, capped by α-adducin, and crosslinked
by α/β-spectrin tetramers that define the spacing between the
rings (Xu et al., 2013; Qu et al., 2016). These structures are
thought to support neurite shape, help in organization of proteins
along the plasma membrane (Xu et al., 2013), stabilize the
underlying MT cytoskeleton (Qu et al., 2016) and could influence
spine neck elasticity during transport of organelles (Bär et al.,
2016).

REGULATION OF DENDRITIC ACTIN
CYTOSKELETON

Controlling F-Actin Turnover: Actin
Nucleation Factors, Severing and
Capping Proteins
Like in any other cell, many functions of actin in neurons relate
to its ability to polymerize and depolymerize in response to
cellular signaling. Although not specifically studied in dendrites,
numerous ABPs are known that cooperate in controlling the
structure and stability of F-actin networks and their ability to
shape cellular membranes. A summary can be found in Table 1,

whereas in the text below we will focus on the mechanisms that
may be particularly relevant in the regulation of dendritic F-actin.

As the rate-limiting step in actin polymerization, nucleation
is a crucial point in regulating F-actin dynamics. Several actin
nucleators, including the Arp2/3-complex, WASP-homology-2
(WH2) domain proteins and formin-homology (FH) proteins,
facilitate this process. The Arp2/3-complex is the only known
regulator for actin branching. It requires an existing actin
filament, from which it nucleates a new filament branch
(Smith et al., 2013). The Arp2/3-complex is activated by
membrane-associated interactors, such as neuronal Wiskott–
Aldrich Syndrome protein (N-WASP) or WASP-family
verprolin-homologous protein (WAVE) (Korobova and Svitkina,
2010). Arp2/3-complex-dependent polymerization of branched
actin networks generates widespread pushing forces against the
plasma membrane, accounting for its prominent role in the
maturation and enlargement of dendritic spines (Bosch et al.,
2014; Spence et al., 2016). Another mechanism of activation
involves the F-actin binding protein cortactin, which can bind
and activate the Arp2/3-complex both directly and indirectly
via N-WASP (Kowalski et al., 2005; Korobova and Svitkina,
2008). The Arp2/3-complex and cortactin are enriched in both
axonal and dendritic growth cones of young hippocampal
neurons (Strasser et al., 2004) and in dendritic spines of mature
neurons (Hering and Sheng, 2003). While overexpression of
Arp2/3-complex subunits or N-WASP affect both dendrite
and axon development, a deficiency of those proteins induces
excessive growth and branching exclusively of the axon (Strasser
et al., 2004; Pinyol et al., 2007). Dendritic phenotypes seen at
the later stages of development are mostly related to attenuated
filopodia and spine formation (Spence et al., 2016). The precise
molecular mechanisms behind such differential effects have yet
to be elucidated (Sainath and Gallo, 2014). Still, it hints at a
functional redundancy with other actin nucleators specific to
dendrite development. Here, elaboration critically depends on
the WH2-domain nucleator Cobl (Ahuja et al., 2007), which acts
as a positive regulator of neurite outgrowth and branching in rat
primary hippocampal neurons (Hou et al., 2015).

Formins are actin nucleators downstream of Rho-GTPases
(Matusek et al., 2008; Kühn and Geyer, 2014). They nucleate
unbranched actin filaments and are mainly associated with the
outgrowth of filopodia (Hotulainen et al., 2009). Additionally,
they play a role in coordinating MT functions, since they have
a distinct MT bundling activity (Bartolini et al., 2008). Formins
are involved in proper axon development (Matusek et al., 2008),
and in the formation of a deep actin network within the axon,
where actin filaments are nucleated from the surface of stationary
endosomes in so-called “F-actin hotspots” (Ganguly et al., 2015).
Whether the same mechanism is behind the formation of
F-actin patches and longitudinal F-actin bundles that have been
observed in dendrites (D’Este et al., 2015; Sidenstein et al., 2016)
is unknown. Interestingly, another WH2-domain nucleator,
Spire (Spir-1/2), directly interacts with the formins Fmn-1/2
(Pechlivanis et al., 2009). It was shown that in several non-
neuronal cell types, those two proteins are recruited to recycling
endosomes and cooperate in the nucleation of F-actin from the
vesicle’s surface (Schuh, 2011; Pylypenko et al., 2016). Whether
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FIGURE 1 | The neuronal actin cytoskeleton and its regulation by external factors. (A) Overview of different actin structures present in pyramidal neurons:
local F-actin enrichments called actin patches, longitudinal actin fibers, and a cortical periodic actin/spectrin lattice termed “actin rings” can be found throughout
axon and in dendrites. (B) Dendritic spines contain branched F-actin in the head, and straight bundles as well as a periodic actin lattice in the neck. Directed
transport of cargo from the soma to the dendrite is carried out via MTs, and can then be subjected to activity-dependent positioning at the base of activated spines
in an F-actin and myosin-dependent manner. EV = endosomal vesicle, RNP = ribonucleoprotein, Mito = mitochondrium. (C) Dynamics of the dendritic actin
cytoskeleton are influenced by external cues. Those include the transduction of external signals to the actin cytoskeleton via cell-surface receptors that couple to
Rho-GEFs or ABPs, and Ca2+ signaling. The latter involves Ca2+ influx through glutamate receptors following synaptic stimulation (1), and Ca2+ release from
internal stores, triggered for instance by BDNF-TrkB-signaling (2). Both pathways include the activation of Rho-GTPases (3), which act as “molecular switches” that
govern a multitude of cellular functions. Diffusible factors, like Ca2+, Rho-GTPases, CaMKIIβ and other downstream effectors, can spread the signal from their
activation site to the dendrite and to other spines (4). ER = endoplasmatic reticulum.

this mechanism is active in neurons has not been investigated so
far. However, since the expression patterns of Spire1 and Fmn-2
markedly overlap in the mouse brain (Schumacher et al., 2004),
the existence of such a mechanism in neurons seems plausible.

F-actin turnover is greatly accelerated by filament severing
proteins, like the closely related ADF and cofilin-1 (Sarmiere
and Bamburg, 2004). They increase the number of uncapped
ends that may undergo polymerization and regulate the
G/F-actin pool (Andrianantoandro and Pollard, 2006). Binding
of ADF/cofilin to F-actin additionally induces a conformational
change, which can affect binding of other ABPs (Ngo et al.,
2016). The activity of ADF/cofilin is tightly regulated via several
mechanisms, including phosphorylation (CaMKII, LIMK) and
dephosphorylation (calcineurin, slingshot). For a detailed review
on ADF/cofilin, see (Kanellos and Frame, 2016). Of note, cofilin-1
activity is instrumental for the dynamic plasticity of dendritic

spines (Noguchi et al., 2016), and it is possible that activated
cofilin-1 could spread out from a single activated spine to drive
re-organization of F-actin in associated dendritic compartments.

Extracellular Factors Controlling Actin
Dynamics in Dendrites
There is a vast number of studies addressing the role of cell
adhesion molecules (CAMs) and extracellular guidance cues
in neuronal cell migration, axon pathfinding, axon-dendrite
contact formation and dendritic spine plasticity (Togashi et al.,
2009), whereas their role in dendritogenesis has been somewhat
overlooked. Those cell surface receptors associate directly with
ABPs, thereby translating environmental cues into local changes
in actin dynamics (Leshchyns’ka and Sytnyk, 2016).

Neural CAM1 (NCAM1) has been extensively studied for its
role in neuronal development (Li et al., 2013; Leshchyns’ka and
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TABLE 1 | Actin binding proteins in neurons and their cross-talk with MTs.

Protein group Function in neurons Binding partners Reference

Actin monomer (G-actin) binding

β-Thymosin G-actin “buffer,” blocks all known assembly reactions but
with a high on/off rate

Yarmola and Bubb, 2004

Profilin Actin nucleotide exchange factor; maintains G/F-actin ratio
together with capping proteins

ROCK, Formin, VASP,
WAVE, WASP, Drebrin

Witke et al., 1998; Da Silva
et al., 2003

CAP Cyclase associated protein; actin nucleotide exchange
factor; sequesters G-actin and severs F-actin; role in
growth cone and dendrite development

Profilin, Abp1, Abl, Ras,
Cofilin

Ono, 2013; Kumar et al.,
2016

Nucleators

Arp2/3-complex F-actin branching in lamellipodia growth cones, and spine
heads

WASP, WAVE, Cortactin Korobova and Svitkina,
2008; Hotulainen et al.,
2009

Formins Filament nucleation in filopodia, growth cones and along
axon; synergize with other actin nucleators

Rho, Rac, Cdc42, Spire,
APC

Matusek et al., 2008;
Ganguly et al., 2015

Cobl Role in dendrite branching and growth cones CaM, Syndapin-1 Ahuja et al., 2007

Spire Dendrite arborization in Drosophila sensory neurons;
cooperates with formin-1/2; Myosin V recruitment

Formin-1/2, Myosin Vb Ferreira et al., 2014;
Pylypenko et al., 2016

Elongation-promoting factors

Ena/VASP Accelerate elongation and prevent capping; role in filopodia
formation and neurite elaboration

WAVE, Profilin Dent et al., 2007;
Kwiatkowski et al., 2007;
Chen et al., 2014

Barbed end capping

CapZ Maintains G/F actin ratio together with profilin; role in
neurite elaboration

Davis et al., 2009

Adducin Promotes F-actin bundling and spectrin binding;
component of actin rings

Spectrin Leite et al., 2016

Pointed end capping

Tropomodulins Stabilize F-actin and decelerate actin dynamics; associated
with growth cones

Tropomyosins Cox et al., 2003; Schevzov
et al., 2012

Crosslinkers/Bundling

Fimbrin Axiogenesis Spectrin Oprea et al., 2008

Spectrin Couples F-actin cytoskeleton to plasma membrane;
component of actin rings

Adducin, Fimbrin, α-Actinin Bennett and Baines, 2001;
Xu et al., 2013

α-Actinin Calcium sensitive; role in dendrite elaboration and
branching

Hodges et al., 2014

Severing

ADF/cofilin Bind and sever F-actin, enhance depolymerization; role in
spines and LTP; bind G-actin and enhance nucleation

CaMKII, LIMK, Calcineurin,
Slingshot, CAP

Meyer and Feldman, 2002;
Andrianantoandro and
Pollard, 2006

Gelsolin Severs F-actin, directly activated by Ca2+; role in growth
cone and spines

Ca2+ Furukawa et al., 1997; Star
et al., 2002

Stabilizing

Cortactin Stabilization of F-actin; activation of Arp2/3; in filopodia and
growth cones

Arp2/3, WASP Kowalski et al., 2005;
Korobova and Svitkina,
2008

Abp1 Associates with newly formed, dynamic F-actin;
concentrated at subcortical post-synaptic scaffold

Arp2/3, WASP, Cobl Kessels et al., 2000; Pinyol
et al., 2007

Drebrin Stabilizes actin, competitively inhibits binding of
tropomyosins, myosins, fascin and other ABPs; recruits MT
into growth cones and dendritic spines

EB3 Geraldo et al., 2008;
Merriam et al., 2013

Tropomyosin Bind along actin filaments; role in dendrite elaboration;
effect depends on interaction with other ABPs

Schevzov et al., 2005;
Tojkander et al., 2011;
Curthoys et al., 2014

Actin-MT crosslinkers

MAP1/2 Ability to crosslink microtubules with F-actin; formation and
stabilization of neurites

Roger et al., 2004;
Szebenyi et al., 2005

(Continued)
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TABLE 1 | Continued

Protein group Function in neurons Binding partners Reference

MACF1 MT-actin crosslinking factor 1, also known as ACF7,
Shortstop, and kakapo; Role in dendrite branching

Sun et al., 2001;
Applewhite et al., 2010

EB3 MT plus-end tracking protein (+TIP); can simultaneously
link to actin via drebrin; role during neuritogenesis

Drebrin Geraldo et al., 2008

APC Adenomatous polyposis coli protein; possesses actin
nucleation activity and might crosslink to MT via the +TIP
IQGAP

IQGAP, mDia Watanabe et al., 2004;
Okada et al., 2010

Formins Simultaneous actin- and MT-binding activity; might also
crosslink actin and MT via APC:IQGAP

APC Bartolini et al., 2008;
Breitsprecher et al., 2012

CTTNBP2 Cortactin-binding protein 2, neuron-specific, possible
interactor between cortactin and microtubules

Cortactin Shih et al., 2014

CLIP170 EB3-associated +TIP; might link MT to actin via IQGAP IQGAP Swiech et al., 2011

P140Cap EB3-associated +TIP; might link MT to actin via cortactin Cortactin Jaworski et al., 2009

Abl Ableson-family of non-receptor tyrosine kinases; bind both
actin and MT; activate WAVE complex

WAVE, Ena/VASP Moresco, 2005; Colicelli,
2010

Motor proteins

Myosin II; with light
chains RLC and ELC

Network contraction; F-actin shearing; remodeling of actin
network in growth cones and in spines undergoing LTP

MLCK, ROCK, MLCP Medeiros et al., 2006; Rex
et al., 2010; Koskinen et al.,
2014

Sytnyk, 2016). It was shown recently that the isoform NCAM180
is highly enriched at dendritic growth cones in rat primary
hippocampal neurons during dendritogenesis (Frese et al., 2017).
Knockdown of NCAM1 led to reduced dendrite lengths, most
likely due to absence of NCAM1-mediated actin stabilization,
since many different ABPs were found to be associated with
its intracellular domain (Pollerberg et al., 2013; Frese et al.,
2017). These results suggest a novel role of NCAM180 in
dendritic arborization. Of note, other NCAM family proteins
have also been reported to be involved in dendritic branching and
morphology in C. elegans (Dong et al., 2013).

Integrins are another type of surface receptors in direct
contact with the actin cytoskeleton. They interact with
components of the extracellular matrix (ECM) and affect
actin dynamics through associated Abl-family tyrosine kinases,
of which Arg is particularly abundant in the nervous system
and localizes to dendritic spines (Lin et al., 2013). Arg controls
both dendritic spine and dendrite arbor stability through distinct
pathways: it promotes binding of cortactin to F-actin to stabilize
spines (MacGrath and Koleske, 2012), and attenuates Rho
activity to stabilize dendrite arbors (Moresco, 2005; Lin et al.,
2013).

An important feature of mature neurons is dendrite
compartmentalization, for example the distinction between
apical and basal dendrites, or between proximal and distal regions
of apical dendrites. Those compartments are characterized by the
expression of specific sets of ion channels (Ginger et al., 2013).
Little is known about the mechanisms behind this distinction,
however, several studies demonstrated that the large secreted
matrix glycoprotein Reelin influences positioning of the Golgi
apparatus toward the future apical dendrite (Leemhuis and Bock,
2011; Meseke et al., 2013), and that it is required for establishing
and maintaining the molecular identity of the distal dendritic
compartment of pyramidal neurons (Kupferman et al., 2014).
Reelin signals through lipoprotein-receptors, activating both the

GSK3β- and PI3K-Rho-GTPase-pathways, which influence the
MT and actin cytoskeleton, respectively (González-Billault et al.,
2005; Leemhuis and Bock, 2011). Additionally, Reelin-signaling
was found to inactivate ADF/cofilin via LIMK, thereby stabilizing
F-actin (Chai et al., 2009, 2016).

Role of Synaptic Activity in Shaping the
Dendritic Actin Cytoskeleton
Apart from direct contact with the ECM and neighboring cells,
another important factor for dendrite survival and stabilization
is synaptic input (Niell et al., 2004). Increased calcium influx
via glutamate receptors and L-type Ca2+-channels at excitatory
synapses stabilizes dendritic branches (Lohmann et al., 2002). In
addition, neurotrophic signaling via brain-derived neurotrophic
factor (BDNF) modulates calcium signaling. Activation of the
TrkB receptor by BDNF triggers multiple downstream pathways,
which promote synaptic potentiation but also dendrite growth
and stabilization (Horch and Katz, 2002; Wang et al., 2015). The
downstream signaling is mediated by the activation of Rac1-
GTPase and MAP-kinases, which influence both the actin and
microtubule cytoskeleton, and of PLC-γ and PI3-kinase, which
trigger the release of calcium from the endoplasmic reticulum
(ER) (reviewed in Huang and Reichardt, 2003).

Although most of the Ca2+-dependent effects have been
described in spines, Ca2+ diffuses from activated spines and
thus can activate dendritic targets (Figure 1C). Cytoplasmic
Ca2+-signaling is largely transduced via the ubiquitous Ca2+-
sensor calmodulin (CaM), which rapidly activates CaM-kinases
and calcineurin (Ca2+/CaM-dependent phosphatase). CaMKII,
at the center of many signaling cascades, regulates formation,
growth, and branching of dendrites locally via Rho-GTPases,
which modulate cytoskeleton turnover, and globally via activation
of transcription factors (reviewed in Redmond and Ghosh,
2005). Apart from this, CaMKIIβ possesses an F-actin binding
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ability, enabling the dodecameric holoenzyme to cross-link and
stabilize actin networks (Lin and Redmond, 2008; Na et al.,
2016). Activated CaMKII is then released from F-actin, which
constitutes one of the many ways to link Ca2+-signaling to
the regulation of the actin cytoskeleton. Several other ABPs
are known to be directly influenced by CaM/Ca2+, including
spectrins and actinin, ADF/cofilin and gelsolin (Oertner and
Matus, 2005) and Cobl (Hou et al., 2015). However, there may
still be additional, so far unidentified calcium sensors that directly
couple Ca2+-signaling to actin dynamics.

Numerous ABPs are further indirectly activated downstream
of CaM/Ca2+ and CaMKII via Rho-GTPases (Boekhoorn and
Hoogenraad, 2013). Three well-studied Rho-GTPases that drive
cytoskeleton-mediated dendrite morphogenesis are RhoA, Rac1
and Cdc42 (Negishi and Katoh, 2002). It was shown that during
potentiation of synaptic spines, Rho-GTPases get activated and
can then diffuse along the membrane into the dendrite and
neighboring spines (Murakoshi et al., 2011). While this kind
of “spillover” has been suggested to play a role in clustering
of activated synaptic inputs (discussed in van Bommel and
Mikhaylova, 2016), continued signaling within the dendritic shaft
might as well be involved in activity-dependent stabilization of
the whole dendrite (Figure 1C).

Rho-GTPases activate a myriad of both intertwining and
antagonistic pathways that signal to the actin and microtubule
cytoskeleton, their effectors including kinases, formins, MAPs,
WASP-family proteins and other ABPs. For a detailed review on
Rho-GTPases and their role in organizing the actin cytoskeleton,
see (Sit and Manser, 2011).

F-ACTIN IN TRANSPORTING AND
LOCALIZATION OF CARGO WITHIN
DENDRITES

Maintenance of the polarized dendrite morphology does not only
depend on the cytoskeletal scaffold, but also on the constant
supply of membrane components and dendrite-specific cargo
(Hanus and Ehlers, 2016). Long-range intra-dendritic cargo
transport is typically carried out via MTs and associated motors.
However, actin and actin-dependent motors (myosins) have
been shown to mediate the transport and/or anchoring of
certain cargos, which include mRNA, translational machinery
and mitochondria (Ligon and Steward, 2000; reviewed in Martin
and Ephrussi, 2010).

For transport, mRNA is packaged into ribonucleoprotein
particles (RNPs) containing specific targeting factors, and is
delivered from the soma to the dendrite via MTs. Some
RNPs are targeted to spines in an activity-dependent manner,
which requires the presence of F-actin (Huang et al., 2007;
Yoon et al., 2016). Likewise, myosin Va (MyoVa) was shown
to facilitate the accumulation of RNPs in spines (Yoshimura
et al., 2006). As a general model, activity-dependent targeting
of cargo to activated synapses has been proposed to involve
myosins located at the spine neck, which take up cargo that has
been unloaded from passing MT-motors in a Ca2+-dependent
manner (Hanus et al., 2014). Similarly, it has been shown

that dendritic mitochondria show activity-induced movement
toward dendritic spines in dissociated neurons. This process
likely involves Arp2/3-complex-mediated actin polymerization
via mitochondria-associated WAVE1 (Sung et al., 2008). It has
been speculated that this mechanism might ensure the local
energy supply at sites of activity. However, in dendrites within
intact tissues, mitochondria are mainly immobile and localize
stably to synapses and branch points (Faits et al., 2016), so the
in vivo role of this observation is uncertain. In this context,
the possibility that actin rings could serve as cargo-docking
sites has been brought up, which would allow precise control
of mitochondria localization (Gallo, 2013). Supporting this,
the speed of axonal mitochondria transport decreased in an
α-adducin knockout background, which affects the integrity of
actin rings (Leite et al., 2016), and in axons of Drosophila
neurons, knockdown of MyoV and MyoVI impacts mitochondria
transport (Pathak et al., 2010).

Within the actin-rich environment of dendritic spines,
myosin motors are known to play an important role in the
transport of vesicular cargo (Osterweil et al., 2005; Wang
et al., 2008). In cerebellar Purkinje neurons, MyoVa acts as a
processive organelle transporter that moves the ER into dendritic
spines, which is required for long-term synaptic depression
(Wagner et al., 2011). Whether this motor is also involved
in the more dynamic spine-localization of ER in other types
of neurons, just like the role of myosins in transport and
anchoring of dendritic organelles in general, still remains to be
explored.

CONCLUDING REMARKS

Our current knowledge of the organization, polarity, and
dynamics of actin along dendritic shafts is very incomplete,
although the recent development of super-resolution microscopy
has provided us with additional tools to study the architecture
of the actin cytoskeleton in greater detail. So far, it has led to
the discovery of a periodic actin lattice along the lengths of
neurites, as well as actin patches and deep actin filaments, whose
function and properties are still unexplored. Particularly because
of the high degree of conservation among species, it would be
interesting to learn more about the mechanisms and nucleation
factors involved in formation and regulation of these structures.

Synaptic input and cell contacts play a critical role in the
stabilization of dendrites. All of those inputs converge to finally
modulate cytoskeleton dynamics, with the main effectors being
MTs and F-actin. Thanks to extensive research efforts, a myriad of
intertwining pathways and molecular cascades that signal to the
cytoskeleton have been described. However, how a given input
might lead to an observed output in such a complicated multi-
factor system is often hard to reconstruct in detail. Therefore, our
understanding of how those different pathways are coordinated
and integrated within the cell would greatly benefit from a
concerted in silico modeling approach. A special interest lies on
the question how and to what extent the wealth of described
signaling factors that modulate F-actin dynamics within dendritic
spines can extend their signaling into dendritic shafts, as a
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diffusional activity has for example been described for
Rho-GTPases and cofilin.

A lot of research regarding mechanisms shaping neuronal
actin networks, including their modulation by intrinsic and
extrinsic signaling, has been focused on the axon, and here
it is important to test whether the identified mechanisms and
pathways of F-actin remodeling are applicable to dendrites
as well. For example, it will be important to investigate
whether dendritic F-actin patches, which at first glance appear
to share a similar structure with axonal F-actin “hotspots,”
actually originate from stationary endosomes as well, or
whether they constitute their own unique features. For now,
we conclude that in analogy to the axon, the dendritic actin
cytoskeleton might play a two-fold role: stable, cortical actin
rings provide mechanical support, while dynamic, underlying

filaments sustain physiological processes related to dendritic and
synaptic plasticity.
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